行测知识点数量关系汇总【精品】.pdf
行测数量关系公式大全

行测数量关系公式大全一、比例关系公式:1.同比例的两个量之积等于它们的一平方。
(a/b=c/d=>a*d=b*c)2.两个量成反比例,其乘积等于常数。
(a/b=c/d=>a*b=c*d)二、百分数关系公式:1.百分数x%等于小数x/100。
(x%=x/100)2.数x占总数y的百分比等于数x与y之比乘以100%。
(x/y×100%)3.两个百分比相加、相减等于数与数相加、相减。
三、平均数关系公式:1.平均数=和/个数。
2.和=平均数×个数。
四、利率、利息和本金关系公式:1.简单利息=本金×年利率×时间。
2.平均利率=总利息/总本金五、速度、时间和距离关系公式:1.速度=距离/时间。
2.时间=距离/速度。
3.距离=速度×时间。
六、面积和体积关系公式:1.长方形面积=长×宽。
2.正方形面积=边长×边长。
3.圆面积=π×半径的平方。
4.圆柱体体积=底面积×高。
5.球体体积=4/3×π×半径的立方。
6.锥体体积=1/3×底面积×高。
七、等差数列关系公式:1.第n项=首项+(n-1)×公差。
2.前n项和=(首项+末项)×n/2八、等比数列关系公式:1.第n项=首项×公比的(n-1)次方。
2.前n项和=(首项×(公比的n次方-1))/(公比-1)。
(完整版)行测数量关系知识点汇总

行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2 最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。
★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。
3.N 边行每边有a 人,则一共有N(a-1)人。
4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-4 5.方阵:总人数=N 2 N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。
总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。
:对折N 次,从中剪M 刀,则被剪成了(2N ×M +1)段平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v + (2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。
行测数量关系知识点汇总2024

行测数量关系知识点汇总2024一、数字推理。
1. 等差数列。
- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
- 通项公式:a_n=a_1+(n - 1)d,其中a_n是第n项的值,a_1是首项,n是项数。
- 求和公式:S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。
- 示例:数列1,3,5,7,9·s是一个首项a_1=1,公差d = 2的等差数列。
2. 等比数列。
- 定义:如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0)。
- 通项公式:a_n=a_1q^n - 1。
- 求和公式:当q≠1时,S_n=frac{a_1(1 - q^n)}{1 - q};当q = 1时,S_n=na_1。
- 示例:数列2,4,8,16,32·s是一个首项a_1=2,公比q = 2的等比数列。
3. 和数列。
- 定义:通过相邻项相加得到下一项的数列。
- 类型:- 两项和数列:如1,2,3,5,8,13·s,其中a_n=a_n - 1+a_n - 2(n≥3)。
- 三项和数列:例如1,1,2,4,7,13,24·s,a_n=a_n - 1+a_n - 2+a_n - 3(n≥4)。
4. 积数列。
- 定义:通过相邻项相乘得到下一项的数列。
- 类型:- 两项积数列:如2,3,6,18,108·s,其中a_n=a_n - 1× a_n - 2(n≥3)。
- 三项积数列:例如1,2,3,6,36,648·s,a_n=a_n - 1× a_n - 2× a_n - 3(n≥4)。
5. 多次方数列。
- 类型:- 平方数列:1,4,9,16,25·s,通项公式为a_n=n^2。
