六年级希望杯培训100题
2016年第十四届小学“希望杯”全国数学邀请赛培训100题(六年级)

2016年六年级希望杯培训题1.计算:(1+0.2%+2%+20%)×(0.2%+2%+20%+200%)-(1+0.2%+2%+20%+200%)(0.2%+2%+20%)2.计算:2016×334 ×1.3+3÷223(1+3+5+7+9)×20+43.计算:11 -13 11 ×12 ×13 +12 -14 12 ×13 ×14 +13 -15 13 ×14 ×15 +…+ 12014 -1201612014 ×12015 ×120164.观察下面的一列数,找出规律,求a,b. 1,2,6,15,31,56,a,141,b,2865.112016 +12015 +12014 +12013 +12012 +12011的整数部分是 .6.若x+y=56 ,m+n=35 ,求xm+yn+xn+ym 的值.7.若两个不同的数字A 、B 满足AAB3=7B +0.6•,求A+B.8.定义:[a]表示不超过数a 的最大整数,如[0.1]=0,[8.23]=8. 求[ 53 ]+[ 75 ]+[ 97 ]+ … +[ 9795 ]+[ 9997 ]的值.9.比较 1111322224 和 2222544446 的大小.10.若P=2015201520162016 -2014201420152015 ,Q=2014201420152015 -2013201320142014 ,R=12015 -12016 。
比较P 、Q 、R的大小.11.若一个分数的分子减少10%,分母增加20%,则新分数比原分数减少了 %.12.一个分数,若分母减1,化简后得到13 ;若分子加4,化简后得到12,求这个分数.13.将一个三位数的百位数字减1,十位数字减2,个位数字减3,得到了一个新的三位数。
六年级希望杯培训100题

2015年六年级希望杯培训100题1、若M =⨯⨯⨯⨯⨯201414131211 ,则201514131211÷÷÷÷÷ =_________(用M 表示) 2、计算:1+2+3+…+2015+2014+2013+…+3+2+13、计算:20153211432113211211++++++++++++++ 4、观察下面的数列,找出规律并填空。
3,8,15,24,35,48, ,80, ,1205、四位数92AB 能被7整除,则两位数AB 的最大值是多少?6、如果73892<<□,则□中可以填什么质数? 7、将9017化成小数后,第2015位是_____。
8、某品牌电视机,若9折销售,可盈利120元,若85折销售,就会亏损120元,则电视机的定价是 元。
9、下列图形中,既是轴对称图形,又是中心对称图形的是( )10、求最小自然数n ,使得131×n =123456789…11、一张比萨饼切1刀可分成两块,切2刀最多可分成4块。
切4刀最多可以分成几块?(只能从比萨饼的上方切下去)12、已知两个正整数的乘积是400,则这两个数的和的最大值与最小值的差是多少?13、如图所示的6个点,每三个点都不在同一直线上,可以确定多少条不同的直线?(注:过任意两点可以确定一条直线)14、小于24且与24互质的自然数(不含0)有几个?15、大于20且恰好有3个约数的自然数最小是几?16、1225=+=+d c b a ,,求bc ad bd ac +++的值。
17、计算!!n 2014所得的结果的个位数字不是0,求满足条件的n 的最小值。
(注n !=1×2×3×…×(2-n )×()1-n ×n )18、求个位数字和十位数字中至少有一个是0的三位数的个数。
19、用0、2、4、6、8 五个数字可以组成多少个三位数?20、在股票交易中,每买进或卖出一种股票,都须按成交额0.4%和0.6%缴纳印花税和佣金(通常所设的手续费)小李于3月15日以每股10元的价格买进一种教育股票1000股,4月12日又以每股12元的价格将这些股票全部卖出。
希望杯考前100题 (1)

1.计算:25278⨯⨯.2.计算:9876987989+++.3.计算:504812108642+-⋅⋅⋅+-+-+-.4.计算:20172015201620152014201620162017⨯-⨯-⨯+⨯.5.计算:1468715÷+÷.6.已知142857)2(99999=÷÷a ,求a .7.某数被27除,商是8,余数是5,求这个数.8.定义:)2()3(-⨯+=*B A B A ,求1715*.9.除法算式中,余数最大是多少?10.有5个连续偶数之和恰好等于4个连续奇数之和,如1311971210864+++=++++,请写出一个符合要求的式子.11.将36表示成三个大于1的自然数的乘积(不考虑三个自然数的相乘顺序),共有几种不同的表示方法?12.用数字2,0,1,7可以组成多少个不重复的三位数?13.用2295除以一个两位数,丽丽在计算的时候错把这个两位数的十位数字和个位数字写反了,得到的结果是45,则正确的结果应该是?14.如果把某个除法算式的被除数152写成125,则商会比原来的结果小3,且余数不发生变化,求余数.15.2017和某个小于100的自然数的和等于两个连续自然数之积,求这个小于100的自然数.16.某两位数的十位数字与个位数字互换后,新数比原数大36,求原来的两位数.17.abc 是一个三为偶数,已知b 是c 的三倍,且c a b +=,求abc .18.在乘法算式2524232221201918171615⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯的计算结果中,最多有多少个连续的0?19.在2018后面加一个两位数,使它成为一个能被7整除的六位数,则这个两位数最大的是多少?20.求能同时被3,5,7整除的最小的五位数.21.用一个自然数分别去除25,38,43,三个余数之和为18,求这个自然数.22.一个数被3除余2,被5除余4,被7除余6,则这个数最小是几?23.自然数a 是3的倍数,2-a 是4的倍数,3-a 是5的倍数,则a 最小是多少?24.d b a 、、是一位数字,并且21=-cd ab ,611=-ab cd ,则ad 等于多少?25.求能被2,3,5整除的最小四位数.26.488是一个四位数,数学老师说:“我再这个□中先后填入3个数字,所得的3个四位数,依次可被9,11,7整除.”数学老师先后填入的3个数字和是多少?27.从1,2,3,4,5,6这6个数字中,任取2个组成两位数,这些两位数中,3的倍数有多少个?28.已知y x 、是大于0的自然数,且100=+y x ,若x 是3的倍数,y 是5的倍数,则)(y x ,的不同取值有几对?29.如图的算式中,F E D C B A 、、、、、表示不同的一位数,求F E D C B A 、、、、、表示的数.30.在1~500中,不能被2整除,也不能被3整除,又不能被5整除的数有多少?31.在1到200之间去掉所有完全平方数,剩下的自然数的和是多少?32.如图,共端点A 的射线a 与d 互相垂直,a 与c 的夹角是︒60,b 与d 的夹角是︒45,求b 与c 夹角的度数.33.