最优控制理论
最优控制理论

对于越来越多的复杂控制对象,一方面,人们所要求的控制性能不再单纯的局限于一两个指标;另一方面,上述各种优化方法,都是基于优化问题具有精确的数学模型基础之上的。但是许多实际工程问题是很难或不可能得到其精确的数学模型的。这就限制了上述经典优化方法的实际应用。随着模糊理论、神经网络等智能技术和计算机技术的发展。 近年来,智能式的优化方法得到了重视和发展。 (1)神经网络优化方法 人工神经网络的研究起源于1943年和Mc Culloch和Pitts的工作。在优化方面,1982年Hopfield首先引入Lyapuov能量函数用于判断网络的稳定性,提出了Hopfield单层离散模型;Hopfield和Tank又发展了Hopfield单层连续模型。1986年,Hopfield和Tank将电子电路与Hopfield模型直接对应,实现了硬件模拟;Kennedy和Chua基于非线性电路理论提出了模拟电路模型,并使用系统微分方程的Lyapuov函数研究了电子电路的稳定性。这些工作都有力地促进了对神经网络优化方法的研究。 根据神经网络理论,神经网络能量函数的极小点对应于系统的稳定平衡点,这样能量函数极小点的求解就转换为求解系统的稳定平衡点。随着时间的演化,网络的运动轨道在空间中总是朝着能量函数减小的方向运动,最终到达系统的平衡点——即能量函数的极小点。因此如果把神经网络动力系统的稳定吸引子考虑为适当的能量函数(或增广能量函数)的极小点,优化计算就从一初始点随着系统流到达某一极小点。如果将全局优化的概念用于控制系统,则控制系统的目标函数最终将达到希望的最小点。这就是神经优化计算的基本原理。 与一般的数学规划一样,神经网络方法也存在着重分析次数较多的弱点,如何与结构的近似重分析等结构优化技术结合,减少迭代次数是今后进一步研究的方向之一。 由于Hopfield模型能同时适用于离散问题和连续问题,因此可望有效地解决控制工程中普遍存在的混合离散变量非线性优化问题。 (2)遗传算法 遗传算法和遗传规划是一种新兴的搜索寻优技术。它仿效生物的进化和遗传,根据“优胜劣汰”原则,使所要求解决的问题从初始解逐步地逼近最优解。在许多情况下,遗传算法明显优于传统的优化方法。该算法允许所求解的问题是非线性的和不连续的,并能从整个可行解空间寻找全局最优解和次优解,避免只得到局部最优解。这样可以为我们提供更多有用的参考信息,以便更好地进行系统控制。同时其搜索最优解的过程是有指导性的,避免了一般优化算法的维数灾难问题。遗传算法的这些优点随着计算机技术的发展,在控制领域中将发挥越来越大的作用。 目前的研究表明,遗传算法是一种具有很大潜力的结构优化方法。它用于解决非线性结构优化、动力结构优化、形状优化、拓扑优化等复杂优化问题,具有较大的优势。 (3)模糊优化方法 最优化问题一直是模糊理论应用最为广泛的领域之一。 自从Bellman和Zadeh在 70年代初期对这一研究作出开创性工作以来,其主要研究集中在一般意义下的理论研究、模糊线性规划、多目标模糊规划、以及模糊规划理论在随机规划及许多实际问题中的应用。主要的研究方法是利用模糊集的a截集或确定模糊集的隶属函数将模糊规划问题转化为经典的规划问题来解决。 模糊优化方法与普通优化方法的要求相同,仍然是寻求一个控制方案(即一组设计变量),满足给定的约束条件,并使目标函数为最优值,区别仅在于其中包含有模糊因素。普通优化可以归结为求解一个普通数学规划问题,模糊规划则可归结为求解一个模糊数学规划(fuzzymathematicalprogramming)问题。包含控制变量、目标函数和约束条件,但其中控制变量、目标函数和约束条件可能都是模糊的,也可能某一方面是模糊的而其它方面是清晰的。例如模糊约束的优化设计问题中模糊因素是包含在约束条件(如几何约束、性能约束和人文约束等)中的。求解模糊数学规划问题的基本思想是把模糊优化转化为非模糊优化即普通优化问题。方法可分为两类:一类是给出模糊解(fuzzysolution);另一类是给出一个特定的清晰解(crispsolution)。必须指出,上述解法都是对于模糊线性规划(fuzzylinearprogramming)提出的。然而大多数实际工程问题是由非线形模糊规划(fuzzynonlinearprogramming)加以描述的。于是有人提出了水平截集法、限界搜索法和最大水平法等,并取得了一些可喜的成果。 在控制领域中,模糊控制与自学习算法、模糊控制与遗传算法相融合,通过改进学习算法、遗传算法,按给定优化性能指标,对被控对象进行逐步寻优学习,从而能够有效地确定模糊控制器的结构和参数
