浙教版七年级数学上册 第四章 代数式 单元测试题(无答案)
浙教版七年级数学上册第四章代数式单元测试

浙教版七年级数学上册第四章代数式单元测试第四章代数式单元测试一、选择题1.下列代数式中单项式共有,,,,,,,.A. 2个B. 3个C. 4个D. 5个2.当时,代数式的值等于2013,那么当时,代数式的值为A. 2011B.C. 2012D. 20133.下列各题去括号所得结果正确的是A. B.C. D.4.多项式的次数是A. 6B. 4C. 2D. 以上的都不对5.若与可以合并一项,则mn的值是A. 2B. 0C.D. 16.下列算式和为4的是A. B.C. D.1 / 57.一个两位数x,还有一个两位数y,若把两位数x放在y前面,组成一个四位数,则这个四位数为A. B. xy C. D.8.下列式子中,符合代数式的书写格式的是A. B. C. D.9.“比a的2倍大1的数”,列式表示是A. B. C. D.10.下列代数式中符合书写要求的是A. ab4B.C.D.二、填空题11.多项式的最高次项为______ ,常数项为______ .12.某商品每件成本a元,按成本增加定价,后因库存积压减价,按定价的出售,减价后每件商品盈利______ 元盈利售价成本13.某件商品的成本价为a元,按成本价提高后标价,又以n折销售,这件商品的售价为______ 元14.联系实际背景,说明代数式的实际意义______ .15.代数式表示的实际意义:______ .三、解答题浙教版七年级数学上册第四章代数式单元测试16.为了节约用水,某市自来水公司采取以下收费方法:每户每月用水不超过10吨,每吨收费元;每户每月用水超过10吨,超过的部分按每吨3元收费现在已知小明家2月份用水x吨,请用代数式表示小明家2月份应交水费多少元?如果,那么小明家2月份应交水费多少元?17.合并同类项:.18.吉林市有一种出租车,它的计价方式为:当行驶路程不超过3千米时收费6元,若超过3千米,则超出的部分每千米按元收费不足1千米按1千米收费;某人到吉林市出差,需要乘坐的路程为x千米.3 / 5行驶路程为2千米时,此人应花______ 钱;行驶路程为10千米时,此人应花______ 钱;用代数式表示此人乘出租车行驶x千米所需要的费用;19.请按代数式编写一道与实际生活相关的应用题.浙教版七年级数学上册第四章代数式单元测试【答案】1. D2. B3. D4. C5. B6. C7. C8. C9. C10. D11. 、;12.13.14. 正方形广场的边长为a米,6个广场的面积为平方米15. 一本笔记本a元,一支铅笔b元,购买两本笔记本和一只铅笔应付的价格16. 解:,应交水费,当时,元.故小明家2月份应交水费是元,当时,应交水费是33元.17. 解:原式.18. 6;19. 解:答案不唯一.如一个苹果的质量是x,一个桔子的质量是y,那么10个苹果和30个桔子的质量和是.5 / 5。
新浙教版数学七年级上册第四章代数式单元测试

新浙教版数学七年级上册第四章代数式单元测试(总2页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第四章 代数式单元检测题一、选择题1.下列各说法中,错误的是( )A.代数式22y x +的意义是x ,y 的平方和B.代数式()y x +5的意义是5与y x +的积C.x 的5倍与y 的和的一半,用代数式表示为25yx + D.比x 的2倍多3的数,用代数式表示为32+x2.一个代数式的2倍与b a +2—的和是b a 2+,这个代数式是( )A .b a +3 B.b a 2121+— C.b a 2323+ D.b a 2123+ 3.对任意实数a ,代数式12+a 的值一定( )A.小于1B.不小于1C.大于1D.不大于14.下列各组整式中,不属于同类项的是( )A.2222ab b a 与B.yx xy 213—与 C.431.2与— D.220001.02ba b a —与 5.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2012个格子中的数为( )A.3B.2C.0D.—16、已知21,2==c a b a ——,那么代数式()()4932++c b c b ——的值是( ) A.23— B.23 C. 0 D.79 7.某种商品在原价上加a %后又降价b %,经两次调价后的售价是c ,则原价是( )A.()()b a c —100100104+B.()()c b a 410100100—+C.()()000011b a c —+D.()()cb a 000011—+ 8.y mx 2—是关于x ,y 的系数为1的5次单项式,则n m +等于A.4B.2C.6D.19.如图a ,b,c,为实数,化简c b c b a b a a b —————+++的结果是A.c b a 22——B.b a 2——C.c b a 22———D.c b a 22++—10.一列数321,,a a a .......其中1111,21——n n a a a ==(n 为不小于2的数),则100a = A.21 B.2 C.—1 D.—2 二、填空题 11.32333b a b a +—是 次 项式,最高项的系数为 12.设多项式M d cx bx ax =+++35,已知当x=0时,M=—5;当x=—3时,M=7,则当x=3时,M=13.有下列一些代数式:① 432—x ②y x +1 ③2x ④x 2 ⑤b a 22⑥ 3a ⑦a 3 ⑧0 ⑨122++x x ⑩π 则整式有 个,单项式有 个,多项式有 个14.一个长方体礼品盒,用丝带(粗线)包扎成如图的样子,上面还扎了一朵花,花朵用去丝带40cm,求包装这样一个礼品盒共需要包装丝带 cm15.如图所示的运算程序中,若开始输入的x 的值为48,我们发现第一次输出的结果为24,第二次输出的 结果为12,.........第2009次输出的结果为16.已知甲乙两种糖果的单价分别是x 元/千克和12元/千克,为了使甲乙两种糖果分别销售与把它们混合成什锦糖后再销售的收入保持不变,则由20千克甲种糖果盒y 千克乙种糖果混合而成的什锦糖的单价应是17.