如图,在正方形ABCD 中,BM CM 3=,若梯形AMCD 的周长比ABM ∆的周长大6,求正方形的边长.34.将同样的两张正方形透明塑料薄片部分重合地放于桌面上(如图:=+S S 正方形),已知ABCD 的周长是60厘米,求长方形ABCD 的面积.35.如图,一只小蚂蚁从点A 出发,沿折线爬行一周,问:小蚂蚁爬行了多少米?36.一个长方形的长和宽都增加3厘米后,长方形的面积增加了63平方厘米,求原长方形的周长.37.用长是22厘米的铁丝网围成一个长和宽都是整数厘米数的长方形,有几种方法?38.如图,︒=∠+∠+∠+∠+∠+∠180654321,图中比平角小的角有多少个?39.如图,用11个边长为1的正方形卡片拼成数字“2”,求图中长方形的个数(不包括正方形).40.数一数,图中共有多少个平行四边形?41.数一数,图中有多少个三角形?42.数一数,图中有多少个三角形?43.已知一数列:1,3,4,7,11,18,…,这个数列的第10个数是多少?44.有白棋子和黑棋子共2018枚,按如图规律从左到右排成一行,其中黑子多少枚?45.观察下面按一定规律排列的一列数:,,,,,,,,,,,545352514342413231211……求第2017个数.46.如图,用小正方形摆成下列图形,按摆放规律,第25个图形需要多少个小正方形?47.如图13所示的数字是电子表中经常可见的数字2和5的表示形式、把图中左边的数字2向右翻转一次可得到右边的数字5,再向右翻转一次又会得到原来的数字2、那么将图中所示的数字25翻转一次得到的数字是多少?48.有张、王、李三个工人、甲、乙、丙三个工厂、以及车工、钳工和电工三种工作、已知:①王不在甲厂;②张不在乙厂;③在甲厂的不是钳工;④在乙厂的是车工;⑤王不是车工这三个人分别在哪个工厂、干什么工作?49.一个两位数除以它的各位数字之和、余数最大是多少?50.5个人围成一圈做游戏、每人都有一袋小石子.游戏开始时、第一个人给第二个人1颗石子第二个人给第三个人2颗石子、第三个人给第四个人3颗石子、第四个人给第五个人4颗石子、第五个人给第一个人5颗石子,……、如此操作5圈后所有人袋中的石子都一样多若所有石子的总数为1990颗、问游戏前每个人袋中分别有多少颗石子?51.将2017个小球放到10个箱子中、要求每个箱子中的小球的数目中都带有数字7请给出一种摆放方法.52.箱子里有2018个小球、编号分别为1,2,3,……,2018,现从箱子中摸出1616个小球、将它们的编号相乘、求积的个位数字.53.自然数n的十位数字是4、个位数字是2、各个数位上的数字之和为42、且n是42的倍数、求满足上述条件的最小的自然数.54.一副扑克牌有52张、依惯例A、J,Q、K依次视为1点、11点、12点、13点、任意抽出若干张牌、不计花色、如果抽出的牌中必定有3张牌的点数相同、那么至少要取几张牌?如果抽出的牌中必定有2张牌的点数之和等于15、那么至少要取几张牌?55.小明、小强、小红三个人在一起玩提迷藏的游戏、小明对小强说:“我在你的正北方5米处”,小红对小强说:“我在你的正南方6米处”,若小强走1米需要6步、那么先抓小明再去抓小红一共需要走多少步?56.10个50g的砝码和5个100g的砝码同时放在天平的左右两侧才能使天平保持平衡、那么在天平左侧放2个1kg的砝码、右侧放6个300g的砝码、要使天平保持平衡还要在右侧放几个50g的砝码?57.在一个周长是200米的池塘周围植树、每隔5米植一棵、需要准备多少稞树苗?58.在120米长的跑道右侧插16面彩旗、求相邻两面彩旗之间的距离.59.今年、小军4岁、爸爸31岁、再过多少年爸爸的年龄是小军的4倍.60.亮亮比品晶小6岁、16年后亮亮的年龄是晶晶今年的年龄的2倍、问:晶晶今年几岁?61.父亲今年45岁、儿子今年15岁、多少年前父亲的年龄是儿子年龄的7倍?62.2011年、妈妈的年齡等于她的两个孩子的年龄和的5倍、2017年她的年龄等于两个孩子的年龄和的2倍、求2018年时妈妈的年龄.63.某学习小组数学成绩的统计图如图所示,求该小组的平均成绩.64.统计十位同学在一次数学考试中的成绩、已知前四名的平均分是95分、后六名的平均分比十人的总平均分少6分、求这十位同学的平均分.65.李家求包了100亩地种玉米、亩产量600斤、刘家比李家少承包了20亩、结果两家的总产量相同.问:(1)刘家玉米的总产量是多少斤?(2)李家玉米的宙产量比刘家的少多少斤?66.桔子、苹果、梨共有六箱、这六箱水果的重量(单位:千克)分别为:15,16,18,19,20,31,其中苹果的重量是梨的一半、桔子只有一箱这六个箱子中分别装的是什么水果?67.每本书的版权页上都印有:开本、印张、宇数、定价等等.如:“开本:720mm*米960mm1/16印张:12字数:240千字”求这本书平均每页有多少宇?(注:16开、即1个印张16页)68.某校规定语文、英语、数学三科考试成绩的平均分在95分以上才有可能被评为三好学生若在一次期末考试中、希希语文考了96分、英语考了92分、那么他数学至少得多少分才有可能被评为三好学生?69.1个西瓜可换5个苹果、2个苹果可换3根香蕉、5根香蕉可换8个桃予、那么60个桃子可换几个西瓜?70.7头牛可换16只羊、2只羊可换21只兔、则3头牛可换多少只兔?71.有两块地、平均亩产粮食650千克、其中第一块地5亩、亩产粮食670千克如果第二块地亩产粮食645千克、第二块地有多少亩?72.妈妈去市场买菜已知买肉和鸡蛋共用了77元、买鸡蛋和青菜共用了60元、买肉和青菜共用了103元、那么、买青菜用了多少钱?73.已知5个连续奇数的和是125、求其中最小的奇数.74.2018是4个连续自然数的和、其中最大的数是多少.75.两个数的和是900、其中较大数是较小数的19倍、则这两个数分别是多少?76.甲、乙、内三数之和为180、乙比两的3倍少2、甲比内的2倍多8、求甲、乙、丙三个数.77.8个连续的自然数从小到大排列、若后5个数的和比前3个数的和的2倍大12、求这8个数中最小的数.78.甲、乙两校共有学生432人、为了照顾学生就近入学、经协商由甲校调入乙校16人、这样甲校比乙校还多24人问甲、乙两校原来各有多少人?79.学校里有排球24个、足球的个数比排球的2倍少5个、学校有排球、足球共多少个?80.某商店从皮具厂以每个100元的价格购进了60个皮箱、这些皮箱共卖了8100元这个商店从这60个皮箱上共获得多少利润?每个皮箱盈利多少元?81.买5斤西红柿用了12元、比买6斤茄子少用了1元8角、求每斤茄子的价钱.82.小娟同学去文具店买笔、已知水彩笔1元7角一支、圆珠笔1元2角一支、她带了15元钱正好用完则小娟购买了多少支水彩笔和多少支圆珠笔?83.甲盒和乙盒内分别放有51个和78个乒乓球、要使甲盒内乒乓球的个数是乙盒内乒乓球个数的两倍、需要从乙盒中取出多少个乒乓球放人甲盒?84.有1元、5元*10元的人民币共46张、面值共计200元、已知1元的比5元的多4张、那么10元的人民币有几张?85.一名商人购进1000个万花筒、每销售一个可以获得2元的利润、每遇到一个残次品则会损失8元、全部售完后、商人共获得1900元利润问:这批万花筒中有多少个残次品?86.