最优控制理论_第一章

J ( x (t f ), t f ) F ( x (t ), u (t ), t ) dt
t0
其中第一项是接近目标集程度,即末态控制精度的度量,称为末值型性能指标。 第二项称为积分型性能指标,它能反映控制过程偏差在某种意义下的平均或控制 过程的快速性,同时能反映燃料或能量的消耗。
求解最优控制问题,可以采用解析法或数值计算法 由于电子计算机技术的发展,使得设计计算和实时控制有了实际可用的 计算工具,为实际应用—些更完善的数学方法提供了工程实现的物质条 件 高速度 大容量计算机的应用 一方面使控制理论的工程实现有了 件,高速度、大容量计算机的应用,一方面使控制理论的工程实现有了 可能,另一方面又提出了许多需要解决的理论课题,因此这门学科目前 是正在发展的,极其活跃的科学领域之一。 最优控制理论在一些大型的或复杂的控制系统设计中, 已经取得了富有 成效的实际应用 目前很多大学在自动控制理论课程中已经开始适当增 成效的实际应用。目前很多大学在自动控制理论课程中已经开始适当增 加这方面的内容。
v(t 0 ) v0
m(t 0 ) m0
m (t f ) m e
终端条件为: x(t f ) 0 v(t f )任意
从工程实际考虑,约束条件为 0 F (t ) max F (t ) 如果我们既要求拦截过程的时间尽量短,又要求燃料消耗尽量少,则可取性能指标:
J [c1 软着陆问题 飞船靠其发动机产生一与月球重力方向相反的推力 u(t),以使飞船在月球表面实现软着陆,要寻求发动 机推力的最优控制规律,以便使燃料的消耗为最少。 设飞船质量为m(t),高度为h(t),垂直速度为v(t),发 动机推力为u(t),月球表面的重力加速度为常数 月球表面的重力加速度为常数g。设 设 不带燃料的飞船质量为M, 初始燃料的总质量为 F.初始高度为h0,初始的垂直速度为v0,那么飞船的 运动方程式可以表示为:
最优控制基本原理

最优控制基本原理
最优控制基本原理是控制理论中的一个重要分支,它主要研究如何设计最优控制器以实现系统的最优性能。
最优控制的基本原理包括动态规划、变分法和最优化理论等。
动态规划是一种通过将问题分解成子问题并递归地解决这些子问题来求解最优控制问题的方法。
它通过构建最优化问题的状态转移方程和边界条件来寻找最优控制策略。
变分法则是一种数学方法,它通过将最优控制问题转化为弱形式的变分问题来寻找最优控制策略。
变分法运用泛函分析中的概念和方法,可以得到对动力学过程进行最优控制的必要条件。
最优化理论是一种通过最小化或最大化目标函数来寻找最优控制策略的方法,它主要应用于连续系统和非线性系统的最优控制问题中。
最优化理论的方法包括拉格朗日乘数法、Kuhn-Tucker条件和梯度下降法等。
最优控制基本原理在实际应用中有着广泛的应用,例如控制机器人、导弹、航天器和工业过程等。
通过研究最优控制基本原理,可以提高控制系统的性能,提高工业过程的效率,优化资源利用等。
- 1 -。
最优控制-极大值原理

近似算法
针对极大值原理的求解过程,开 发了一系列近似算法,如梯度法、 牛顿法等,提高了求解效率。
鲁棒性分析
将极大值原理应用于鲁棒性分析, 研究系统在不确定性因素下的最 优控制策略,增强了系统的抗干 扰能力。
极大值原理在工程领域的应用
航空航天控制
在航空航天领域,利用极大值原理进行最优 控制设计,实现无人机、卫星等的高精度姿 态调整和轨道优化。
