人脸识别系统
人脸识别终端系统使用说明书

人脸识别产品使用说明2021-04目录第1章硬件说明................................................................................................................................1.1主板接口说明.......................................................................................................................1.2产品尾线接线说明...............................................................................................................第2章设备界面说明........................................................................................................................2.1界面概览...............................................................................................................................2.2进入管理界面.......................................................................................................................2.3基本参数...............................................................................................................................2.4识别参数...............................................................................................................................2.4.1测温功能....................................................................................................................2.4.2识别参数....................................................................................................................2.4.3人脸识别....................................................................................................................2.4.4身份证识别................................................................................................................2.4.5IC卡识别.....................................................................................................................2.5网络设置...............................................................................................................................2.6名单管理...............................................................................................................................2.6.1查询............................................................................................................................2.6.2添加名单....................................................................................................................2.6.3名单详情....................................................................................................................2.6.4删除名单....................................................................................................................2.7识别记录...............................................................................................................................2.7.1查找............................................................................................................................2.7.2识别详情....................................................................................................................2.7.3删除记录....................................................................................................................2.8外设配置...............................................................................................................................2.9平台设置...............................................................................................................................2.10系统维护.............................................................................................................................2.11系统信息.............................................................................................................................第1章硬件说明1.1主板接口说明1.2产品尾线接线说明第2章设备界面说明2.1界面概览设备端接入电源开机,系统会自动进入实时人脸识别界面⚫顶部区域:IP地址、设备日期、设备时间、红外成像视频;⚫中间区域:人脸识别区域、识别信息提示框;⚫底部区域:设备标语、底库人数、网络接入标识、身份证阅读器接入标识、测温模块接入标识、人员信息同步进度标识、mac地址。
人脸识别系统软件使用手册

人脸识别系统软件使用手册一、概述本手册旨在提供关于人脸识别系统软件的使用指导,帮助用户正确地使用该软件,实现人脸识别技术的功能和应用。
该人脸识别系统软件具备先进的人脸检测和识别算法,能够快速、准确地识别人脸图像,广泛应用于安全监控、身份认证、人机交互等领域。
二、软件安装与配置1、软件下载:从官方网站或授权渠道下载最新版本的人脸识别系统软件。
2、软件安装:按照安装向导完成软件的安装过程。
3、配置参数:根据实际需求,设置软件的相关参数,如人脸检测阈值、识别算法等。
三、人脸库管理1、人脸库创建:通过软件创建空的或从已有数据导入的人脸库。
2、人脸图像添加:将待识别的人脸图像添加到人脸库中。
3、人脸标签添加:为每个添加到人脸库中的人脸图像添加相应的标签。