解放军某部野外拉练、晴天每天行50千米、雨天每天行40千米、12天内共行550千米、问这期间有多少天是雨天?87.秋天到了、姐姐和妹妹一起去捡地上的枫叶、姐姐捡五角枫(一片树叶有五个角}、妹妹捡三角枫(一片树叶有三个角}、若姐姐妹妹捡的枫叶共有102个角、且姐姐比妹妹捡的枫叶数量多6片、问:姐姐和妹妹分别捡了多少片枫叶?(所有叶的角都是完整的).88.袋子中有黑白两种颜色的棋子、黑子的个数是白子的个数的2倍、每次从袋中同时取出3个黑子和2个白子、某次取完后、白子剩下1个、黑子剩下27个、求袋中原有白子的个数.89.把40枚棋子分成27堆、其中每堆中的棋子数为1、2或3如果只有1枚棋子的堆数是其余堆数的2倍、那么恰含2枚棋子的有几堆?90.已知2017年的元旦是星期日、那么在2017年11月11是星期几?91.一个牧场上长满了牧草、牧草每天均速地生长、17头牛30天可将草吃完、19头牛20天可将草吃完现有若干头牛吃了5天后、卖掉了3头牛、余下的牛再吃2天便将草吃完问:原有多少头牛吃草(草均匀生长).92.一个牧场上长满了牧草、牧草每天匀速地生长、16只羊吃20天可将草吃完、20只羊15天可将草吃完现在牧场上有12只羊吃牧草、5天后、又增加了12只羊、还要多少天可以将牧场上的牧草吃完?93.甲、乙两个机器人分别从A、B两点同时出发、相向而行.甲到达B点时、乙距离点A 还差12米、乙到达A点时、甲超过B点20米、求A、B两点间的距离.94.甲、乙两人分别从A、B两地以65米/分和55米/分的速度同时出发相向而行、10分钟后相遇、求A、B两地的距离是多少米、并求出相遇点距离A、B两地的中点多少米.95.乌龟和兔子在全长为1000米的赛道上比赛、兔子的速度是乌龟速度的15倍但兔子在比赛的过程中休息了一会儿、醒来时发现乌龟刚好到达终点、而此时十兔子还差100米才到终点、则在免子休息期间乌龟爬行了多少米.96.一列火车全长通过长335米的桥需26秒、以同样的速度通过长1075米的桥要63秒、这列火车长多少米?97.甲、乙两地相距300千米、一辆汽车原计划用6小时从甲地到乙地、汽车行驶了一半路程、因故停留了30分钟、如果按原定时间到达乙地、汽车在后半段路程时速度应提高多少?98.一条小船往返于相距144千米的甲、乙两码头之间、从甲到乙顺流航行需要6小时、从乙到甲逆流航行需要8小时那么一个漂流瓶从甲码头顺流漂到乙码头需要多久?99.甲由A地出发去B地、同时乙由B地出发去A地、经过12分钟两人过了相遇点后相距100米、已知甲行全程要20分钟、乙每分钟行65米、A、B两地相距多少米?100.两个顽皮的孩子逆着自动扶梯行驶的方向行走、男孩每秒可走3级梯级、女孩每秒可走2个梯级、结果从扶梯的一端到达另一端男孩走了100秒、女孩走了200秒.问:该扶梯共有多少个台阶?。
2023年六年级希望杯赛前培训100题答案

2023年六年级希望杯赛前培训100题答案这份文档是为2023年六年级希望杯赛前培训准备的100题答案。
在这个培训中,我们将会涵盖各种题型和知识点,以确保学生们在比赛中取得好成绩。
数学1. 36 ÷ 4 = ?- 答案:92. 187 + 293 = ?- 答案:4803. 982 - 594 = ?- 答案:3884. 85 × 2 = ?- 答案:1705. 953 ÷ 7 = ?- 答案:136英语1. What is the capital city of Australia?- 答案:Canberra2. Which of the following words is spelled incorrectly?I ___ to the cinema every week.A. goB. goesC. going- 答案:A (go)4. Fill in the blank with the correct form of the verb "to be": She ___ 10 years old.A. amB. isC. are- 答案:B (is)5. Which sentence is written in the passive voice?A. John built a house.B. The house was built by John.C. John is building a house.- 答案:B (The house was built by John)语文1. 下列每组成语中,加点的字的读音都不相同的一组是?A. 蒙羞,重峦叠嶂,借箭,右撇子B. 人声鼎沸,工程,自告奋勇,戒骄戒躁C. 绕梁三日,一专多能,集腋成裘,经纬万端- 答案:A2. 请写出:“薛涛初学笛, / 池上清风来。
/ 然后天真殊, / 怀抱亦纤弱。
六年级希望杯历届试题

六年级希望杯历届试题一、计算类。
1. 计算:(1 + (1)/(2))×(1 - (1)/(2))×(1+(1)/(3))×(1 - (1)/(3))×·s×(1+(1)/(99))×(1 - (1)/(99))- 解析:- 先把每个括号内的式子计算出来:- (1+(1)/(2))=(3)/(2),(1 - (1)/(2))=(1)/(2);(1+(1)/(3))=(4)/(3),(1 -(1)/(3))=(2)/(3)等。
- 原式可转化为(3)/(2)×(1)/(2)×(4)/(3)×(2)/(3)×·s×(100)/(99)×(98)/(99)。
- 通过观察可以发现,相邻两项可以约分,如(3)/(2)和(2)/(3),(4)/(3)和(3)/(4)等。
- 最后剩下(1)/(2)×(100)/(99)=(50)/(99)。
2. 计算:2019×2019 - 2018×2020- 解析:- 将2018×2020变形为(2019 - 1)×(2019+1)。
- 根据平方差公式a^2 - b^2=(a + b)(a - b),这里a = 2019,b = 1。
- 则2019×2019-(2019 - 1)×(2019+1)=2019^2-(2019^2-1)=1。
3. 计算:(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(99×100)- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。
- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(99)-(1)/(100))。
小学“希望杯”培训100题(六年级)及解析