(完整版)行测数量关系知识点汇总

行测常用数学公式一、工程问题工作量=工作效率×工作时间;工作效率=工作量÷工作时间;工作时间=工作量÷工作效率;总工作量=各分工作量之和;注:在解决实质问题时,常设总工作量为 1 或最小公倍数二、几何边端问题( 1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷ 4+1)2=N2最外层人数=(最外层每边人数- 1)× 42.空心方阵:方阵总人数=(最外层每边人数)2- (最外层每边人数 - 2×层数)2=(最外层每边人数 - 层数)×层数× 4=中空方阵的人数。
★不论是方阵仍是长方阵:相邻两圈的人数都知足:外圈比内圈多8 人。
3.N 边行每边有 a 人,则一共有 N(a-1) 人。
4.实心长方阵:总人数 =M×N 外圈人数 =2M+2N-45.方阵:总人数 =N2N 排 N 列外圈人数 =4N-4例:有一个 3 层的中空方阵,最外层有 10 人,问全阵有多少人?解:(10 -3 )×3 ×4 =84(人)(2)排队型:假定队伍有 N 人, A 排在第 M位;则其前方有( M-1)人,后边有( N-M)人(3) 爬楼型:从地面爬到第 N 层楼要爬( N-1)楼,从第 N 层爬到第 M层要爬 M N 层。
三、植树问题线型棵数 =总长 / 间隔 +1环型棵数=总长/间隔楼间棵数=总长/间隔-1(1)单边线形植树:棵数=总长间隔+1;总长=(棵数-1)×间隔(2)单边环形植树:棵数=总长间隔;总长=棵数×间隔(3)单边楼间植树:棵数=总长间隔-1;总长=(棵数+1)×间隔(4)双边植树:相应单边植树问题所需棵数的 2 倍。
N(5)剪绳问题:对折 N次,从中剪 M刀,则被剪成了( 2×M+1)段四、行程问题⑴ 行程=速度×时间;均匀速度=总行程÷总时间均匀速度型:均匀速度=2v1v2v1 v2(2)相遇追及型:相遇问题:相遇距离 =(大速度 +小速度)×相遇时间追及问题:追击距离 =(大速度—小速度)×追实时间背叛问题:背叛距离 =(大速度 +小速度)×背叛时间(3)流水行船型:顺流速度=船速+水速;逆水速度=船速-水速。
公务员行测数量关系知识总结

整除基本法则其末一位的两倍,与剩下的数之差,或其末三位与剩下的数之差为7的倍数,则这个数就为7的倍数。
奇数位与偶数做差,为11的倍数,则这个数为11的倍数,或末三位与剩下的数之差为11的倍数则这个数为11的倍数。
末三位与剩下的数之差为13的倍数,则这个数为13的倍数。
末两位能被4和25整除,则这个数能被4和25整除。
末三位能被8和125整除,则这个数能被8和125整除。
有N 颗相同的糖,每天至少吃一颗,可以有2N-1种吃法。
因式分解公式平方差公式:. a 2-b 2=(a +b)(a -b)完全平方公式: a 2±2ab +b 2=(a±b)2立方和公式:a 3+b 3= (a+b)(a 2-ab+b 2).立方差公式:a 3-b 3= (a-b)(a 2+ab+b 2).完全立方公式: a 3±3a 2b +3ab 2±b 3=(a±b)3两位尾数法指利用计算过程当中,每个数的末两位来进行运算 ,求得的最后两位,过程和结果当中如果是负数,可以反复加100补成0-100之间的数。
裂项相加法则和=(小1—大1)×差分子 小=分母种最小的数,大=分母中最大的数 乘方公式底数留个位,指数末两位除以4(余数为0看做4)尾数为1、5、6的尾数乘方不变。
循环数核心公式例题:198198198=198*1001001200720072007=2007*1001三位数页码页码=3数字 +36 同余问题余同取余,和同加和,差同减差,公倍数做周期1、余同:一个数除以4余1,除以5余1,除以6余1则取1 60n+12、同和:一个数除以4余3,除以5余2,除以6余1则取7 60n+73、差同:一个数除以4余1,除以5余2,除以6余3则取-3 60n-3周期问题一串数以T 为周期,且NA =N …a 那么A 项等同于第a 项 等差数列(如几层木头,相连的奇偶数等)和=2(项数末项)首项⨯+=平均数×项数=中位数×项数 项数公式:项数=1+-公差首项末项 级差公式:第N 项-第M 项=(N-M )×公差调和平均数 ba ab 2+ 十字交叉法例题重量分别为A 与B 的溶液,其浓度分别为a 与b ,混合后浓度为rra b r b A --= 浓度相关问题溶液=溶质+溶剂 浓度=溶质÷溶液 溶质=溶液×浓度 溶液=溶质÷浓度多次混合问题核心公式1、设盐水瓶中盐水的质量为M ,每次操作中先倒出M 0克盐水,再倒入M 0克清水Cn=C 0×(M M M 0-)n (C 0 为原浓度,Cn 为新浓度,n 为共几次 )2、设盐水瓶中盐水的质量为M ,每次操作中先倒入M 0克清水,再倒出M 0克盐水Cn=C 0×n 0)(M M M + (C 0 为原浓度,Cn 为新浓度,n 为共几次) 行程问题距离=速度×时间 火车过桥洞时间=(火车长度+桥洞长度)÷火车速度相对速度1、相遇追及问题相遇距离=(大速度+小速度)×相遇时间追及距离=(大速度-小速度)×追击时间2、环形运动问题环形周长=(大速度+小速度)×反向运动的两人两次相遇时间间隔环形周长=(大速度-小速度)×同向运动的两人两次相遇时间间隔3、队伍行进问题队伍长度=(人速+队伍速度)×从队头到队尾所需时间队伍长度=(人速-队伍速度)×从队尾到队头所需时间4、流水行船、风中飞行问题顺流时间=顺流速度×顺流时间=(船速+水速)×顺流时间逆流时间=逆流速度×逆流时间=(船速-水速)×逆流时间1、等距平均速度问题核心公式往返平均速度=21212u u u u + 2、沿途数车问题核心公式沿途时间间隔=21212t t t t + 车速=人速=1212t t t t -+ 3、漂流瓶问题核心公式漂流所需时间=顺逆顺逆t t t t +2 4、两次相遇核心公式单岸型 S=2321s s + 两岸型 S=3S 1-S 2 S 表示两岸的距离 5、电梯运动问题 能看到的电梯级数=(人速+电梯速度)×沿电梯运动方向运动所需时间能看到的电梯级数=(人速-电梯速度)×沿电梯运动所需时间几何基本公式圆周长C 圆=2πr 圆面积 S 圆=πr 2 S 三角=21ah S 梯=21(a+b )h N 边形内角和=(N-2)×180° 几何特性:若一个几何图形其尺度为原来的M 倍则面积M 2倍 体积M 3倍平面图形周长一定,越接近圆,面积越大平面图形面积一定,越接近圆,周长越小立体图形,表面积一定,越接近球体积越大立体图形,体积一定,越接近球体,表面积越小两集合标准核心公式满足条件Ⅰ的个数+满足条件Ⅱ的个数-两者都满足的个数=总个数-两者都不满足的个数三集合标准核心公式均如何=甲+乙+丙-(甲和乙)-(甲和丙)-(乙和丙)+都如何三集合整体重复型核心公式在三集合的题型中,假设满足三个条件的元素数量分别为A 、B 、C ,而至少满足三个条件之一的元素总量为W ,满足一个条件的元素数量为X ,满足两个条件的数量为Y ,满足三个条件的元素数量为Z ,则W=X+Y+Z A+B+C=X ×1+Y ×2+Z ×3排列组合取其一 ①加法原理:分类用加法(要么…要么)排列与顺序有关②乘法原理:分步用乘法(首先…然后)组合与顺序无关排列 A 38=8×7×6组合 C 410=123478910⨯⨯⨯⨯⨯⨯ 错位排列:有几个信封,且每个信封都不能装自己的信D 1=0 D 2=1 D 3=2 D 4=9 D 5=44 D 6=265传球问题核心公式M 个人传N 次球即 X=MM N)1(-则X 最接近的整数为传给“非自己的某人”的方法,与X 第二接近的正整数便是传给自己的方法数比赛问题:N 为人数淘汰赛 ①仅需决出冠亚军 比赛场次=N-1②需要决出1、2、3、4名 比赛场次=N循环赛 ①单循环(任意两个打一场)比赛场次=C 2N②双循环(任意两个打两场)比赛场次=A 2N概率问题1、单独条件概率=总的情况数满足条件的情况数2、某条件成立概率=1-不成立的概率3、总体条件概率=满足条件的各种情况概率之和4、分步概率=满足条件的各种情况概率之积5、条件概率=“A 成立”是B 成立的概率=A 、B 同时成立的概率植树问题1、单边线型植树公式:棵树=总长÷间隔+1;总长=(棵树-1)×间隔2、单边环型植树公式:棵树=总长÷间隔;总长=棵树×间隔3、单边楼间植树公式:棵树=总长÷间隔-1;总长=(棵树+1)×间隔裂增计数如果一个量每个周期后变为原来的A 倍,那么,N 个周期后就是原来的AN 倍例:10分钟分裂一次(1个分裂为2个),经过90分钟,可有1分裂为几个周期数为90÷10=9 公式=29 =512剪绳问题一根绳子连续对折N 次,从中剪M 刀,则被剪成了2N ×M+1段方阵问题1、N 排N 列的实心方阵人数为N 2人2、M 排N 列的实心方阵人数为M ×N3、N 排N 列的方阵,最外层有4N-4人4、在方阵或者长方阵中相邻两圈人数,外圈比内圈多8人5、空心正M 边形阵中,若每边有N 个人,则共有MN-M 个人6、方阵中:方阵人数=(最外层人数÷4+1)2过河问题M 个人过河,船上能载N 