四、人脸检测与识别1、人脸检测:通过软件对输入的图像进行人脸检测,提取出人脸区域。
2、人脸对齐:对检测到的人脸区域进行对齐处理,以提高识别准确性。
3、人脸识别:将待识别的人脸图像与人脸库中已有的标签进行比对,找出最相似的标签。
五、使用技巧与注意事项1、保持人脸库中的人脸图像清晰、正面,以提高识别准确性。
2、避免在强光、阴暗、遮挡等不良环境下进行人脸识别。
3、定期更新软件和算法,以提高人脸识别性能和效率。
4、注意保护个人隐私,避免将未经授权的图像或视频用于人脸识别。
六、常见问题与解决方案1、软件无法安装:请检查系统环境是否满足软件要求,如操作系统版本、内存等。
2、人脸无法检测:请检查输入的图像是否清晰,是否存在人脸遮挡等问题。
3、人脸无法识别:请检查待识别的人脸图像是否与已有标签的图像相似度高。
4、软件运行缓慢:请尝试优化软件性能,如降低检测和识别算法的复杂度、减少人脸库中的人脸数量等。
5、软件崩溃或异常退出:请尝试重新启动软件,或技术支持获取帮助。
七、附录6、软件用户手册:提供更详细的人脸识别系统软件使用说明和技术细节。
7、软件更新日志:记录软件更新内容和修复的问题列表。
小区人脸识别系统

小区人脸识别系统摘要随着科技的进步和社会的发展,人脸识别技术在安全监控领域得到了广泛的应用。
小区人脸识别系统作为一种新型的安全防护手段,能够有效提升小区的安全性和管理效率。
本文将从系统原理、功能特点和应用前景三个方面对小区人脸识别系统进行详细的介绍和分析。
1. 引言如今,随着城市化进程的加速,小区建设数量不断增加,而小区安全问题也逐渐凸显。
传统的门禁系统已经无法满足小区安全管理的需求,而小区人脸识别系统的出现为小区安全管理带来了全新的解决方案。
2. 系统原理小区人脸识别系统是基于人脸识别技术和智能算法的一种安全监控系统。
系统主要由人脸采集设备、人脸识别算法引擎和门禁控制设备组成。
首先,人脸采集设备通过摄像头采集进入小区的居民和访客的人脸图像,并将其传输至人脸识别算法引擎。
然后,人脸识别算法引擎使用先进的人脸识别算法对人脸图像进行比对和识别,判断人脸是否为小区内居民或已授权的访客。
最后,门禁控制设备根据识别结果进行门禁的自动开启或拒绝。
3. 功能特点3.1 登记管理功能小区人脸识别系统可以通过居民信息和访客登记的方式进行人脸信息的录入和管理。
居民信息包括姓名、身份证号码等基本信息,系统将根据居民提供的信息将其人脸图像与个人信息关联起来,方便日后的身份识别和管理。
对于访客,系统可以通过访客登记将其人脸信息暂时录入系统,以确保访客在小区内的安全性和管理。
3.2 门禁控制功能小区人脸识别系统可以实现门禁控制的自动化管理。
当居民或授权访客在门禁设备前出现时,系统将通过比对人脸图像和已注册信息来判断是否可进入小区。
如果是居民或授权访客,门禁将自动开启;如果是陌生人,门禁将拒绝其进入。
这种门禁控制方式不仅提升了小区的安全性,还能够避免居民因携带门禁卡或忘记密码等问题而导致的麻烦。
3.3 安全事件警报功能小区人脸识别系统可以对异常事件进行实时监控和警报。
当系统检测到未注册的人脸进入小区时,会自动触发警报,将异常事件及时上报给安全管理人员。
人脸识别系统

人脸识别系统人脸识别技术是一种基于人脸图像特征进行身份识别的技术。
它通过图像采集、人脸检测、特征提取和匹配等步骤,对人脸进行自动识别和验证。
随着科技的进步,人脸识别系统在各个领域得到了广泛的应用,例如安防、金融、社交媒体等。
一、人脸识别技术的原理人脸识别技术主要基于人脸的独特性。
每个人的面部特征都是独一无二的,包括眼睛、鼻子、嘴巴等部位的位置、形状和轮廓等特征。
人脸识别系统通过采集人脸图像,提取出这些特征并进行模式匹配,从而辨识出人脸的身份信息。
二、人脸识别技术的应用1. 安防领域人脸识别系统广泛应用于安防领域,通过将人脸识别技术与监控摄像头相结合,可以实现自动识别进入区域的人员身份,提高安全性和效率。
例如,一些高安全性的场所如银行、机场等常常采用人脸识别技术,对出入人员进行身份核验,以防止非法入侵和犯罪活动。
2. 金融领域人脸识别技术在金融领域的应用也越来越广泛。
通过将人脸识别系统与银行的自助服务设备相结合,可以实现用户身份的自动认证,提高交易的便利性和安全性。
此外,人脸识别技术还可以用于金融机构的反欺诈工作,及时发现和阻止各类金融欺诈行为。
3. 社交媒体随着社交媒体的普及,人脸识别技术在社交媒体中的应用也逐渐增多。
一些社交媒体平台利用人脸识别技术,提供自动人脸标注、人脸搜索和人脸表情分析等功能,丰富了用户的社交体验。
用户可以通过人脸识别技术将自己的面孔与朋友进行关联,并实现自动识别和标注。
三、人脸识别技术面临的挑战虽然人脸识别技术在各个领域的应用前景广阔,但也面临一些挑战。