如图有两个相邻的正方形,面积分别为a 和b ,那么阴影部分的面积为18.有理数a,b 在数轴上表示的点如右图所示,化简b b a b a ——++=19.已知=++=+=+2222911,5123,765b ab a ab b ab a20.如图,一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个5×3的矩形用不同的方式分割后,小正方形的个数可以是__________--三、解答题21、化简并求值.(1)2(2x-3y)-(3x+2y+1),其中x=2,y=-0.5;(2)-(3)+[-2(2a+2ab)],其中a=-2.22、化简与求值:(1)当5m-3n=-4时,求代数式2(m-n)+4(2m-n)+2的值;(2)求整式的和,并说明当a、b均为无理数时,结果是一个什么数?23、用棋子摆出下列一组图形:(1)摆第一个图形用______枚棋子,摆第2个图形用________枚棋子,摆第3个图形用______枚棋子;(2)按照这种方式摆下去,摆第50个图形用_______枚棋子.(3)按照这种方式摆下去,第n个图形用__________枚棋子。
第四单元《代数式》单元测试卷(困难)(含解析)

浙教版初中数学七年级上册第四单元《代数式》单元测试卷考试范围:第四章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.一个两位数x和一个三位数y,若将两位数x放在三位数y的左边组成一个五位数,则组成的这个五位数表示为( )A. xyB. 10000x+yC. 100x+1000yD. 1000x+y2.有12米长的木料,要做成一个窗框(如图).如果假设窗框横档的长度为x米,那么窗框的面积是( )A.x(6−x)米 2B. x(12−x)米 2C. x(6−3x)米 2D. x(6−32x)米 23.某商店经销一批衬衣,每件进价为a元,零售价比进价高m%,后因市场变化,该商店把零售价调整为原来零售价的n%出售.那么调整后每件衬衣的零售价是( )A. a(1+m%)(1−n%)元B. a(1+m%)n%元C. a⋅m%(1−n%)元D. a(1+m%⋅n%)元4.观察如图图形,它们是按一定规律排列的,依照此规律,第n个图形中的小点一共有( )A. 3n24个 B. 3n2+32个 C. 3n2+n4个 D. 3n2+3n2个5.由梅州到广州的某一次列车,运行途中停靠的车站依次是:梅州−兴宁−华城−河源−惠州−东莞−广州.那么要为这次列车制作的火车票有( )A. 6种B. 12种C. 21种D. 42种6.当x=2时,代数式ax3+bx+1值为3,那么当x=−2时,代数式ax3+bx+1的值是( )A. −3B. 1C. −1D. 27.我们将如图所示的两种排列形式的点的个数分别称作“三角形数”(如1,3,6,10…)和“正方形数”(如1,4,9,16…),在小于200的数中,设最大的“三角形数”为m,最大的“正方形数”为n,则m+n的值为( )A. 33B. 301C. 386D. 5718.下列代数式中,哪个不是整式( )A. x2+1B. −2C. 1xD. π9.在73x2−x、2πx3y、1x、−4、a中单项式的个数是( )A. 1B. 2C. 3D. 410.若单项式a m−2b2与−3ab n的和仍是单项式,则n m的值是( )A. 3B. 9C. 6D. 811.已知数a,b,c的大小关系如图所示,则下列各式:①abc>0;②a+b−c>0;③a|a|+b |b|+|c|c=1;④bc−a>0;⑤|a−b|−|c+a|+|b−c|=−2a,其中正确的有个.( )A. 1B. 2C. 3D. 412.多项式8x2−3x+5与3x3−4mx2−5x+7多项式相加后,不含二次项,则m的值是( )A. 2B. 4C. −2D. −4第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是____________万元.14.如图是在正方形网格中按规律填成的阴影,根据此规律,第n个图形中阴影部分小正方形的个数是.15.已知代数式x2−4x−2的值为5,则代数式2x2−8x−5的值为______ .16.如果数轴上表示a,b两数的点的位置如图所示,那么|a−b|+|a+b|的计算结果是______.三、解答题(本大题共9小题,共72分。
第四单元《代数式》单元测试卷(较易)(含解析)

浙教版初中数学七年级上册第四单元《代数式》单元测试卷 考试范围:第四章;考试时间:120分钟;总分:120分 第I 卷(选择题) 一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1. 下列各式中,书写规范的是( )A. −216PB. a ×14 C. 73x 2 D. 2y ÷z2. 一个两位数的个位数字是b ,十位数字是a ,那么能正确表示这个两位数的式子是.( )A. abB. baC. 10a +bD. 10b +a3. 对x 2−1y 的解释正确的是( )A. x 与y 的倒数的差的平方B. x 的平方与y 的倒数的差C. x 的平方与y 的差的倒数D. x 的平方与y 的倒数的和4. 在1,x 2−2,S =12ab ,nm 中,代数式的个数是( )A. 1B. 2C. 3D. 45. 当m = −1时,代数式2m +3的值是( )A. −1B. 0C. 1D. 26. 当a =2,b =13时,下列代数式的求值中,错误的是( )A. a(a +b)=2×(2+13)=423B. a 2+b =22+13=413C. a +ab =2+2×13=223D. (a +b)(a −b)=(2+13)×(2−13)=3137. 若x 是2的相反数,|y|=3,则x −y 的值为( )A. −5B. 1C. 5或−1D. −5或18. 下列说法中,正确的是( )A. x 2−3x 的项是x 2,3xB. a+b3是单项式C. 12,πa ,a 2+1都是整式 D. 3a 2bc −2是二次多项式9.下列单项式按一定规律排列:x3,−x5,x7,−x9,x11,⋯,其中第n个单项式为( )A. (−1)n+1x2n−1B. (−1)n x2n−1C. (−1)n+1x2n+1D. (−1)n x2n+110.