个人,1人划船故需11--N M 次,最后一次不用回来 牛吃草问题草场原有草量=(牛数-每天长草量)×天数出现M 头牛吃W 亩草时,牛数用MW 代入,此时代表单位面积上牛的数量,如果计算为负数说明存量不增加而消之时钟问题钟面上每两格之间相差30°T=T 0+111 T 为追及时间和时针要“达到条件要求”的真实时间,T 0为静态时间,即假设时针不动,分针和时针“达到条件要求”的时间经济利润相关问题利润率=利润÷成本=(售价-成本)÷成本=售价÷成本-1售价=成本×(1+利润率)成本=售价÷(1+利润率)两位数乘法:一个数乘以5可以看成乘以10除以2例:42×48=2016等于后两位数相乘,前两位数也相乘在加上十位上相同的数。
行测知识点数量关系汇总【精编】.pdf

数量关系一、数量思维1.选项关联:不是填空题注意观察选项之间的倍数关系。
2.代入排除:应用范围:多位数范围、不定方程问题、同余问题、年龄问题、周期问题、复杂行程问题和差倍比问题,优先代入整数选项。
3.整除思想:必须将题目式子转化成 A =B ×C 两两相乘的形式整除判定法则:①拆分法517=470+47;②因式分解 6=2×3 ;③常用的 2、3、5、7、11和13 整除判定法则。
4.特值思想:数字特值:题目没具体数字,只有相互比例关系等,常用于计算题、浓度问题、工程问题或行程问题。
数字特值计算题优先考虑-1,0,1,工程与行程等问题优先考虑最小公倍。
图形特值:比如特殊的长方形——正方形。
5.奇偶特性:题目中出现平均、总和、差,尤其是不定方程的时候 奇偶判定:①加减运算:同奇同偶比得偶,一奇一偶只能奇;②乘除运算:一偶就是偶,双奇才是奇。
二、基础代数公式和方法1.基础代数公式:完全平方:(a ±b)2=a 2±2ab +b 2平方差: a 2-b 2=(a +b )×(a -b ) 完全立方:(a ±b)3=a 3±3a 2b +3ab 2±b3立方和差: a 3±b 3=(a ±b)(a 2ab +b 2)阶乘: a m×a n=am +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ×b n2.常用方法:公式法(记住常用的公式) 因子法(整除特性结合)放缩法(用于判定计算的整数部分)n1-n 32=1n!)(⨯⋯⨯⨯⨯构造法 特值法三、等差数列1.n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和 通项公式:a n =a 1+(n -1)d求和公式:s n = =na 1+ n(n-1)d项数公式:n = +1等差中项:2A =a +b (若a 、A 、b 成等差数列) 2.若m+n =k+i ,则:a m +a n =a k +a i3.前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2四、等比数列1.n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等差数列前n 项的和 通项公式:a n =a 1qn -1求和公式:s n = (q ≠1)等比公式:G 2=ab (若a 、G 、b 成等比数列)2.若m+n =p+q ,则:a m ×a n =a p ×a q3.a m -a n =(m-n)d =q(m-n)五、周期问题一周7天,5个工作日。
行测数量关系知识点

数量关系知识点代入排除法1.选出答案而非算出答案2.最值代入、就简代入3.特定题型:年龄问题、余数问题、多位数问题、不定方程等选项特征:多选项特征、最值特征等知识点:质数:2,3,5,7,11,13,17,192 是唯一的偶质数;0 和 1 非质非合;多位数颠倒规律:(n 是对调的两个数字之差)个位与十位对调,差 9n十位与百位对调,差 90n个位和百位对调,差 99n不定方程:未知数的个数多于等式的个数数字特性法1.奇偶特性(1)加、减法:基础性质:奇数±奇数=偶数、偶数±偶数=偶数、奇数±偶数=奇数推论:①同性为偶,异性为奇a,两数的和或差为偶数,则两数同奇同偶b,两数的和或差为奇数,则两数一奇一偶②两个数的和与差奇偶性相同两数和为偶数,差也为偶数;两数和为奇数,差也为奇数两数差为偶数,和也为偶数;两数差为奇数,和也为奇数(2)乘法:基础性质:奇数×奇数=奇数、奇数×偶数=偶数、偶数×偶数=偶数推论:①两个数中只要有一个为偶数,乘积就为偶数②两个数的乘积为奇数,则两个数都为奇数(3)应用:①不定方程;②知和求差、知差求和2.