其中包括以下几个方面:1. 环境因素的影响光照、角度、遮挡等环境因素对人脸图像的采集和识别造成了很大的影响。
例如,在低光环境下或者人脸部分被遮挡时,人脸识别系统可能无法准确地提取人脸特征,从而影响系统的准确性和鲁棒性。
2. 隐私问题随着人脸识别技术的普及,一些隐私问题也逐渐浮出水面。
人们担心个人的面部特征可能被滥用或泄露,从而带来安全风险。
人脸识别门禁系统方案

人脸识别门禁系统方案第1篇人脸识别门禁系统方案一、背景随着科技的发展,人工智能技术逐渐深入到社会的各个领域。
人脸识别作为生物识别技术的一种,凭借其便捷性、准确性和安全性,被广泛应用于各类场所。
本方案旨在制定一套合法合规的人脸识别门禁系统方案,以保障人员和财产的安全,提高管理效率。
二、目标1. 实现对人员和车辆的快速、准确识别。
2. 提高人员和财产的安全性。
3. 降低管理成本,提高管理效率。
4. 遵守国家法律法规,保护个人隐私。
三、系统设计1. 系统架构本方案采用分布式架构,分为前端设备、传输网络和后端管理平台三部分。
2. 前端设备前端设备主要包括人脸识别摄像机、门禁控制器、电子锁等。
人脸识别摄像机采用先进的深度学习算法,实现对人脸的快速、准确识别。
3. 传输网络传输网络采用有线和无线相结合的方式,确保数据传输的稳定性和安全性。
4. 后端管理平台后端管理平台负责对前端设备进行统一管理,包括人员信息管理、权限控制、数据统计等。
四、功能模块1. 人脸识别模块采用先进的人脸识别算法,实现对人脸的检测、跟踪和识别。
2. 权限管理模块对不同人员进行权限分级,实现精细化管理。
3. 数据统计模块统计人员出入记录、设备运行状态等数据,为管理者提供决策依据。
4. 实时监控模块实时监控前端设备运行状态,确保系统稳定运行。
5. 报警模块当发生异常情况时,如非法闯入、设备故障等,系统将及时报警。
五、合法合规性保障1. 法律法规遵守严格遵守国家关于人脸识别、个人信息保护等方面的法律法规。
2. 个人信息保护对采集到的人脸信息进行加密存储,防止泄露。
3. 透明告知在系统使用前,向用户明确告知采集目的、范围和方式,确保用户知情同意。
4. 数据安全建立完善的数据安全防护措施,防止数据被非法获取、篡改和删除。
六、实施与验收1. 设备安装按照设计方案,对前端设备进行安装、调试。
2. 系统部署在服务器上部署后端管理平台,配置相关参数。
3. 人员培训对管理人员进行系统操作、维护保养等方面的培训。
人脸识别考勤系统 毕业设计

人脸识别考勤系统毕业设计人脸识别考勤系统是一种利用现代人脸识别技术结合考勤管理系统的智能化设备。
它通过摄像头捕捉员工面部特征,将其与已注册的员工信息进行比对,确保员工的真实身份和考勤记录准确无误。
由于其高效、准确的优势,已经广泛应用于企业、学校、机关等场所。
本文将就人脸识别考勤系统的特点、设计原理以及实际应用进行深入探讨,从而为毕业设计提供指导和参考。
一、系统设计原理1.1 人脸识别技术人脸识别技术是指通过图像处理和模式识别技术,对图像中的人脸进行识别和验证。
常见的人脸识别技术包括特征提取、特征匹配和模式识别。
人脸识别系统通常包括人脸检测、人脸特征提取、特征匹配三个主要步骤。
1.2 考勤管理系统考勤管理系统是一种用于员工考勤记录管理的软件。
它可以记录员工的上下班时间、加班情况等信息,实现考勤数据的统计和分析,并生成考勤报表。
1.3 人脸识别考勤系统设计原理人脸识别考勤系统主要包括人脸采集、人脸特征提取、人脸比对和考勤记录等功能。
系统首先通过摄像头采集员工的面部图像,然后对图像进行人脸检测和特征提取,提取出人脸的关键特征点。
接着将提取出的人脸特征点与已注册的员工信息进行比对,确定员工的真实身份。
最后将员工的考勤记录保存至系统数据库中,以供考勤管理系统进行数据统计和生成报表。
二、系统特点2.1 高效性人脸识别考勤系统采用自动化识别技术,无需员工手动打卡,能够实现全天候的自动考勤记录,极大提高考勤效率。
2.2 准确性人脸识别技术在识别精度上具有很高的准确性,可以有效避免因忘记打卡、代打卡等情况导致的考勤纠纷,确保考勤记录的准确无误。
2.3 安全性人脸识别考勤系统采用个人面部特征进行识别,具有较高的防伪性,能够有效防止考勤作弊和身份冒用的情况。
2.4 数据化系统能够将员工的考勤记录自动保存至数据库中,可以方便快捷地进行考勤数据统计和分析,生成各类考勤报表,提供决策参考。
三、系统实际应用3.1 企业在企业内部,人脸识别考勤系统可以替代传统的打卡机制,提高考勤效率,减少人力成本。
人脸识别系统测试标准

人脸识别系统测试标准人脸识别系统测试标准是评估和验证该系统在识别人脸方面的准确性、稳定性和可靠性的方法。
测试标准旨在确保系统能够在各种应用场景中正确地识别人脸,并具有较高的鲁棒性。