下列各式中,与2a2b为同类项的是( )A. −2a 2bB. −2abC. 2ab 2D. 2a 211.下列算式中正确的是( )A. 4x−3x=1B. 2x+3y=3xyC. 3x2+2x3=5x5D. x2−3x2=−2x212.下列去括号的过程中,正确的是( )A. −(a+b−c)=−a+b−cB. −2(a+b−3c)=−2a−2b+6cC. −(−a−b−c)=−a+b+cD. −(a−b−c)=−a+b−c第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如图,用20m长的铝合金做一个长方形的窗框.设长方形窗框的三根横条长为a(m),则长方形窗框的竖条长为m(用含a的代数式表示).14.已知x−2y=2,则−x+2y+6的值为.15.若a3b m与−2a n b是同类项,则n m=______.16.七年级某班有(3a−b)名男生和(2a+b)名女生,则男生比女生多___________名.三、解答题(本大题共9小题,共72分。
七年级上册数学单元测试卷-第4章 代数式-浙教版(含答案)

七年级上册数学单元测试卷-第4章代数式-浙教版(含答案)一、单选题(共15题,共计45分)1、下列式子,符合代数式书写格式的是()A.a÷3B.2 xC.a×3D.2、下列运算正确的是()A. B. C. D.3、对于单项式的系数、次数分别是()A.-2,2B.-2,3C.-2 ,2D.-2 ,34、下列说法正确的是()A. 不是代数式B. 是整式C.多项式的常数项是-5D.单项式的次数是25、一个三角形的三边长分别为1、k、4,则化简|2k-5|-的结果是()A.3k-11B.k+1C.1D.11-3k6、下列说法正确的是().A.a的系数是0B. 是一次单项式C.-5x的系数是5D.0是单项式7、下列计算错误的是()A. B. C.D.8、下列说法正确的是()A.x的系数为0B. 是单项式C.1是单项式D.﹣4x系数是49、若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则 a+b+c 的值是().A.-2B.-1C.1D.010、用代数式表示:“x的5倍与y的和的一半”可以表示为()A.5x+ yB. (5x+y)C. x+yD.5x+y11、阜阳某企业今年1月份产值为a万元,2月份比1月份减少了10%,预计3月份比2月份增加15%.则3月份的产值将达到()A.(a﹣10%)(a+15%)万元B.(a﹣10%+15%)万元C.a(1﹣10%)(1+15%)万元D.a(1﹣10%+15%)万元12、若α、β为方程的两个实数根,则的值为()。
A. B.12 C.14 D.1513、下列计算正确的是( ).A.7a+a=7a 2B.5y-3y=2C.3x 2y-2yx 2=x 2yD.5a+3b=8ab14、下列运算正确的是()A.3a 2+5a 2=8a 4B.5a+7b=12abC.2m 2n﹣5nm 2=﹣3m 2nD.2a ﹣2a=a15、多项式3x3﹣2x2y2+x+3是()A.三次四项式B.四次四项式C.三次三项式D.四次三项式二、填空题(共10题,共计30分)16、|a﹣11|+(b+12)2=0,则(a+b)2017=________.17、若-3x m+4y2-m与2x n-1-y n+1是同类项,则m-n=________18、已知1<x<a,写一个符合条件的x (用含a的代数式表示):________19、若,则________.20、单项式-的系数是________.21、体育课上,甲、乙两班学生进行“引体向上”身体素质测试,测试统计结果如下:甲班:全班同学“引体向上”总次数为;乙班:全班同学“引体向上”总次数为.(注:两班人数均超过30人)请比较一下两班学生“引体向上”总次数,________班的次数多,多________次.22、已知代数式2a3b n+1与-3a m-2b2是同类项,则2m+3n=________.23、小刚学习了有理数运算法则后,编了一个计算程序,当他输入任意一个有理数时,显示屏上出现的结果总等于所输入的有理数的平方与1的和,当他第一次输入-1,然后又将所得的结果再次输入后,显示屏上出现的结果应是________.24、当x=________时,和-2a4是同类项.25、教材练一练第3题变式多项式x2+2xy-2y-3有________项,次数是________,其中一次项的系数为________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中.27、三个队植树,第一队植a棵,第二队植树数比第一队的2倍还多8棵,第三队植树数比第二队数的一半少6棵,三队一共植了多少棵树?当a=100时,求三队一共植的棵数.28、代数式3(a+2)用数学语言表示29、已知16m=4×22n﹣2, 27n=9×3m+3,求(n﹣m)2010的值.30、王老师让同学们计算“当,时,代数式的值”,小颖说,不用条件就可以求出结果,你认为她的说法有道理吗?参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、B5、A6、D7、D8、C9、D10、B11、C12、B13、C14、15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
第 4章 代数式单元测试2024-2025学年浙教版数学七年级上册