整除特性(整除的判定)2 或 5 的判定:末一位4(2²)或 25(5²)的判定:末两位8(2³)的判定:末三位3 或 9 的判定:各位数字之和6(2×3)的判定:既能被 2 整除又能被 3 整除10(2×5)的判定:末一位为 07 的判定:直接除以 7 验证应用:y=ax,y=ax+b3.倍数特性若 a:b=m:n(m、n 互质),则 a 是 m 的倍数、b 是 n 的倍数、a±b 是m±n 的倍数m、n 互质:m/n 是最简整数比变形:若 a=(m/n)b,(m/n 是最简分数),则 a 是 m 的倍数,b 是 n 的倍数,a±b 是 m±n 的倍数题型特征:题干中出现比例、分数、小数、倍数、百分数4.因子特性型如:ax+by=c若其中两项都含有某因子,则剩余的一项必有该因子若其中一项含有某因子,另一项不含有该因子,则剩余的一项也不含有该因子常用因子:2,3,4,5方程法1.巧设未知数:①问什么设什么;(量<3)②设中间变量(是、比、为);(量≥3)③设 nx(比例未知数)简化计算2.快速列方程:寻找等量关系(深度挖掘题干)①A 比 B 多/少……②A 是 B 的……倍③共……和、差、相同、相等、相当于、共计④隐含的不变量:如果……如果;若……若3.精确解方程:一元一次方程→移项法二元一次方程→消元法二、不定方程(组)未知数个数多于等式个数 ax+by=c;1.不定方程:两个未知数一个等式代入排除法求解数字特性法辅助(奇偶特性、因子特性)2.不定方程组:三个未知数两个等式消元法→不定方程枚举归纳法有序的枚举一、枚举所有可能(直接得到答案)二、枚举寻找规律(推导得出答案)方法:直接枚举、列表枚举、画图枚举规律类型:循环周期规律、等差规律、递推和规律、多级差规律等赋值法1.核心:赋某个量为具体值2.应用题型:工程问题、经济利润问题、行程问题、溶液问题、几何问题等题型共性:解题公式:A=B×C 型总量=时间×效率;路程=速度×时间;总额=单价×销量;总利=单利×销量;溶质=溶液×浓度;总数=平均数×个数。
公务员考试行测数量关系知识点

公务员考试行测数量关系知识点公务员考试中的行政职业能力测验(简称行测)是众多考生需要攻克的难关,而其中的数量关系部分更是让许多人感到头疼。
数量关系主要考查考生对数学运算和数学思维的运用能力,涵盖了众多知识点和题型。
接下来,我们就详细梳理一下这部分的重要知识点。
一、数字推理数字推理是数量关系中的常见题型,要求考生通过分析给定的数字序列,找出其中的规律并推测出下一个数字。
1、等差数列这是最基础的规律之一。
相邻两项的差值相等,例如:1,3,5,7,9,差值均为 2。
2、等比数列相邻两项的比值相等。
比如:2,4,8,16,32,比值均为 2。
3、多次方数列数字是某个数的平方、立方或多次方。
例如:1,4,9,16,25 分别是 1、2、3、4、5 的平方。
4、组合数列数列由两个或多个简单数列组合而成,需要分别分析不同部分的规律。
5、递推数列通过前面若干项的运算得到下一项,如前两项相加等于第三项等。
二、数学运算数学运算包含了各种各样的实际问题和数学模型。
1、行程问题涉及速度、时间和路程之间的关系。
如相遇问题、追及问题等。
相遇问题:路程=速度和×相遇时间。
追及问题:路程差=速度差×追及时间。
2、工程问题工作总量=工作效率×工作时间。
常考的有合作完工问题,根据各自工作效率和合作方式来计算完成工作的时间。
3、利润问题涉及成本、售价、利润、利润率等概念。
利润=售价成本,利润率=利润÷成本×100% 。
4、排列组合问题排列是有顺序的,组合是无顺序的。
例如从 5 个人中选 3 个人排成一排,这是排列;从 5 个人中选 3 个人组成一组,这是组合。
5、概率问题计算某个事件发生的可能性大小。
古典概率:概率=有利事件数÷总事件数。
6、容斥原理用于解决集合之间的重叠问题。
两集合容斥:总数= A + B 既 A 又 B +既非 A 又非 B 。
三、解题方法1、方程法这是最基本也是最常用的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数量关系一、数量思维1.选项关联:不是填空题注意观察选项之间的倍数关系。
2.代入排除:应用范围:多位数范围、不定方程问题、同余问题、年龄问题、周期问题、复杂行程问题和差倍比问题,优先代入整数选项。
3.整除思想:必须将题目式子转化成 A =B ×C 两两相乘的形式整除判定法则:①拆分法517=470+47;②因式分解 6=2×3 ;③常用的 2、3、5、7、11和13 整除判定法则。