本文将介绍一些相关的参考内容,包括测试目标、测试环境、测试数据、测试方法和评估指标。
1. 测试目标:- 准确性:评估系统对人脸的准确度,是否能够正确地识别出人脸并准确地匹配到相应的个体。
- 稳定性:考察系统在各种不同的光照、角度、表情等条件下是否具有稳定的性能,以及对遮挡、佩戴眼镜、变装等情况是否能够有效应对。
- 可靠性:检验系统的鲁棒性和可靠性,防止出现误识别、误匹配等问题,保证系统的可靠性和安全性。
2. 测试环境:- 光照条件:包括室内、室外、光线强弱等各种不同的光照条件。
- 视角变化:考察系统对人脸的角度变化(如侧面、正面、倾斜等)的适应能力。
- 遮挡情况:包括佩戴帽子、戴口罩、穿戴眼镜等遮挡物对系统的影响。
- 表情变化:测试系统对特定表情(如愤怒、开心、惊讶等)的识别准确度。
- 多人场景:考察系统对多个人脸同时出现时的识别准确性和处理效率。
3. 测试数据:- 数据来源:采集不同种族、年龄、性别、肤色等特征的数据,确保测试数据的多样性和代表性。
- 数据集划分:将数据集划分为训练集和测试集,确保测试时使用的数据与训练时使用的数据分开,避免结果的偏差。
- 数据标注:对每张图像进行标注,标明图像中的人脸位置、人脸特征点(如眼睛、嘴巴等)、人脸识别结果等信息。
4. 测试方法:- 接口测试:测试系统的接口是否正常运作,包括应用程序接口(API)、网络接口等。
- 功能测试:测试系统是否能够满足功能需求,如人脸识别准确性、速度、并发处理能力等。
- 性能测试:测试系统在处理大规模数据、高并发情况下的性能表现,包括响应时间、吞吐量、资源利用率等指标。
- 安全性测试:测试系统对攻击(如欺骗、伪造、照片攻击等)的抵抗能力和安全性。
5. 评估指标:- 准确率:根据测试数据集中人脸识别结果与真实结果的比对,计算出系统的准确率。
人脸识别系统介绍.ppt

人脸识别系统—系统特点
人脸具有唯一性和不易被复制的良好特性,为门禁的身份鉴别提供了必要的前提,有如下特点 :
非强制性
无需用户专门配合,几乎可以在无 感知的状态下就可获取人脸图像
并发性
实际应用时,可以进行多个人脸的 分拣、判断及识别
非接触性
用户不需要和设备直接接触就能获 取人脸图像
视觉特性
符合人们的认知习惯,有“以貌识 人” 的视觉特性
第二章
? 市场分析 ? 系统架构 ? 系统适用场景 ? 系统主要技术指标 ? 系统功能
第三章
? 产品技术指标 ? 系统配置 ? 工程施工方案 ? 常见问题 ? 异常状况处理
人脸识别系统--工作原理
工作原理
人脸识别门禁工作原理 先进行人员 图像采集 ,从视频流中或图像中检测人脸和 定位人脸 ,并对图像进行噪 声过滤等 预处理 ,然后完成人脸 特征提取 ,输出识别的人脸特征点结果跟门禁系统 中的人脸资料库比对,符合则认证成功,允许通行
人脸识别系统—主流算法
主流算法
特征点算法, 是当前人脸识别门禁主流算法之一,表征特征利用人脸图像的灰度信息,通 过一些算法提取全局或局部特征(通常提取约 100个特征点) 即根据输入的人脸图像,自动定位出面部关键特征点,如眼睛、鼻尖、嘴角点、眉毛以及 人脸各部件轮廓点等,如下图所示
人脸识别系统—系统主要技术指标
1
98
2
10000
3
1
4
0.1
人脸识别率
人脸注册数量
识别响应时间
环境照度适应
核心技术指标之一,通常 核心技术指标之一,通常 核心技术指标之一,通常 核心技术指标之一,要求
要求高于98%以上
要求10000以上
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人脸识别解决方案浙江大华技术股份有限公司解决方案部大华人脸识别解决方案目录1 人脸识别技术 (3)2 人脸识别解决方案 (4)3 第二章. 方案概述 (5)3.1 项目概况 (5)—1人脸识别技术随着平安城市基础建设的不断完善和加强前端摄像机采集到的数据呈现一种爆炸式的增长。
对于公安行业来说数据总量不断充实的情况下如何从非结构化数据中挖掘结构化信息是平安城市建设的二期目标。
另一方面公安行业对车辆的结构化信息采集已逐渐趋于成熟化、普遍化但对人员信息采集和认证技术一直使用传统技侦方式。
人脸识别技术在以上情况下解决视频录像、图片等非结构化信息到人员照片、身份信息等结构化的转变。
人脸识别技术相对于其他生物识别技术如指纹、指静脉、虹膜等同属于四大生物识别技术具有生物特征唯一性、可测量性、可识别性、终身不变性等特点。
但相较其他识别技术具有本质的区别1.非强制性用户不需要专门配合人脸采集设备几乎可以在无意识的状态下就可获取人脸图像这样的取样方式没有“强制性”2. 非接触性用户不需要和设备直接接触就能获取人脸图像3. 并发性在实际应用场景下可以进行多个人脸的分拣、判断及识别人脸识别技术流程主要包括四个组成部分分别为人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及人脸特征数据匹配与识别。