第 4章 代数式班级 学号 姓名 得分一、选择题(本大题有10小题,每小题3分,共30分)1. 下列各式:① 14y,②2·3,③a -b÷c,④20%x,⑤x4,⑥x -5,其中不符合代数式书写要求的有( ) A. 5个 B. 4个 C. 3个 D. 2 个2. 下列各式:①m,②x+5=7,③2x+3y,④m>3,⑤2a +b,其中整式的个数是( )A. 1B. 2C. 3D. 4 3.下列不能表示“2a”的意义的是( )A. 2的a 倍B. a 的2倍C. 2个a 相加D. 2个a 相乘 4.下列说法正确的是( )A. 整式就是多项式B.π是单项式C.x²+2x³是七次二项式D.3x−15是单项式 5. 当x 分别取1 和-1时,代数式. x⁴−7x²+1的值( )A. 相等B. 互为相反数C. 互为倒数D. 以上都不对 6.设x 表示两位数,y 表示三位数,如果把x 放在y 的左边组成一个五位数,可表示为( ) A. xy B. 1000x+y C. x+y D. 100x+y 7.设a 是实数,则|a|-a 的值( )A. 可以是负数B. 不可能是负数C. 必是正数D. 可以是正数也可以是负数8. 在一次数学考试中,七年级(1)班20名男生平均得m 分,26名女生平均得n 分,则这个班全体同学的平均分是( ) A.m+n 2分 B.m+n 20+26分 C.20m+26n 2分 D.20m+26n20+26分9. 若 5x 2y |m|−14(m +1)y 2−3是三次三项式,则m 等于( )A. ±1B. 1C. --1D. 以上都不对 10. 当x=1时,多项式 ax³+bx +3的值是4,则当x=-1时,此式的值为( ) A. 6 B. 8 C. 4 D. 2 二、填空题(本大题有 6 小题,每小题4分,共24 分) 11. 单项式 −x 2yz 32是 次单项式,系数是 .12. 小红去超市买了3本单价为x 元的笔记本和2支单价为y 元的圆珠笔,共需 元. 13. 三个连续偶数,中间一个数为n ,则这三个数的积为 .14. 某人加工零件a 只,原计划每天做80只,需要 天完成,实际每天多加工7只,因此实际需要 天完成,实际比原计划提前 天完成.若a=6960,则实际比原计划提前 天完成.15. 已知 −2a +3b²=−7,则代数式: 9b²−6a +44的值是 .16.按如图所示的程序计算,若开始输入n 的值为1,则最后输出的结果是 .三、解答题(本大题有8小题,共66分) 17. (6分)列代数式:(1)a 的2倍减去b 的差;(2)x 的平方与y 的立方的倒数的和;(3)a ,b ,c 三个数和的平方减去a ,b ,c 三个数的平方和.18.(6分)已知 (a −2)x²y|a|+1是关于x ,y 的五次单项式,求a 的值.19. (6分)代数式: 4+5y,7,m,√mn 3,1y 2+1x 2,−3a 2b,x 2−xy 中,属于整式的有: ; 属于单项式的有: ; 属于多项式的有: .20.(8分)某超市今年第一季度的营业额为m万元,预计本年度每季度比上一季度的营业额增长p%.请你完成下列问题:(1)用代数式分别表示第二季度、第三季度、第四季度的预计营业额;(2)当m=10,p=15时,求出本年度预计营业总额(结果精确到0.1万元).21.(8分)某农场有耕地1000亩,分别种植粮食、棉花和蔬菜,其中蔬菜的占地面积为a亩,粮食的占地面积比蔬菜的占地面积的6倍还多b亩.(1)请用含α,b的代数式表示棉花的占地面积(不需要化简);(2)当a=120,b=4时,棉花占地面积为多少亩?22. (10分)用火柴棒按下面的方式搭图形:(1)填写下表:(2)第n个图形需要多少根火柴棒?23. (10分)如图,由4个边长为a,b,c(a<b)的直角三角形拼成一个正方形,中间有一个小正方形的开口(图中阴影部分),试计算这个阴影部分的面积(用含a,b,c的代数式表示),并回答它是多项式,还是单项式? 如果是多项式,它是几次几项式? 如果是单项式,它的系数、次数分别是多少?24.(12分)现有一种蔬菜xkg,不加工直接出售每千克可卖y元;如果经过加工质量减少了20%,价格增加了40%.(1) xkg这种蔬菜加工后可卖多少钱?(2)如果有这种蔬菜 1000kg,不加工直接出售,每千克可卖1.50元,问:加工后原 1000kg 这种蔬菜可卖多少钱? 比加工前多卖多少钱?第 4章代数式1. C2. B3. D4. B5. A6. B7. B8. D9. B10. D 11. 六−1212. (3x+2y) 13, n³-4n14.a80a87(a80-a87) 7 15. -17 16. 4217. (1)2a-b (2)x2+1y3(3)(a+b+c)²−(a²+b²+c²)18. —219. 解:属于整式的有:4+5y,7,m,−3a²b,x²−xy;属于单项式的有:7,m,−3a²b;属于多项式的有:4+5y,x²−xy。
浙教版七年级(上)数学 第4章 代数式 单元测试卷(含答案)

七年级上册数学第4章代数式单元测试卷一.选择题(共10小题)1.在代数式﹣1,m,x3y2,,a=4,x﹣3y中,整式有()A.2个B.3个C.4个D.5个2.单项式﹣5a2b2c的系数和次数分别是()A.﹣5,5B.﹣5,4C.5,5D.5,43.如果单项式3x2m y n+1与x2y m+3是同类项,则m、n的值为()A.m=﹣1,n=3B.m=1,n=3C.m=﹣1,n=﹣3D.m=1,n=﹣3 4.若单项式xy m+3与x n﹣1y2的和仍然是一个单项式,则m、n的值是()A.m=﹣1,n=1B.m=﹣1,n=2C.m=﹣2,n=2D.m=﹣2,n=1 5.某商店对店内的一种商品进行双重优惠促销﹣﹣将原价先降低m元,然后在此基础上再打五折.按该方案促销后,若此商品的售价为n元,则它的原价是()A.(2n+m)元B.(2n﹣m)元C.(0.5n+m)元D.(0.5n﹣m)元6.按下面的程序计算,若开始输入的值x为正整数,输出结果86,那么满足条件的x的值有()A.4个B.3个C.2个D.1个7.下列说法正确的个数有()①单项式﹣的系数是﹣,次数是3;②xy2的系数是0;③﹣a表示负数;④﹣x2y+2xy2是三次二项式;⑤是单项式.A.1个B.2个C.3个D.4个8.已知x=﹣,那么4(x2﹣x+1)﹣3(2x2﹣x+1)的值为()A.﹣2B.2C.4D.﹣49.下列各式符合代数式书写规范的是()A.m×6B.C.x﹣7元D.2xy210.下列各式中,去括号正确的是()A.﹣(7a+1)=﹣7a+1B.﹣(﹣7a﹣1)=7a+1C.﹣(7a﹣1)=﹣7a﹣1D.﹣(﹣7a﹣1)=﹣7a+1二.填空题11.若多项式5x2﹣(m+2)xy+7y2﹣2xy﹣5(m为常数)不含xy项,则m=.12.