小学“希望杯”培训100题(六年级)一、解答题(共100小题)1.计算:=.2.计算:2012×2014×().3..4.计算:(0.+0.3)×0.×0.7×=.5.计算:=.6.计算:=7.兄弟俩都有点傻,一位只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是岁,岁.8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有粒.9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=.(π取3)10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有块糖,丙最多有块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长米,井深米.15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到个梨.16.31500的约数中与6互质的共有个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=.18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要分钟.20.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点km.22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了元.24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是,最大是.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是.29.甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是________米/秒.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是.36.在1到2013这2013个数中,共有个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是.38.若整数x满足不等式,则x=.39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是.40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(,).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是 .42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有 天.43.计算:.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).45.如图,在△ABC 中,,E ,G 分别是AD ,ED 的中点,若△EFG 的面积为1,则△ABC 的面积是 .46.如图 (1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是 .47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了 厘米.48.建筑公司计划修一条隧道.当完成任务的时,公司引进新设备,修建速度提高了20%,每天的工作时间缩短为原来的80%,实际185天完成了任务.若按原计划,则 天可完成任务.49.如果一个自然数能表示成两个非零自然数的平方差,则称这个数为”吉祥数”,如:9=52﹣42,9是”吉祥数”.那么从1开始的自然数中,第2013个”吉祥数”是 .50.有3个整数,如果第2个数的5倍是第1个数与1的差的4倍,第3个整数的5倍是第2个数与1的差的4倍,那么第1个数的最小值是.51.春蕊班的每位同学都参加了课外体操班或围棋班,有的同学还同时参加了两个班.如果同时参加两个班的人数是参加围棋班的,是参加体操班人数的.那么这个班只参加体操与只参加围棋班的人数之比是.52.甲乙两个硬盘的成本共1600元,甲按30%的利润定价,乙按40%的利润定价,甲按定价的90%出售,乙按定价的85%出售,供货的利润290元.那么甲的成本是元.53.已知,其中a,b,c,d,e都是整数,则其中最大的数的值是.54.咖啡店新推出一款杯子,定价是88元/个,实际销售时降了价,结果销量比预计的增加了,收入增加了,则每个杯子被降价元.55.若三个连续自然数的平方的和等于245,则这三个连续自然数的和是.56.已知长方体表面积是148cm2,底面面积是30cm2,底面的周长是22cm,则这个长方体的体积是cm3.57.用棱长为2厘米的小正方体,如图所示层层重叠放置.则当重叠了5层时,这个立方体的表面积是平方厘米.58.由长度分别为2,3,4,5,6的五条线段为边,可以组成个不同的三角形.59.若字母a,b,c分别表示不同的非零数字,则由a,b,c组成的各个数位上数字不同的三位数共有个,若除三位数外,其余几个的和为2874,则=.60.如图,边长为2a的正方形ABCD内有一个最大的圆圆O,圆O内有一个最大的正方形EFGH.用S1,S2,S3依次表示△EOF的面积,弓形EmF的面积,带弧边EmF的△EBF的面积,则S1*S2*S3=.(圆周率π取3)61.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.62.已知一列数:1,1,2,3,5,8,13,21,34,55,89,144,233,…,若第n个数比第n+2个数小233,则n=.63.一只蚂蚁沿边长为240cm的等边三角形ABC的三条边由A点顺时针爬行一周.它在三条边上的速度分别是每秒3cm,4cm,5cm(如图).且当它到达拐点(A,B,C)时会休息26秒,当它爬完一周回到点A时,行程结束.这期间,蚂蚁的平均速度是cm/s.64.至多含有一个奇数数字且能被25整除的四位数共有个.65.观察下面的数表:(横排为行,竖排为列)表中第1列都是单位分数,分母依次为1,2,3…,每行自第2个分数起,每个分数的分子等于左边分数的分子加1,分母等于左边分数的分母减1,直到分数的分母等于1.则位于第行,第列.66.从最小的质数算起,若连续n(n是大于1的自然数)个质数的和是完全平方数,则n 最小是.67.现有3个互不相等的数,甲说是2,a+1,b+2;乙说是2b﹣1,3,a.若两人都说对了,则这三个数的乘积是.68.若×=6657,其中x,y,z都代表非零数字,则=.69.两个直角三角板如图放置,则∠BFE的度数是∠CAF的倍.70.一个长方体相邻的两个面的面积之和是130,它的长,宽,高都是不超过13的整数,且均为互不相等的质数,则这个长方体的体积是.71.如图,一个物体由2个圆柱组成,它们的半径分别是3厘米和6厘米,而高分别是5厘米和10厘米,则这个物体的表面积是平方厘米.72.植树节,5名小朋友给5棵树浇水,每个小朋友至少浇一棵树,但一个小朋友不能重复给同一棵树浇水,一桶水也只能浇一棵树.活动结束后,5个小朋友分别浇了2,2,3,5,x桶水,5棵树分别被浇了1,1,2,4,y 桶水,那么x=,y=.73.小明出去散步前看了一下手表,回来时又看了一下手表,发现此时手表的时针,分针的位置正好与出去时的分针,时针位置相同.若他在外逗留的时间不足一小时,则他在外待了分钟.74.如图所示,共有个三角形.75.