人脸图像采集及检测基于人的脸部特征对输入的人脸图像或视频流,首先判断是否存在人脸如果存在人脸则进一步的给出每个脸的位置、大小和各个面部器官的位置信息。
人脸图像预处理对于人脸的图像预处理是基于人脸采集及检测结果通过人脸智能算法对选择出来的人脸图片进行优化和择优选择挑选当前环境下最优人脸并最终服务于特征提取的过程。
其预处理过程主要包括人脸图像的光线补偿、灰度变换、直方图均衡化、归一化、几何校正、滤波以及锐化等。
人脸图像特征提取人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数特征等。
人脸特征提取的方法归纳起来分为两大类一种是基于知识的表征方法另外一种是基于代数特征或统计学习的表征方法。
基于知识的表征方法主要是根据人脸器官的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据其特征分量通常包括特征点间的欧氏距离、曲率和角度等。
人脸由眼睛、鼻子、嘴、下巴等局部构成对这些局部和它们之间结构关系的几何描述可作为识别人脸的重要特征这些特征被称为几何特征。
基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。
1.1人脸识别解决方案人脸特征比对识别通过采集到的人脸图片形成人脸特征数据与后端人脸库中的人脸特征数据模板进行搜索匹配通过设定一个阙值相似度超过这一阈值则把匹配得到的结果输出。
这一过程又分为两类一类是确认是一对一进行图像比较的过程另一类是辨认是一对多进行图像匹配对比的过程。
2方案概述2.1项目概况随着经济的发展城镇建设速度加快以及互联网的突飞猛进导致城市中人口密集流动人口增加引发了城市建设中的交通、社会治安、重点区域防范、网络犯罪日益突出等城市管理问题今后现代化城市的建设、网络信息必然将安全作为重中之重与城市的经济建设处于同等重要的地位。
近年来社会犯罪率呈逐年升高的趋势特别是网络犯罪更加的严重网络逃犯频频发生罪犯的犯罪手法也更加隐蔽和先进给广大公安人员侦破案件增加了难度。
同时恶性事件时有发生使人们对公共生活场所的安全感普遍降低。
同时公安人员在对通缉犯进行人工排查时如大海捞针成功率极低效果也不明显。
主要有如下实际问题首先由于罪犯群体不断扩大要在数以百万计的人员照片库中找出犯罪嫌疑人不仅费时费力还有可能造成遗漏等情况破案的效率大打折扣其次目前公安机关侦察案件大多数仍然依靠事后追查和通缉对已经发生的案件造成的损失很难有效弥补最后如果在案发的同时即能防患于未然就能第一时间将损失控制在最小范围内。
2.2需求分析采用高效使用的人脸监控和比对系统第一可帮助公安侦查人员快速识别辨别特定人员真实身份把过去难以想象的千万级的海量照片库比对需求变成现实从而有效的为公安视频侦查、治安管理、刑侦立案等工作提供实战上的有效帮助和解决方法。
第二可帮助公安侦查人员办案时候追查和通缉真正从打变为防能够极大的减少警力资源浪费和事故发生概率。
目前人脸抓拍比对系统主要应用在以下几个方面公安治安人员黑名单比对实时报警针对一些人员密集区域如车站、地铁站、机场、社区等的关键出入口、通道等卡口位置布置人员卡口后端对重点关注人员、打防控人员进行黑名单布控通过实时视频流比对布控黑名单现人脸比对识别。
不明身份人员身份确认治安人员在日常巡逻、人员身份验证过程中避免肢体接触和冲突使用前端摄像机或手机进行抓拍后端通过数据库进行人员信息比对分析达到人员身份确认的应用。
治安或刑侦人员对流动性人口中的无合法有效身份证件、无固定住所、无正当职业或合法经济来源的人员进行非接触性身份确认。
重要点位重点人员身份排查针对一些重要管控的区域如大型保障活动政府、公安出入口等布置前端摄像机对现场进行人脸抓拍每日安排公安人员人工进行重点人员筛选排查。
2.3建设目标本章文字内容可以根据项目具体情况修改2.3.1重点人员布控重点人员包括高危人员、特殊人员等。
高危人员包括有全国在逃人员、全国违法犯罪人员特殊人员包括水客、涉恐涉案人员、涉毒人员、重大犯罪前科人员、肇事肇祸精神病人。
本方案可通过手动或自动批量导入手段将高危人员信息导入至人脸注册库中通过摄像机实时视频检测和照片信息检索与人脸注册库内高危人脸进行实时比对识别在出现高危人员时通过平台告警方式通知公安。
公安重点人员根据地区和目的不同划分不同类型包括惯偷惯犯、涉恐、涉案、涉毒、水客等人员。
本方案可通过手动或自动批量导入手段将重点人员信息导入至人脸注册库中通过在超市、大楼、火车站、港口等出入口摄像机实时视频检测和照片信息检索与人脸注册库内高危人脸进行实时比对识别在出现高危人员时通过平台告警方式通知公安。