03
极大值原理还可以应用于经济 学、生物学等领域,为这些领 域的研究提供新的思路和方法 。
02
最优控制理论概述
最优控制问题定义
01
确定一个控制输入,使得某个给定的性能指标达到 最优。
02
性能指标通常由系统状态和控制输入的函数来描述。
03
目标是在满足系统约束的条件下,找到最优的控制 策略。
最优控制问题的分类
1 2
确定型
已知系统的动态模型和控制约束,求最优控制输 入。
随机型
考虑系统的不确定性,如随机干扰、参数不确定 性等。
3
鲁棒型
考虑系统模型的不确定性,设计鲁棒控制策略。
最优控制问题通过求解优化问题得到最优解的解析表达式。
数值法
02
通过迭代或搜索方法找到最优解。
极大值原理
03
基于动态规划的方法,通过求解一系列的子问题来找到最优解。
03
极大值原理
极大值原理的概述
极大值原理是现代控制理论中的基本原理之一,它为解决最 优控制问题提供了一种有效的方法。该原理基于动态系统的 状态和性能之间的关系,通过寻求系统状态的最大或最小变 化,来达到最优的控制效果。
在最优控制问题中,极大值原理关注的是在给定的初始和终 端状态约束下,如何选择控制输入使得某个性能指标达到最 优。它适用于连续和离散时间系统,以及线性或非线性系统 。
最优控制理论及应用讲解

第4章 动态规划
求解动态最优化问题的两种基本方法:极小值原理和动态规划。
动态规划:是一种分级最优化方法,其连续形式与极小值原理相 辅相成,深化了最优控制的研究。
Optimal Control Theory & its Application
主要内容
1
多级决策过程和最优性原理
2
离散控制系统的动态规划
3
连续控制系统的动态规划
4 动态规划与变分法、极小值原理的关系
5
本章小结
Optimal Control Theory
Dong Jie 2012. All rights reserved.
Dong Jie 2012. All rights reserved.
Date: 09.05.2019 File: OC_CH4.7
Optimal Control Theory & its Application
Optimal Control Theory
Dong Jie 2012. All rights reserved.
特点:1)将一个多阶段决策问题化为多个单阶段决策问题,易于分析 2)每阶段评估只与前一阶段结果有关,计算量减小
Optimal Control Theory
Dong Jie 2012. All rights reserved.
Date: 09.05.2019 File: OC_CH4.5
Optimal Control Theory & its Application
最优控制理论

最优控制理论
最优控制理论是控制理论的一个重要分支,它的主要目的是求解和优化控制系统的性能,以最小化控制系统的成本和最大化控制系统的绩效。
最优控制理论是由工程师和科学家们提出的,他们希望能够构建一种新型的控制系统,能够实现更高效和更优质的控制效果。
最优控制理论的基本思想是,通过构建一个有效模型来表示控制系统,然后利用模型进行优化,以求解最优的控制策略。
为了实现最优控制,首先要分析和建立控制系统的模型,然后根据模型的特性,通过综合考虑控制系统的性能和成本,来确定控制系统的控制参数。
最优控制理论可以应用于各种类型的控制系统,包括模糊控制,PID控制,模型预测控制,状态反馈控制等。
在某些情况下,最优控制理论可以帮助控制系统提高性能,减少资源消耗,提高质量,降低噪声,提高稳定性等,从而提高控制系统的性能。
总的来说,最优控制理论是一种有效的控制理论,可以有效提高控制系统的性能,同时降低控制系统的成本。
它的应用可以让控制系统更加精确、稳定、可靠,从而为人们提供更好的服务。
最优控制理论课件

m 飞船的质量 h 高度 v 垂直速度 g 月球重力加速度常数 M 飞船自身质量 F 燃料的质量 K 为常数
初始状态 终点条件
h(0) h0 h(T ) 0