一个长为4,宽为3的长方形如图竖直放置,在其右上角有一个红点A,长方形绕右下角旋转90°,成为一个横放的长方形,再绕右下角旋转90°,成为一个竖放的长方形,…,当小红点A第一次回到右上角时所走过的路程是.76.书架第一层有依次排列的10本不同的故事书,现将2本不同的漫画书也放入第一层,则不同的放法共有种.77.分母是385的所有最简真分数的和等于.78.有价值总和为174万元的三批货物,这三批货物的质量比是3:4:5,单位质量的价格比是6:5:4.这三批货物各价值万元.79.将分数化成小数后,如果小数点后第一位起连续N个数位上数字之和等于2013,那么N=.80.如图所示是一个边长为120m的等边三角形,甲乙同时分别从A点,B点按顺时针方向出发,甲每分钟走120m,乙每分钟走180m,但经过每个顶点时,因转弯都要耽误5s,则乙出发s后第一次追上甲.81.原来,单独打开进水管3小时能将水池注满,单独打开出水管4小时可排完一池水.后来,这个水池漏水了,同时打开进水管与出水管14小时才能将水池注满,则只打开进水管需要小时可以注满这个漏的水池.82.图书馆,游泳馆,少年宫三个站在一条笔直的公路上,且游泳馆到图书馆,少年宫两站的距离相等.小明和小华分别从图书馆,少年宫两站同时出发相向而行.小明超过游泳馆站100米后与小华相遇.然后二人继续前进.小明到达少年宫站后立即沿原路返回,经过游泳馆站后300米追上小华.则图书馆,少年宫两站相距米.83.马和狗约好去牛哥家做客,牛哥说他忘了去超市买面包,狗说他去,一会儿,马到了牛哥家,听说狗去买东西了,他急了,他说,狗跑5步的时间我能跑6步,我跑4步的距离相当于狗跑7步.而且我比他力气大,买东西的活儿我去,于是马也奔超市去了,此时狗已跑出550米了.超市离牛哥家有2000米,则马要跑米才能追上狗,此时离超市还有米.84.12和60是很有趣的两个数,这两个数的积恰好是这两个数的和的10倍:12×60=720=10×(12+60).满足这两个条件的非零自然数对还有:.85.明明,亮亮,军军三人都参加了数学竞赛,他们共解出了100道题,每人都解出了其中的60道题目,若三个人都解出来的题称为基础题;只有两个人解出来的题称为中等题;只有一个人解出来的题称为难题,则在他们解出的100道题中,难题的数量比基础题的数量(填:多或少)道.86.一块木片沿河漂流,从河边的A地到B地,用了24小时.一只快艇在静水中的速度是18千米/小时,它从A驶到B所用的时间是从B驶到A所用时间的.则AB间的距离是千米.87.如图,AB∥CE,AC∥DE,且CE=DE=2AB=2AC,则=.88.小明和小林是两个集邮爱好者,他们共有邮票400多张,如果小明给小林a张邮票,小明就比小林少;如果小林给小明a张邮票,则小林就比小明少.那么小明原有张邮票,小林原有张邮票.89.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是cm.90.为确保信息安全,信息需加密传输,发送方将明文加密成密文,接收方收到密文后解密可得明文.已知有一种加密方式是将英文26个小写字母a,b,c,…,依次对应0,1,2,…,25这26个整数(见下表),当明文中的字母对应的序号为a时,将a+10除以26后所得的余数作为密文中的字母对应的序号,例如明文”a”对应密文”k”.””91.如图,在正方形场地ABCD的四周有32个洞(每边9个洞),一个工人扛着32面旗子,从A洞开始插旗,按顺时针方向,每隔5个洞就插一面旗,当他绕着正方形走完5圈时,发现有n个洞不能插旗,求n.92.某校有960套桌凳需要维修.现有甲乙两个木工,甲单独修理这批桌凳比乙多用20天;乙每天比甲多修8套;甲乙每天的修理费分别是80元,120元.在修理桌凳过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有以下三种修理方案共选择:①由甲单独修理;②由乙单独修理;③由甲乙共同合作修理.你认为哪种方案即省时又省钱?试比较说明.93.甲乙丙三辆汽车分别从A地开往千里之外的B地.乙比甲晚出发40分钟,出发后160分钟后能追上甲;丙比乙晚出发20分钟,出发后5小时追上乙.那么如果甲比乙先出发10分钟,乙比丙先出发10分钟,那么乙追上甲之后过多久丙能追上甲?94.已知甲乙丙三位同学在北京,广州,上海的大学学习软件设计,服装设计,城市规划.有下列判断:①甲不在北京学习;②乙不在广州学习;③在北京学习的同学不学城市规划;④在广州学习的同学是学软件设计的;⑤乙不学服装设计.三位同学各在什么城市学习什么专业?95.如图,长方形ABCD,ABEF,AGHF的长与宽的比相同,且,长方形BEHG的周长是22,求长方形ECDF的面积.96.在小于30的所有质数中,是否存在差与平方和都是质数的两个质数?若存在,有几组?若不存在,请说明理由.97.甲容器内有物质A和物质B,其质量比是2:3,乙容器内有物质B和物质C,其质量比是1:2,丙容器内有物质A和物质C.现将甲乙丙三容器中的物质以1:2:3的比例取出,混合,则所得新的混合物中,A,B,C三种物质的质量比是183:152:385.求丙容器内物质A和物质C的质量比.98.程序员设计了一款新游戏,共20级.小刚一次晋级2级游戏,或一次晋级3级游戏,那么他从入门(0级)晋级到第20级共有多少种不同的方法?10月份,小强的家里用了23m的居民用水,他开的餐厅,用了102m的餐饮用水,则这个月他应该交多少元水费?100.0.买一盒牙膏,一瓶沐浴露和一瓶洗发露共付款100元.若1瓶沐浴露比2盒牙膏贵,2瓶洗发露比7瓶沐浴露贵,8盒牙膏比1瓶洗发露贵,且每个产品的单价都是整数元,分别求一盒牙膏,一瓶沐浴露,一瓶洗发露的价格.小学“希望杯”培训100题(六年级)参考答案与试题解析一、解答题(共100小题,满分0分)1.计算:=.2.计算:2012×2014×()=2.3.(2010•成都校级自主招生).解:++…+,=×(﹣+﹣+…+﹣),=×(﹣)=×()=×=.4.计算:(0.+0.3)×0.×0.7×=.+0.3)×0.7×,(+×××,×××(×××,=××=×=5.=102.解:,=(1+3+5+..+19)+3×=102+3×(1﹣)=100+=102.6.=.解:设n=++,m=,则:(1+++)×(+++)﹣(1++++)×(++),=(1+n)×m﹣(1+m)×n=m+mn﹣n﹣mn=m﹣n,=()﹣(++)=.7.兄弟俩都有点傻,以为只有自己过一年长一岁而别人不会长.某天,哥哥对弟弟说:”再过3年我的年龄就是你的2倍.”弟弟说:”不对,再过3年我和你一样大.”今年,他们俩分别是6岁,9岁.解:弟弟:(3+3)÷(2﹣1)=6(岁);哥哥:6+3=9(岁).8.有一堆黑白棋子,黑棋的粒数是白棋的2倍,每次从中取出白棋3粒黑棋5粒,白棋恰好取完时黑棋还剩20粒.则原来这堆棋子共有180粒.解:取了:20÷(6﹣5)=20(次),共有:20×3×(1+2)=180(粒);9.如图,边长12cm的正方形与直径为16cm的圆部分重叠,若没有重叠的两空白部分的面积分别是S1,S2,则S1﹣S2=48cm2.