若单项式x2y m与单项式2x n+1y2是同类项,则m+n =.13.﹣2的相反数是;﹣2的倒数是;﹣的系数是.14.如图是一数值转换机,若输入的x为﹣4,y为6,则输出的结果为.15.若a+b=2,则﹣2a2b﹣ab2﹣2(﹣a2b﹣a)+2b+ab2=.16.多项式﹣8ab2+3a2b与多项式3a2b﹣2ab2的差为.17.已知多项式(M﹣1)x4﹣x N+2x﹣5是三次三项式,则(M+1)N=.18.某个体户将标价为每件m元的服装按8折售出,则每件服装实际售价为元.19.去括号:x﹣(y﹣z)=.20.下列各式中,整式有(只需填入相应的序号).①;②;③;④a三.解答题21.如图是数值转换机示意图.(1)写出输出结果(用含x的代数式表示);(2)填写下表;x的值…﹣3﹣2﹣10123…输……出值(3)输出结果的值有什么特征?写出一个你的发现.22.合并同类项:5m+2n﹣m﹣3n.23.已知多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,求m,n的值.24.计算:(1)﹣2+(﹣8)﹣(﹣24);(2)﹣22+[(﹣4)2﹣(1﹣3)×3];(3)2xy+1﹣(3xy+2);(4)3(a2﹣ab)﹣2(﹣2a2+2ab).25.如图,在数轴上A点表示数a,B点示数b,C点表示数c,b=1,且a、b满足|a+2|+|c ﹣7|=0.(1)a=,c=;(2)①若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.②点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,AC=(用含t的代数式表示).(3)在(2)②的条件下,请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.26.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.27.在七年级我们学习了许多概念,如A:有理数;B:无理数;C:负无理数;D:实数;E:整式;F:整数;G:分数;H:多项式.请根据下面的关系图将以上各概念前的字母填在相应的横线上.参考答案与试题解析一.选择题1.解:在代数式﹣1,m,x3y2,,a=4,x﹣3y中,整式有:﹣1,m,x3y2,x﹣3y共4个.故选:C.2.解:单项式﹣5a2b2c的系数是﹣5,次数是2+2+1=5,故选:A.3.解:∵3x2m y n+1与x2y m+3是同类项,∴2m=2,n+1=m+3,∴m=1,n=3,故选:B.4.解:由题意,得n﹣1=1,m+3=2解得m=﹣1,n=2,故选:B.5.解:∵售价为n元,∴打折前价格为n÷0.5=2n(元),∴原价为(2n+m)元,故选:A.6.解:设输入x,则直接输出4x﹣2,且4x﹣2>0,那么就有(1)4x﹣2=86,解得:x=22.若不是直接输出4x﹣2>0,那么就有:①4x﹣2=22,解得:x=6;(2)4x﹣2=6,解得:x=2;(3)4x﹣2=2,解得:x=1,(4)4x﹣2=1,解得:x=,∵x为正整数,∴符合条件的一共有4个数,分别是22,6,2,1,7.解:单项式﹣的系数是﹣,次数是4,所以①错误;xy2的系数是1,所以②错误;﹣a可以表示正数,也可以负数,还可能为0,所以③错误;﹣x2y+2xy2是三次二项式,所以④正确;是单项式,所以⑤正确.故选:B.8.解:4(x2﹣x+1)﹣3(2x2﹣x+1)=4x2﹣4x+4﹣6x2+3x﹣3=﹣2x2﹣x+1,当x=﹣时,原式=﹣2×(﹣)2﹣(﹣)+1=﹣2,故选:A.9.解:A、不符合书写要求,应为6m,故此选项不符合题意;B、符合书写要求,故此选项符合题意;C、不符合书写要求,应为(x﹣7)元,故此选项不符合题意;D、不符合书写要求,应为xy2,故此选项不符合题意.故选:B.10.解:A、﹣(7a+1)=﹣7a﹣1,故本选项错误;B、﹣(﹣7a﹣1)=7a+1,故本选项正确;C、﹣(7a﹣1)=﹣7a+1,故本选项错误;D、﹣(﹣7a﹣1)=7a+1,故本选项错误;故选:B.二.填空题11.解:5x2﹣(m+2)xy+7y2﹣2xy﹣5=5x2﹣(m+2+2)xy+7y2﹣5=5x2﹣(m+4)xy+7y2﹣5,∵多项式5x2﹣(m+2)xy+7y2﹣2xy﹣5(m为常数)不含xy项,解得,m=﹣4,故答案为:﹣4.12.解:∵x2y m与单项式2x n+1y2是同类项,∴m=2,n+1=2,∴n=1,∴m+n=3,故答案为:3.13.解:﹣2的相反数是2;﹣2的倒数是﹣;﹣的系数是﹣,故答案为:2;﹣;﹣.14.解:根据题意可得,x=﹣4,y=6,可得﹣4×2+6÷3=﹣8+2=﹣6.故答案为:﹣6.15.解:﹣2a2b﹣ab2﹣2(﹣a2b﹣a)+2b+ab2=﹣2a2b﹣ab2+2a2b+2a+2b+ab2=2(a+b),∵a+b=2,∴原式=4.故答案为:4.16.解:由题意可知:﹣8ab2+3a2b﹣(3a2b﹣2ab2)=﹣8ab2+3a2b﹣3a2b+2ab2=﹣6ab2,故答案为:﹣6ab2.17.解:由题意可知:N=3,M﹣1=0,∴M=1,N=3,∴原式=23=8,故答案为:818.解:∵8折=0.8,∴每件服装实际售价为:0.8×m=0.8m(元).故答案为:0.8m.19.解:x﹣(y﹣z)=x﹣y+z.故答案为:x﹣y+z.20.解:①是整式;②中分母含有未知数,则不是整式;③是整式;④是整式.故答案为:①③④.三.解答题21.解:(1)由题意可知,输出结果为:3x2+2;(2)当x=﹣3时,3x2+2=3×(﹣3)2+2=29,当x=﹣2时,3x2+2=3×(﹣2)2+2=14,当x=﹣1时,3x2+2=3×(﹣1)2+2=5,当x=0时,3x2+2=2,当x=1时,3x2+2=3×12+2=5,当x=2时,3x2+2=3×22+2=14,当x=3时,3x2+2=3×32+2=29,故答案为:29;14;5;2;5;14;29;(3)由(2)可知,互为相反数的x的输出结果相等.22.解:5m+2n﹣m﹣3n=(5m﹣m)+(2n﹣3n)=4m﹣n.23.