v(0) v0 v(T ) 0
m(0) M F
控制目标
J m(T )
推力方案
0 u(t) umax
2019年11月25日星期一
指标
J x(T), y(T), x(T), y(T) x(T)
2019年11月25日星期一
现代控制理论
18
最优控制问题
例1.2
导弹发射问题
x F (t) cos (t)
m
y F (t) sin (t)
m
初始条件 x(0) 0 y(0) 0 x(0) 0
2019年11月25日星期一
现代控制理论
1
最优控制理论
东北大学信息科学与工程学院 井元伟教授
二○○九年十一月
2019年11月25日星期一
2
第1章 题第2章 法第3章 第理4章 划第5章 制 第6章 统
最优控制问 求解最优控制的变分方 最大值原 动态规 线性二次型性能指标的最优控 快速控制系
2019年11月25日星期一
现代控制理论
12
最优控制问题
例1.2 导弹发射问题
2019年11月25日星期一
现代控制理论
13
最优控制问题
例1.2 导弹发射问题
最优控制问题
例1.2
导弹发射问题
x F (t) cos (t)
m
y F (t) sin (t)
m
2019年11月25日星期一
最优控制理论与系统

最优控制理论与系统
最优控制理论与系统是指在满足特定要求的条件下,利用数学方
法将许多因素考虑到实际的系统中,从而获得最佳控制效果的理论与
实现。
通过对系统情况的分析和计算,一条最优控制路径可以被确定
出来,并作为驱动系统实现其控制的指导方向。
最优控制理论涉及的技术领域非常广泛,主要涉及的领域有自动
控制理论、运动学分析、调节理论等。
最优控制理论有效地利用条件
反馈特性,通过最优控制方法寻求较好的控制对抗来实现较佳的控制
结果。
最优控制理论可以有效提高系统性能,以及系统实现一致性可
靠性等特点,用于各种仿真系统中。
为实现最优控制理论,部分系统实现了一系列特定方法,包括动
态规划法、贝叶斯理论、(模糊)模式识别等。
其中动态规划法是一
种十分灵活的最优控制方法,主要用于优化系统性能,同时也应用在
其他多个领域。
而贝叶斯理论可以用来更新估计参数,获得更加准确
的控制结果;(模糊)模式识别是用来处理不明确或不可测量的问题,更能够充分发挥系统潜在的优势。
总而言之,最优控制理论与系统是一种十分有效的方法,它可以
明显提高系统性能,改善系统控制效果,使系统更加稳健、可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解决最优控制问题的方法
• 解决最优控制问题,必须建立 描述受控运动过程的运动方程 一、古典变分法 是研究对泛函求极值的一种数 学方法。古典变分法只能用在 控制变量的取值范围不受限制 的情况。在许多实际控制问题 中,控制函数的取值常常受到 封闭性的边界限制,如方向舵 只能在两个极限值范围内转动, 电动机的力矩只能在正负的最 大值范围内产生等。因此,古 典变分法对于解决许多重要的 实际最优控制问题,是无能为 力的。 • 二、极大值原理 是分析力学中哈密顿方法的推 广。极大值原理的突出优点是 可用于控制变量受限制的情况, 能给出问题中最优控制所必须 满足的条件。 • 三、动态规划 是数学规划的一种,同样可用 于控制变量受限制的情况,是 一种很适合于在计算机上进行 计算的比较有效的方法。
最优控制理论
自动化 081
杨赛女
名词解释
• 最优控制理论(optimal control theory) • 使控制系统的性能指标实现最优化的基本条件和综合方法。 可概括为:对一个受控的动力学系统或运动过程,从一类 允许的控制方案中找出一个最优的控制方案,使系统的运 动在由某个初始状态转移到指定的目标状态的同时,其性 能指标值为最优。它是现代控制理论的一个主要分支,着 重于研究使控制系统的性能指标实现最优化的基本条件和 综合方法。 最优控制理论是研究和解决从一切可能的控制 方案中寻找最优解的一门学科。它是现代控制理论的重要 组成部分
!