(π取3)S1﹣S2=(S1+S阴)﹣(S2+S阴)=S圆﹣S正=3×(16÷2)2﹣122=192﹣144=48(平方厘米);10.有一列数:8,18,24,49,55,60,65,77,81,98,100.它们的最小公倍数是23×34×52×72×11×13.(以乘方形式表示,不用写出计算结果)11.王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有121块糖,丙最多有19块糖.12.建军路小学有钢琴,小提琴这两个兴趣班,这两个班的学员都是来自A班或者B班的.钢琴班有来自A班,小提琴班有来自B班,并且钢琴班的总人数是小提琴班总人数的倍,那么这两个兴趣班中来自B班的人数与总人数的比值是.)×=3﹣×=3班的人数与总人数的比值是;故答案为:.13.定义:”如果一个数有12个约数,那么称这样的数为’好数’”.则将所有的”好数”由小到大依次排列,第三个是84.14.有一口枯井,用一根绳子测井口到井底的深度,将绳对折后垂到井底,绳子超过井口9米;将绳子三折后垂到井底,绳子超过井口2米,则绳长42米,井深12米.对应的分率的差额是:﹣)()15.将100个梨分给10个同学,每个同学的梨个数互不相同.分得梨个数最多的同学,至少得到15个梨.16.31500的约数中与6互质的共有8个.17.如图2,S△ABC=24,D是AB的中点.E在AC上,AE:EC=2:1.DC交BE于点O.若s△DBO=a,S△CEO=b,则a﹣b=4.S=S18.已知有三个连续的自然数,它们中最小的一个是9的倍数,中间一个是7的倍数,最大的一个是5的倍数,那么这些自然数最小分别是153,154,155.19.快速公交3号线行驶于安定门与宏福苑小区之间,已知它的发车间隔时间是相等的,苏老师开车从宏福苑小区到安定门,每过3分钟她的迎面就驶来一辆快速公交,每隔12分钟她就超过一辆快速公交.快速公交全程是45分钟,假设公交车和苏老师开车的速度都不变,那么苏老师开车从宏福苑小区到安定门需要27分钟.则苏老师与公车速度和为问题;苏老师与公车速度差为,因为这时是相遇问题;那么苏老师速度(+),所以苏老师与公车速度比:,,+),公车速度(﹣),苏老师与公车速度比:=520.将自然数1,2,3,…,依次写下去,组成一个数:12345678910111213…,当写到2054时,这个大数除以9的余数是3.21.地震时,地震中心同时向各个方向传播出纵波和横波.纵波的传播速度是3.96km/s,横波的传播速度是2.58km/s,某次地震,地震监测点用地震仪接收到地震的纵波之后,隔了18.5s,接收到这个地震的横波,那么这次地震的地震中心距离地震监测点136.96km.t=﹣,22.对于非零自然数n,如果能找到非零自然数a,b使得n=a+b+ab,则称n是一个”联谊数”,如:3=1+1+1×1,则3就是一个”联谊数”,那么从1到20这20个自然数当中,”联谊数”共有12个.23.甲乙丙丁四个人去购物,付账时每人都拿出一些钱,已知,乙丙丁三人付钱的总和是甲的5倍,甲丙丁三人付钱的总和是乙的4倍,甲乙丁三人付钱的总和是丙的3倍,丁付了46元,那么四个人共花了120元.=,丙占总数的;;﹣﹣)÷,24.一个自然数,在3进制中的数字和是24.它在9进制中的数字和最小是24,最大是72.25.设N=1×2×…×209×210,则:(1)N的末尾一共出现51个连续的数字”0”;(2)用N不断除以12,知道结果不能被12整除为止,一共可以除以102次.26.如果长方形,正方形,正三角形分别有a,b,c条对称轴,则(a+b+c)2=81.27.在数4,11,19,73,93,118,125,238中相邻若干个数之和是3的倍数而不是9的倍数的数组共有6组.28.A,B两校的男、女生人数的比分别为8:7和30:31,两校合并后男、女生人数的比是27:26,则A,B两校合并前人数比是45:61.29.(2011•成都)甲、乙、丙、丁四人参加数学竞赛,赛后猜测他们之间的考试乘绩情况是:甲说:“我可能考的最差.”乙说:“我不会是最差的.”丙说:“我肯定考的最好.”丁说:“我没有丙考的好,但也不是最差的.”成绩公布后,只有一人猜错了,则此四人的实际成绩从高到低的次序是乙丙丁甲.30.若在同一斜坡上往返,上坡速度为5m/s,下坡速度为7m/s,则往返一次的平均速度是米/秒.,那么上坡的时间就是,下坡的时间就是;用总路程+)÷,(米故答案为:.31.若三个连续偶数的最小公倍数是1008,则这三个自然数的和是48.32.某数除以7余4,除以9余6,除以11余2,那么这个数的最小可能是123.33.某店原来将一批羽绒服按100%的利润定价出售,淡季,商家按38%的利润重新定价,这样售出了其中的40%.旺季价格有所回升,售出了余下的全部羽绒服.结果,实际获得的总利润是原定利润的45.2%,那么旺季的价格是原定价格的75%.(注:”按100%的利润定价”指的是”利润=成本×100%”)34.统计局统计了664座城市,按空气污染情况可分为三类:良好,轻度污染和严重污染.其中,空气质量良好的城市数比严重污染城市数的3倍多52座,轻度污染城市数是严重污染城市数的2倍.则空气严重污染城市有102座.35.如图中三个正方形的边长分别为10,20,30,那么图中阴影部分的面积是600.36.在1到2013这2013个数中,共有51个数与四位数5678相加时不发生进位.37.如图,在正方形ABCD中,E,F分别是边AB,BC的中点.那么,以这6个点中的任意三个为顶点可组成的不同的三角形的个数是18.38.若整数x满足不等式,则x=3.因为不等式,<3,2,39.如图,三个同心圆的半径分别是1厘米,3厘米,5厘米,AB,CD,EF,GH八等分这个圆,且都过圆心O.图中阴影部分的面积与非阴影部分的面积之比是1:3.厘米的圆面积的厘米的圆面积的,圆中,据此40.如下表,自然数以一定的规律排列,横为行,竖为列,如9在第3行第2列,记为9=(3,2),则2013=(4,60).41.如图是由边长为1的25个小正方形拼成的图形,则阴影部分的面积是18.42.生活中,有人习惯用1/2表示1月2日,也有人习惯用1/2表示2月1日,这样一来,如果遇到1/2,就不能明确这究竟是1月2日还是2月1日了.一年中这种容易混淆的日期表示共有132天.43.计算:.2+))﹣,)2+)2+),.,2012+.44.在下面的括号里填上不同的自然数,使等式成立.(答案不唯一,写出一个即可).的分子、分母同时扩大倍,变成的分子、分母同时扩大倍,变成===﹣=﹣﹣,==++++,==﹣﹣=+,45.如图,在△ABC中,,E,G分别是AD,ED的中点,若△EFG的面积为1,则△ABC的面积是18.中,,且,据此利用分数除法的意义即可解答问题.中,的面积的,÷=1846.如图(1),(2),(3),边长相等的三个正方形内分别紧排着9个,16个,25个等圆.设三个正方形内的阴影部分面积分别为S1,S2,S3,则S1,S2,S3的大小关系是相等.47.有甲乙两只圆柱形玻璃杯,其内直径分别是20厘米,24厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了6厘米;然后将铁块沉没于乙杯,且乙杯中的水没外溢,则这时乙杯中的水位上升了厘米.。