2.3.2高危人员布控特殊人员包括有水客、涉恐人员、涉毒人员、有重大犯罪前科人员、肇事肇祸精神病人、重点上访人员等。
人脸识别系统将利用实时视频和身份证信息相结合的手段对出入境人士进行审查识别。
高危人员包括全国在逃人员、全国违法犯罪人员、重大犯罪前科人员、肇事肇祸精神病人等。
人脸识别系统将利用实时视频和身份证信息等手段可在火车站、汽车站、港口口岸出入口建设人脸卡口对出入境人士进行审查识别。
2.3.3敏感人群布控敏感人群包括来自特殊地区、特殊身份、特殊职业等人员如来自新疆地区人群、个别少数民族人群、长期无工作人群、非法上访人群等。
通过在出入境、关键人脸采集卡口对这些人群进行身份信息和人脸信息采集通过人脸识别系统对敏感人群的身份信息、行为轨迹、出没时间等进行管控从而做到敏感人群防控的目的。
2.3.4身份信息检索在日常巡逻、火车站身份证检查、其他民事应用中可通过单兵、手机、相机对驾驶员进行脸部拍照通过上传照片至后端进行人脸识别确认人员身份信息。
这种方式适用于未携带身份证、驾驶证的驾驶人员身份快速确认。
2.3.5身份信息查重对全国人口基本信息资源库中人员身份证进行检索比对排查一人多证的问题。
2.4 建设内容*根据具体情况编写3总体设计大华人脸识别系统采用具有完全自主知识产权的人脸检测算法、人脸跟踪算法、人脸抓拍算法、人脸质量评分算法及人脸识别算法、并结合配套的前端摄像机机设备和后端智能分析服务器实现了实时人脸抓拍建模、实时黑名单比对报警、事后静态人脸图片检索等功能。
本方案针对人脸注册库/人脸抓拍库小于300万、黑名单库小于30万的系统。
前端可采用普通高清摄像机也可以采用专用的人脸抓拍相机。
通过人脸检测服务器对实时视频中出现的人脸进行抓拍。
人脸识别服务器可对抓拍的照片进行数据库比对。
根据人流量和抓拍照片数量在针对多路前端相机环境时可部署人脸识别服务器并上传照片。
在方案中采集图片和结构化特征数据保存在人脸识别服务器中。
若存在大容量的采集图片和结构化特征数据保存要求时间长可扩容IPSAN存储设备保证存储容量。
3.1逻辑架构系统业务逻辑包含三块内容3.1.1人脸采集系统人脸采集系统包括专业人脸抓拍机和普通高清网络摄像机+人脸检测服务器是将前端采集到的视频图片等非结构化数据进行分析处理定位检测获取人脸图片并结合人员身份信息采集系统获取人员身份信息进行关联管理。
3.1.2人脸比对系统人脸比对系统是对人脸采集系统传输的数据进行智能分析处理进行人脸图片建模、通过人脸眼睛、鼻子、嘴、下巴等局部构成对这些局部和它们之间结构关系的几何描述进行人脸特征数据提取入库并根据平台业务需求进行实时比对识别和事后人脸检索应用。
3.1.3人脸库人脸库包括人脸抓拍库、人脸注册库、黑名单库其中抓拍库包括场景图片场景下抠取的人脸小图、人脸特征数据是人脸采集系统采集的人脸图片存储库用于人脸比对系统进行人脸图片比对检索注册库包括标准人脸图片、人员身份信息、人脸特征数据是系统设定前公安批量导入的重点人员库用于人脸比对系统进行人脸图片比对检索黑名单库是注册库中将部分重点人员进行布控组成用于实时比对人脸采集系统传输的人脸图片。
3.1.4业务应用通过平台进行实时布控、查询检索、配置管理等功能应用。
3.1.5整体逻辑架构如下图3.2人脸三大业务库系统数据库应包含三种业务库人脸抓拍库、人脸注册库和黑名单库。
人脸抓拍库-包含抓拍现场图片、人脸小图和结构化的人脸特征数据、抓拍地点、抓拍时间等信息此类库的主要业务应用场景是图片检索比对查询目标人员的人像出没地点、时间等信息人脸注册库-主要是导入一些大规模的人像图片、结构化的人脸特征数据和身份信息如一个地级市当地的社保人像信息库等导入后主要的应用场景是图片检索比对和身份信息查询确定人员身份黑名单库-包含高危人员、特殊人员的人脸图片、结构化的人脸特征数据和人员身份信息主要的应用场景是在各个人脸卡口进行实时人流的人脸比对预警。
一般来说人脸抓拍库和人脸注册库做为静态库适用于事后查询检索目标、黑名单库作为动态库用于实时比对报警。
一个或多个黑名单也可以进行勾选布控形成具有针对性的人脸布控库与前端实时视频进行人脸比对报警。
其中抓拍库因人流量和随着时间将越来越大需根据项目情况合算存储设备大小。
黑名单库数据由公安或专业人员导入存储大小一般有微调但是不会有数量级上的变化。
3.3系统拓扑系统由前端摄像机、人脸检测服务器、人脸识别服务器、存储设备、人脸数据库、人脸识别系统平台六类设备3.3.1前端摄像机前端摄像机包括普通高清网络摄像机和专业人脸抓拍机。
普通高清网络摄像机主要实现图像采集、编码等功能。
专业人脸抓拍机不仅实现普通高清网络摄像机的所有功能其内置大华自主研发的智能分析算法还能实现对视频中人脸进行自动捕获、跟踪、抓拍等功能。