• 最优控制的实现离不开最优化技术,最优化技术是研究和 解决最优化问题的一门学科,它研究和解决如何从一切可 能的方案中寻找最优的方案。也就是说,最优化技术是研 究和解决如何将最优化问题表示为数学模型以及如何根据 数学模型尽快求出其最优解这两大问题。一般而言,用最 优化方法解决实际工程问题可分为三步进行: • ①根据所提出的最优化问题,建立最优化问题的数学模型, 确定变量,列出约束条件和目标函数; • ②对所建立的数学模型进行具体分析和研究,选择合适的 最优化方法; • ③根据最优化方法的算法列出程序框图和编写程序,用计 算机求出最优解,并对算法的收敛性、通用性、简便性、0年代空间飞行器的制导为背景。它最初的研究对象是由 导弹、航天、航海中的制导、导航等自动控制技术、自动控制理论、 数字计算技术等领域所总结出来的一类按某个性能指标达到最大或最 小的控制问题。 • 1948年维纳发表了题为《控制论—关于动物和机器中控制与通讯的科 学》的论文,第一次科学的提出了信息、反馈和控制的概念,为最优 控制理论的诞生和发展奠定了基础。 • 钱学森1954年所着的《工程控制论》(EngineeringCybernetics)直接 1954 EngineeringCybernetics 促进了最优控制理论的发展和形成。 • 1956年,Pontryagin把最优控制过程问题正确地叙述为具有约束的非 古典变份学问题,提出解决方法-最大值原理,显示了最大值原理在 解决最优控制过程问题中的效用。 • 1958年,他们首先公布了线性系统时间最优控制的最大值原理的证明。 • 1960年,Pontryagin等人完成了一般形式的最大值原理的严格证明, 能够具体解决一般的时间最优控制问题。 • 1960年,Pontryagin的最大值原理、Bellman的动态规划方法和Kalman 的最优线性调节器的理论被公认为最优控制理论的三大里程碑,标志 着最优控制理论的诞生。
最优化问题的基本求解方法
• .解析法 其求解方法是先按照函数极值的必要条件,用数学分析 方法求出其解析解,然后按照充分条件或问题的实际物理 意义间接地确定最优解。 • 数值解法(直接法) 用直接搜索方法经过一系列的迭代以产生点的序列,使 之逐步接近到最优点。直接法常常是根据经验或实验而得 到的。
解析与数值相结合的寻优方法 网络最优化方法
最优控制有下列特点
• 多输入-多输出系统,用非时变 及时变微分方程描写,但这种 时变是已知的随时间变化。采 用了状态向量方程。 • 受控对象的状态向量方程是系 数矩阵阶数不宜高,最好低些, 才能便于自动控制系统的设计。
• 在时域中,状态反馈的通道数比输出反 馈的通道数多。
•
各种冲突的设计目标自动这种考虑,全 靠解析设计,不依赖于设计师的经验, 所以设计结果不会因人而异。
主要应用领域
• 生物领域中的应用 药物设计中的分子对接方法、蛋白质 三级结构预测、 DNA 片段拼接等都可以归结为对一个能 量 / 打分函数求整体或局部最优控制的问题。 • 现代医学成像与高维图像分析中的应用 以实现医学信息 自适应、准确、稳健、实时的处理,有效地应用于临床诊 断与治疗,使现代医学成像与图像处理的速度和质量达到 新的水平。 • 飞船的月球软着落、导弹的发射等 • 防天拦截问题 • 最速控制系统 • 最省燃料控制系统 • 最小能耗控制系统 • 线性调节器
• 建模要准确,不能有为建模状 态,否则自动控制系统的设计 结果将脱离实际。
最优控制四个关键点
• 受控对象为动态系统 • 初始与终端条件(时间和状态) • 性能指标 • 容许控制 • 而最优控制问题的实质就是要找出容许的控制作用或控制 规律,使动态系统从初始状态转移到某种要求的终端状态, 并且保证某种要求的性能指标达到最小值或最大值