六年级希望杯培训试题100题

希望杯六年级培训题1、211⨯+321⨯+431⨯+…+200720061⨯= 。
2、〔1+20021+20041+20061〕×〔20021+20041+20061+20081〕-〔1+20021+20041+20061+20081〕×〔20021+20041+20061〕3、〔220071×3.6+353×720072006〕÷43÷534、从21+41+61+81+101+121 中去掉 和 ,余下的分数之和为1.5、99…9×55…5乘积的各位数字之和是 。
6、20031200412005120061 200711±±±±的整数局部是 。
〔分母中只有加号〕7、除法算式:÷它的计算结果的小数点后的前三位分别是 。
8、一个整数与它的倒数和等于20.05,这个数是 ,它的倒数是 。
2007个9 2007个59、在如图1的加法算式中,每个汉字分别代表1至9中的一个数字,且一样的汉字代表一样的数字,不同的汉字代表不同的数字,那么这个加法算式的和是 。
我 爱 希 望 杯 数 学 竞 赛+ 8 6 4 1 9 7 5 3 2赛 竞 学 数 杯 望 希 爱 我10、有一个分数,它的分子加2,可以约简为74;它的分母减2,可以约简为2514。
这个分数是 。
11、四个非零自然数的和为38,这四个自然数的乘积的最小值是 ,最大值是 。
12、a 是质数,b 是偶数,且a 2+b=2022,那么a+b+1= 。
13、当a =2007时,a-1,a,a+1,a+2中的合数有 个。
14、从1到30这30个自然数连乘各的末尾共 个连续的数码0.15、一个质数p ,使得p+2,p+4同时都是质数,那么p 1+21±p +41±p = .16、三个质数的倒数之和是20061155,那么这三个质数中最大的是17、彼此不等且大于0的偶数a,b,c,d 满足a+b+c+d=20,样的偶数组〔a,b,c,d 〕共有 组。
第十五届六年级希望杯100题培训题

2017第十五届六年级希望杯100题培训题17.已知a=2015×2017,b==2014×2018,c==2016×2016,将a、b、c从大到小排列。
18、在9个数:..70.,3.75,15,21.,1,45,7.8,52中,取一个数作被除数,再取另外两个数,用它们的和作除数,使商为整数,请写出3个算式。
(答案不唯一)19、定义:b 1a a@b +=,求2@(3@4)。
20、若n个互不相同的质数的平均数是15,求n的最大值。
21、若一位数c(c不等于0)是3的倍数,两位数____bc是7的倍数,三位数____abc是11的倍数,求所有符合条件的三位数____abc的和。
22、用a 、b 、c 可以组成6个无重复数字的三位数,且这6个数的和是4662,这6个数都是3的倍数吗23、已知n !=1×2×3×…×n ,计算:1!×3-2!×4-4!×6+…+2015!×2017-2016!。
24、一串分数:,...131,101...,,108,109,...,103,102,101,71,72,73,74,75,76,75,74,73,72,71,41,42,43,42,41 求第2016个分数。
25、在不大于循环小数.912.的自然数中有几个质数26、设n!=1×2×3×…×n,问2016!的末尾有多少个连续的027、四位数_______abcd,若_______abcd-10(a+b+c+d)=1404,求a+b+d。
28、A ,a ,b 都是自然数,且A+50=2a ,A+97=2b ,求A.29、求20167的十位数字。
30、若A 是B 的31,B 是C 的52,求CA 。
31、求17个自然数的平均数,结果保留两位小数,甲得,这个数百分位上的数字错了,求正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、若1⨯⨯⨯⨯ ⨯=M,则1÷÷÷÷ ÷3、计算:+++ +<<,则□中可以填什么质数?2014!2015年六年级希望杯培训100题1111111123420142342015=_________(用M表示)2、计算:1+2+3+…+2015+2014+2013+…+3+2+111111+21+2+31+2+3+41+2+3+ +20154、观察下面的数列,找出规律并填空。
3,8,15,24,35,48,,80,,1205、四位数2A B9能被7整除,则两位数AB的最大值是多少?6、如果2839□77、将1790化成小数后,第2015位是_____。
8、某品牌电视机,若9折销售,可盈利120元,若85折销售,就会亏损120元,则电视机的定价是元。
9、下列图形中,既是轴对称图形,又是中心对称图形的是()10、求最小自然数n,使得131×n=123456789…11、一张比萨饼切1刀可分成两块,切2刀最多可分成4块。
切4刀最多可以分成几块?(只能从比萨饼的上方切下去)12、已知两个正整数的乘积是400,则这两个数的和的最大值与最小值的差是多少?13、如图所示的6个点,每三个点都不在同一直线上,可以确定多少条不同的直线?(注:过任意两点可以确定一条直线)14、小于24且与24互质的自然数(不含0)有几个?15、大于20且恰好有3个约数的自然数最小是几?16、a+b=25,c+d=12,求ac+bd+ad+bc的值。
17、计算所得的结果的个位数字不是0,求满足条件的n的最小值。
(注n!=1×2×3n!×…×(n-2)×(n-1)×n)18、求个位数字和十位数字中至少有一个是0的三位数的个数。
19、用0、2、4、6、8五个数字可以组成多少个三位数?20、在股票交易中,每买进或卖出一种股票,都须按成交额0.4%和0.6%缴纳印花税和佣金(通常所设的手续费)小李于3月15日以每股10元的价格买进一种教育股票1000股,4月12日又以每股12元的价格将这些股票全部卖出。
小李经过买,卖这种股票一共赚了_____111111“1719元。
21、若一个正多边形的每个内角都是162°,那么,这个正多边形有几条边?22、若在一个正方形里画出它的所有的对称轴,则在这个图形中一共有多少个三角形?23、小慧到橙光书店买书。
店员说:10元可办一张会员卡,所有商品有会员卡可以打八折。
”小慧办会员卡和买书,共付款60.8元。
若小慧不办会员卡,则买书应付款元。
24、妈妈从旧货市场买到一些瓷器茶具,有3个茶杯,3个托碟,3个茶匙。
所有这些茶具都花色不同。
如果1个茶杯,1个托碟,1个茶匙组成一套茶具,那么可以组成多少套不同的茶具?25、小明的妈妈给他买了一袋糖果,他第一天拿了全部的,第二天拿了这时余下的,第76三天拿了这时余下的,以此类推,第四天拿了这时余下的,第五天拿了这时余下的,543第六天拿了余下的,这时还剩下9颗,问;第二天小明拿了多少颗糖果?226、若20个不同自然数(不含0)的平均数是12,则这20个数中最大的数是多少?27、如图,若在一个正六边形中画出它的所有的对角线,则得到的图形中有多少个三角形?28、分母小于10的最简真分数有多少个?29、有一个小于50的自然数,它比某个完全平方数小100,比另一个完全平方数小28,求这个自然数。