解:∵多项式﹣x2y2m+1+xy﹣6x3﹣1是五次四项式,且单项式πx n y4m﹣3与多项式的次数相同,∴2+2m+1=5,n+4m﹣3=5,解得m=1,n=4.24.解:(1)原式=﹣10+24=14;(2)原式=﹣4+(16+6)=﹣4+22=18;(3)原式=2xy+1﹣3xy﹣2=﹣xy﹣1;(4)原式=3a2﹣3ab+4a2﹣4ab=7a2﹣7ab.25.解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7.故答案为:﹣2,7;(2)①(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4;②AC=t+4t+9=5t+9;故答案为:5t+9;(3)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.26.解:(1)若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0;(2)因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x﹣1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.27.解:如图所示,。
第4章 代数式单元测试卷(含答案)

第四章代数式单元测试卷一.选择题(共10小题,满分30分,每小题3分)1.代数式a2﹣的正确解释是()A.a与b的倒数的差的平方B.a的平方与b的差的倒数C.a的平方与b的倒数的差D.a与b的差的平方的倒数2.下列语句中错误的是()A.数字0也是单项式B.单项式﹣a的系数与次数都是1C.xy是二次单项式D.﹣的系数是﹣3.已知﹣2m6n与5m2x n y是同类项,则()A.x=2,y=1 B.x=3,y=1 C.D.x=3,y=0 4.3x2y﹣5yx2=()A.不能运算B.﹣2 C.﹣2yx2D.﹣2xy5.下列各式由等号左边变到右边变错的有()①a﹣(b﹣c)=a﹣b﹣c②(x2+y)﹣2(x﹣y2)=x2+y﹣2x+y2③﹣(a+b)﹣(﹣x+y)=﹣a+b+x﹣y④﹣3(x﹣y)+(a﹣b)=﹣3x﹣3y+a﹣b.A.1个B.2个C.3个D.4个6.代数式a+b2的意义是()A.a与b的和的平方B.a与b两数的平方和C.a与b的平方的和D.a与b的平方7.已知a<b,那么a﹣b和它的相反数的差的绝对值是()A.b﹣a B.2b﹣2a C.﹣2a D.2b8.下列定义一种关于n的运算:①当n是奇数时,结果为3n+5 ②n为偶数时结果是(其中k是使是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A.1 B.2 C.7 D.89.用一个正方形在四月份的日历上,圈出4个数,这四个数的和不可能是()A.104 B.108 C.24 D.2810.如果x﹣y=5,y﹣z=5,那么z﹣x的值是()A.5 B.10 C.﹣5 D.﹣10二.填空题(共10小题,满分30分,每小题3分)11.0.4xy3的系数是,次数为.12.观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第7个单项式为;第n个单项式为.13.记x=(1+2)(1+22)(1+24)(1+28)…(1+2n),且x+1=2128,则n=.14.已知关于x的多项式(m﹣2)x2﹣mx+3中的x的一次项系数为﹣2,则这个多项式是次项式.15.已知2a x b n﹣1与同3a2b2m(m为正整数)是同类项,那么(2m﹣n)x=.16.若单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,则m﹣n=.17.学校决定修建一块长方形草坪,长为a米,宽为b米,并在草坪上修建如图所示的十字路,已知十字路宽x米,则草坪的面积是平方米.18.若4x+3y+5=0,则3(8y﹣x)﹣5(x+6y﹣2)的值等于.19.已知圆环内直径为acm,外直径为bcm,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为cm.20.观察等式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…猜想:(1)1+3+5+7…+99=;(2)1+3+5+7+…+(2n﹣1)=.结果用含n的式子表示,其中n=1,2,3,…).三.解答题(共6小题,满分40分)21.(6分)已知:M=3x2+2x﹣1,N=﹣x2﹣2+3x,求M﹣2N.22.(6分)若(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,试求a,b的值.23.(6分)先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2.其中a=1,b=﹣3.24.(6分)先化简再求值2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=2,b=﹣1.25.(8分)某公司派出甲车前往某地完成任务,此时,有一辆流动加油车与他同时出发,且在同一条公路上匀速行驶(速度保持不变).为了确定汽车的位置,我们用OX表示这条公路,原点O为零千米路标,并作如下约定:速度为正,表示汽车向数轴的正方向行驶;速度为负,表示汽车向数轴的负方向行驶;速度为零,表示汽车静止.行程为正,表示汽车位于零千米的右侧;行程为负,表示汽车位于零千米的左侧;行程为零,表示汽车位于零千米处.两车行程记录如表:时间(h)057x 甲车位置(km)190﹣10流动加油车位置(km)170270由上面表格中的数据,解决下列问题:(1)甲车开出7小时时的位置为km,流动加油车出发位置为km;(2)当两车同时开出x小时时,甲车位置为km,流动加油车位置为km (用x的代数式表示);(3)甲车出发前由于未加油,汽车启动后司机才发现油箱内汽油仅够行驶3小时,问:甲车连续行驶3小时后,能否立刻获得流动加油车的帮助?请说明理由.26.(8分)如图1,2,3,…是由花盆摆成的图案,图1中有1盆花,图2中有7盆花,图3中有19盆花,…(1)根据图中花盆摆放的规律,图4中,应该有盆花,图5中,应该有盆花;(2)请你根据图中花盆摆放的规律,写出第n个图形中花盆的盆数.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:代数式a2﹣表示a的平方与b的倒数的差,故选:C.2.解:单独的一个数字也是单项式,故A正确;单项式﹣a的系数应是﹣1,次数是1,故B错误;xy的次数是2,符合单项式的定义,故C正确;﹣的系数是﹣,故D正确.故选:B.3.解:由同类项的定义可知2x=6,x=3;y=1.故选:B.4.解:3x2y﹣5yx2=﹣2yx2故选:C.5.解:根据去括号的法则:①应为a﹣(b﹣c)=a﹣b+c,错误;②应为(x2+y)﹣2(x﹣y2)=x2+y﹣2x+2y2,错误;③应为﹣(a+b)﹣(﹣x+y)=﹣a﹣b+x﹣y,错误;④﹣3(x﹣y)+(a﹣b)=﹣3x+3y+a﹣b,错误.故选:D.6.解:代数式a+b2的意义是a与b的平方的和.故选:C.7.解:依题意可得:|(a﹣b)﹣(b﹣a)|=2b﹣2a.故选B.8.解:第一次:3×449+5=1352,第二次:,根据题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为449是奇数,所以第449次运算结果是8.故选:D.9.解:设最小的代数式是x,则其它三个数分别是x+1,x+7,x+8,四数之和=x+x+1+x+7+x+8=4x+16.A、根据题意得4x+16=104,解得x=22,正确;B、根据题意得4x+16=108,解得x=23,而x+8=31,因为四月份只有30天,不合实际意义,故不正确;C、根据题意得4x+16=24,解得x=2,正确;D、根据题意得4x+16=28,解得x=3,正确.故选:B.10.解:∵x﹣y=5,y﹣z=5,∴(x﹣y)+(y﹣z)=x﹣z=10,∴z﹣x=﹣10.故选:D.二.填空题(共10小题,满分30分,每小题3分)11.解:∵单项式0.4xy3的数字因数是0.4,所有字母指数的和=1+3=4,∴此单项式的系数是0.4,次数是4.故答案为:0.4,4.12.解:由题意可知第n个单项式是(﹣1)n﹣12n﹣1x n,即(﹣2)n﹣1x n,第7个单项式为(﹣1)7﹣127﹣1x7,即64x7.故答案为:64x7;(﹣2)n﹣1x n.13.解:(1+2)(1+22)(1+24)(1+28)…(1+2n),=(2﹣1)(1+2)(1+22)(1+24)(1+28)…(1+2n),=(22﹣1)(1+22)(1+24)(1+28)…(1+2n),=(2n﹣1)(1+2n),=22n﹣1,∴x+1=22n﹣1+1=22n,2n=128,∴n=64.故填64.14.解:∵多项式(m﹣2)x2﹣mx+3中的x的一次项系数为﹣2,∴﹣m=﹣2,m=2,把m=2代入多项式(m﹣2)x2﹣mx+3中,m﹣2=0,∴二次项系数为0,多项式为一次二项式.15.解:由同类项的定义可知x=2,2m=n﹣1,即2m﹣n=﹣1,所以(2m﹣n)x=(﹣1)2=1.16.解:∵单项式﹣x m﹣2y3与x n y2m﹣3n的和仍是单项式,∴m﹣2=n,2m﹣3n=3,解得:m=3,n=1,∴m﹣n=3﹣1=;故答案为:.17.解:如图所示,将四块草坪平移到一块儿整体计算;草坪的面积S=(a﹣x)(b﹣x)=ab﹣(a+b)x+x2.18.解:3(8y﹣x)﹣5(x+6y﹣2)=24y﹣3x﹣5x﹣30y+10=﹣8x﹣6y+10=﹣2(4x+3y)+10=﹣2×(﹣5)+10=20.19.解:如图,当圆环为3个时,链长为3a+×2=2a+b(cm),∴当圆环为50个时,链长为50a+2×=49a+b(cm),故答案为(49a+b).20.解:通过找规律可知,每项的结果为等式左边项数的平方,即n2,而1+3+5+7…+99共有50项,所以结果是502=2500.三.解答题(共6小题,满分40分)21.解:M﹣2N=(3x2+2x﹣1)﹣2(﹣x2﹣2+3x)=3x2+2x﹣1+2x2+4﹣6x=5x2﹣4x+3.22.解:∵(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)=(2﹣2b)x2+(a+3)x﹣6y+b+1,又∵(2x2+ax﹣y+b)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,∴2﹣2b=0,a+3=0,∴a=﹣3,b=1.23.解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=1,b=﹣3时,原式=1×(﹣3)2=9.24.解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2=ab2,当a=2,b=﹣1时,原式=2×(﹣1)2=2.25.解:(1)根据题意得:甲车开出7小时时的位置为:190﹣7×(200÷5)=﹣90(km),流动加油车出发位置为:270﹣(270﹣170)÷2×7=﹣80(km);故答案为:﹣90,﹣80;(2)根据题意得:当两车同时开出x小时时,甲车位置为:190﹣40x,流动加油车位置为:﹣80+50x;(3)当x=3时,甲车开出的位置是:190﹣40x=70(km),流动加油车的位置是:﹣80+50x=70(km),则甲车能立刻获得流动加油车的帮助.26.解:(1)∵图1中有1盆花,图2中有1+6=7盆花,图3中有1+6+6×2=19盆花,…∴第n个图中有1+6×(1+2+3+…+n﹣1)=3n(n﹣1)+1盆花;∴图4中,应该有12×(4﹣1)+1=37盆花,图5中,应该有15×(5﹣1)+1=61盆花;(2)第n个图形中花盆的盆数为3n(n﹣1)+1.故答案为:37,61;3n(n﹣1)+1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章代数式单元测试题
(满分120分;时间:120分钟)
真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!