30、黑板上写有2个分数:,,作如下操作:20151209用两个数的差(大数一小数)取代大数,得到两个新的数。
再同样进行操作,直到出现两个相同的数。
求这个相同的数。
31、将16写成n个奇数的和,不同的写法有多少种?(其中1+15和15+1视为一种)32、201462014用十进制数表示是多少?(注:2014表示k进制数2014)5k33、美国硬币的面值有4种:1分,5分,10分,25分。
小白收集了12枚美国硬币,共计83分,其中有5枚硬币的面值相等。
那么,小白收集了多少枚面值10分的美国硬币?34、将5个不同的质数从小到大排列组成一个多位数M,其中,从小到一大排列的5个质数满足:任意两个相邻质的差为同一个数。
求M的最小值。
35、将1、2、3、4、5分别填入如图所示的格子中,要求填在灰色格子里的数比它旁边的两个数小,有种不同的填法。
36、10克糖完全溶解在90克水中,将这杯糖水平均倒在A、B两个杯中,在A杯中加入2克糖完全搅匀,将B杯中的水蒸发掉2克。
此时,在A、B两个杯子中的糖水哪个比较甜?37、4条直线最多可以将一个平面分成部分。
38、记号n!表示!从1开始!的连续n个自然数乘积,如3!=1×2×3.计算:(11!-10!+9!-8!+7!-6!+5!-4!+3!-2!+1!)×(2009!×2010-2010!)3,如m n=m⨯m⨯m2=2⨯2⨯2)+⎢+⎢=_________。
111111x z⎣⎦⎦⎦39、若正n(n≥3)边形的内角小于外角,求n的值。
40、x,y,z分别对应2,3,4中的某个数,且它们不相等,求(y)的最大值。
(注: ⨯mn个m41、洋洋早晨7点起来发现夜里下了大雪,拿尺子量了一下,雪厚11.4厘米。
8点15又量了一下,雪厚13.9厘米。
假设测量没有错且下雪速度一直保持不变,则大雪是几点几分开始下的?42、8根长度分别是1厘米,2厘米,…,8厘米的小木棍,从中任取3根组成一个三角形,可以组成多少个不同的三角形?43、对于任意实数,符号[x]表示不超过x的最大整数,如:[3.14]=3,[0.5]=0。
那么⎡2014⎤⎡2015⎤⎡2016⎤⎢3⎥⎣4⎥⎣5⎥44、若三个质数的积是这三个质数和的5倍,则这三个质数分别是。
45、一群猴子采集了一堆桃子放在草地上,准备第二天分配,猴王秘书乘夜色偷走了总数的,分管后勤的报头乘夜色偷走了总数,分管安全保卫的猴头偷走了总数的,猴大队长257乘机偷走了总数的,猴二队长偷走了总数的,猴三队长偷走了总数的,有一只小122042猴也想去偷桃子,悄悄到堆放桃子处,这时还有多少个桃子?46、比较1.9⨯22015和1.1⨯41008的大小。
(注:22015表示2015个2的乘积,41008表示1008个4的乘积)47、桌子上顺次放着3个白子和3个黑子,如图(a)。
若只准移动三次,每次向右移动两个子(两个子的前后次序不能变动),将它们变成黑白相间,如图(b)。
那么,应当怎样移动?画出示意图。
48、甲、乙、丙三人在A、B两块地做绿化,A地面积是600平方米,B地面积是750平方米。
甲、乙、丙每小时分别可以绿化40,50,60平方米,甲绿化A地,丙绿化B地,乙先在A 地绿化,然后转到B地绿化。
已知A,B两块的绿化同时开始同时结束,其中乙从A地转到B 地的时间忽略不计,问:乙应在开始后第几小时从A地转到B地?49、若三位数xyz满足xyz⨯zyx=xzyyx,则此三位数是_________。
50、体育系有65名学生,其中25名是阿根廷球迷,42名是巴西球迷,6名既不是阿根廷球迷也不是巴西球迷。
问:有多少名学生既是阿根廷球迷又是巴西球迷?51、一个袋子里装有10个木块,上面分别写有从1到10这10个数。
从袋子里任意取出两个木块,求木块上两个数的和为偶数的概率。
(答案用最简分数表示)52、某风景区的介绍文字中说占地6万平方米。
小华沿其外围走了一圈,测得长度约800米,于是小华断定风景区的面积被夸大,该景区面积至少被夸大多少平方米?(π=3,答案四舍五入到个位)53、如图,已知四边形ABCD中,∠A=∠C=90°,BC=CD。
请将这个四边形切成两块,拼成一个正方形(只说明切法与拼法,不需证明)1 62、若 a ,b 是自然数,则满足下列两个条件的分数 有几个不同的值? (1) b ≤ 50 (2) < <54、如图所示的正方形网格中有_____个等腰三角形。
△55、如图,已知 ABC 的面积是 30 平方米,M 是 AB 上一点,BM= AB ,N 是 AC 上的中点,求 3△AMN 的面积56、甲、乙两人从同一地点同时同向出发沿直线行走,两分钟后两人相距 100 米。
已知甲的 速度是 75 米/分,求乙的速度。
57、设 1×2×3×…×99×100=12 n ·M ,其中 n ,M 均为自然数,则 n 的最大值等于_______。
58、将 2015 个连续自然数从小到大排成一行,若首尾两个数之和是 2044,求第 99 个数与第 1917 个数的和。
59、如图是一个棱长为 3 的正方体,若把这个正方体切成棱长是 l 的小正方体,则这些小正 方体的表面积之和是切割前的大正方体的表面积的几倍?△60、如图, ABC 的三条中线相交于 G 点,则图中有多少对面积相等的三角形?61、四个年龄均不超过 100 岁的人(其中有一对双胞胎),他们年龄的乘积为 2015 ,求他 们的年龄和。
a b1 a2 7 b 1363、如图,边长为 4 的正方形 EFGH 的一个顶点 E 在边长为 l0 的正方形 ABCD 的边 AB 上,阴 影部分为重叠部分。
当正方形 EFGH 绕着 E 点旋转时,阴影部分的形状和面积都会发生变化。
求多边形 ADCOHE 与多边形 EBOGF 的面积差。
67、计算: + + + + 73、如图,小丽学习做手工扇子,下面是竹制的,上面是绢制的,如果 BC =10, AD = 8 ,64、已知四位数 abcd ,且 abcd ⨯ 4 = dcba ,求四位数 abcd65、一块小木板从 A 地漂流到 B 地用时 20 小时,一艘船从 A 地行驶到 B 地用时 4 小时,已 知船速为 20 千米/时,求 A 、B 两地的距离。
66、如图,天天家楼下小花园的平面图恰好落在一个 4×4 的方格中,其中每个小方格的边 长都是 2 米,阴影部分都是高度为 1 米的花坛,有一次,天天在家玩的时候不小心把钥匙从 窗户抛了出去落在花园里,如果落在了花坛(即阴影部分)他就不能自己捡到。
求天天能自 己检到钥匙的概率。
(π取 3,结果来用分数表示) 1 1 1 1 2 4 8 2 n+ ( n 为自然数) 68、如图,四边形ABCD 中,点 E 为 BD 上的一点,△CED,△CEB,△ABE 的面积分别为 2,3, 6,求四边形 ABCD 的面积69、如图,E ,F 是正方形 ABCD 的边 CD 的三等分点,G ,H 是 AD 的四等分点,连接 GF ,EH , 已知正方形 ABCD 的边长为 12。