题号一二三总分
得分
一、选择题(本题共计10 小题,每题3 分,共计30分,)
1. 下面计算正确的是()
A.3x2−x2=3
B.3a2+2a3=5a5
ba=0
C.3+x=3x
D.−0.25ab+1
4
2. 某超市8月份营业额为m万元,9月份比8月份增长了20%,则该超市9月份的营业额为()
m万元 D.20% m万元
A.(1+20%m)万元
B.(m+20%)万元
C.6
5
3. 代数式2(x−1)的正确含义是()
A.2乘以x减1
B.2与x的积减去1
C.x与1的差的2倍
D.x的2倍减去1
4. 下面的说法正确的是()
A.−2不是单项式
B.−4和4是同类项
+1是多项式
C.52abc是五次单项式
D.x+3
v
5. 已知a2+5a=1,则代数式3a2+15a−1的值为()
A.1
B.2
C.3
D.4
6. 下列说法中正确的是()
A.−23x2y的系数是−2,次数是6
B.单项式−πa m+2b7−m的系数是π,次数是9
C.多项式−5x7y+4x2+π的次数是8,项数是3
D.a2−2b+4
2
是二次四项式.
7. a的2倍与b的和,用代数式表示为()
A.2a+b
B.a2+b
C.2(a+b)
D.a+2b
8. 下列说法中,正确的是()
A.x的次数是0
B.1
y
是单项式
C.ab+c是二次二项式
D.多项式2x2+2y2的系数是2
9. 若A=4a2+5b,B=−3a2−2b,则2A−B的结果为()
A.7a2−7b
B.11a2+12b
C.5a2−12b
D.11a2+8b
10. 下列各组单项式:①a2b与ab2;②−n3m3与3m3n3;③4xy与4x2y2;
④−1
6
a3b2c2与c2b2a3,其中满足同类项的是()
A.①②
B.①③
C.②③
D.②④
二、填空题(本题共计10 小题,每题3 分,共计30分,)
11. 单项式1
2
a3b2的次数是________.
12. 合并同类项3
4xy2−2
3
xy2=________.
13. 单项式−ab2c3的次数是________;系数是________.
14. 多项式3x2+5−3x+x3按x的升幂排列为:________.
15. 去括号,并合并同类项:3x+1−2(4−x)=________.
16. 如果关于x,y的多项式ax2+x−1和−3x2−2x+1的差中不含x2项,则
a=________.
17. 某同学在做计算A+B时,误将“A+B”看成了“A−B”,求得的结果是9x2−2x+ 7,已知B=x2+3x+2,则A+B的正确答案为________.
18. 某班有女生a人,男生比女生的3倍少7人,则男生有________人.
19. 如果2a2−2b+6的值为8,那么代数式a2−b+1的值是________.
20. 代数式2x2y3−2
3
x3y−xy4−5x4y3有________项,其中−xy4的系数是________.
三、解答题(本题共计6 小题,共计60分,)
21. 化简:
(1)5a−3a+7a−a(2)2(2x−3y)+(2y−3x)
22. 先化简,再求值:1
2a2b−[5
2
a2b−3(2ab−a2b)−4a2c]−5abc,其中a=−1,
b=−3,c=2.
23. 一块三角尺的形状和尺寸如图所示,如果空孔的半径是r,三角尺的厚度是ℎ,用式子表示这块三角尺的体积V.若a=6cm,r=0.5cm,ℎ=0.2cm,求V的值(π取3)
24. 有“马虎大王”之称的小夏同学在求代数式:(2x 3−3x 2y −2xy 2)−(x 3−2xy 2+y 3)+(−x 3+3x 2y −y 3)的值时,其中x =23,y =−1”,他把“x =23”错抄成“x =25”,但他计算的结果也是正确的,你能说出这是什么原因吗?
25. 某飞机顺风飞行3小时,逆风飞行2小时.
(1)已知飞机在无风时的速度是m 千米/时,风速为n 千米/时.则该飞机顺风飞行了________ 千米,逆风飞行了________ 千米,
(2)用m 、n 表示飞机飞行的总路程S =________ 千米;
(3)当m =200,n =10时,求飞机顺风比逆风多飞行了多少千米?
26. 为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).
(1)若张红家5月份用水量为15吨,则该月需缴交水费________元;
(2)若张红家6月份缴交水费44元,则该月用水量为________吨;
(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元?(用含a的代数式表示)。