4.特值思想:数字特值:题目没具体数字,只有相互比例关系等,常用于计算题、浓度问题、工程问题或行程问题。
数字特值计算题优先考虑-1,0,1,工程与行程等问题优先考虑最小公倍。
图形特值:比如特殊的长方形——正方形。
5.奇偶特性:题目中出现平均、总和、差,尤其是不定方程的时候 奇偶判定:①加减运算:同奇同偶比得偶,一奇一偶只能奇;②乘除运算:一偶就是偶,双奇才是奇。
二、基础代数公式和方法1.基础代数公式:完全平方:(a ±b)2=a 2±2ab +b 2平方差: a 2-b 2=(a +b )×(a -b ) 完全立方:(a ±b)3=a 3±3a 2b +3ab 2±b3立方和差: a 3±b 3=(a ±b)(a 2ab +b 2)阶乘: a m×a n=am +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ×b n2.常用方法:公式法(记住常用的公式) 因子法(整除特性结合)放缩法(用于判定计算的整数部分)n1-n 32=1n!)(⨯⋯⨯⨯⨯构造法 特值法三、等差数列1.n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和 通项公式:a n =a 1+(n -1)d求和公式:s n = =na 1+ n(n-1)d项数公式:n = +1等差中项:2A =a +b (若a 、A 、b 成等差数列) 2.若m+n =k+i ,则:a m +a n =a k +a i3.前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2四、等比数列1.n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等差数列前n 项的和 通项公式:a n =a 1qn -1求和公式:s n = (q ≠1)等比公式:G 2=ab (若a 、G 、b 成等比数列)2.若m+n =p+q ,则:a m ×a n =a p ×a q3.a m -a n =(m-n)d =q(m-n)五、周期问题一周7天,5个工作日。
一年平均365天(52周+1天),闰年366天(52周+2天)。
心竺提醒:闰年:四年一闰,百年不闰,四百年再闰。
平年365天,365÷7=52…1 大月31天,小月30天,平月(2月)28或29天。
212)(1n a a n +⨯da a n 1-qq a n -11 ·1)-(nma a心竺提醒:星期每7天一循环;“隔N 天”指的是“每(N+1)天”。
循环周期问题:若一串实物以T 为周期,且A ÷T =N …a ,那么第A 项等同于第a 项。
六、行程问题1.平均速度型:平均速度= (心竺提醒:常由于上下坡题型);路程=速度×时间;平均速度=总路程÷总时间2.相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度-小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间3.环形运动型:反向运动:环形周长=(大速度+小速度)×相遇时间 同向运动:环形周长=(大速度-小速度)×相遇时间 4.流水行船型:顺水速度=船速+水速 逆水速度=船速-水速 顺流行程=顺流速度×顺流时间=(船速+水速)×顺流时间 逆流行程=逆流速度×逆流时间=(船速-水速)×逆流时间 船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷25.火车过桥型:列车在桥上的时间=(桥长-车长)÷列车速度列车从开始上桥到完全下桥所用的时间=(桥长+车长)÷列车速度 列车速度=(桥长+车长)÷过桥时间6.扶梯上下型:扶梯总长=人走的阶数×(1± ),(顺行用加、逆行用减)7.电梯问题:同向运动:S =(V 人+V 电梯)×T21212v v v v +人梯u u反向运动:S =(V 人-V 电梯)×T 8.队伍行进型:对头→队尾:队伍长度=(u 人+u 队)×时间 队尾→对头:队伍长度=(u 人-u 队)×时间 9.典型行程模型:等距离平均速度: (U 1、U 2分别代表往、返速度)等发车前后过车:核心公式: ; 等间距同向反向:两岸相遇:单岸型: ;两岸型: (s 表示两岸距离)无动力顺水漂流:漂流所需时间= (其中t 顺和t 逆分别代表船顺流所需时间和逆流所需时间)10.多次相遇型:1.钟面上按“分针”分为60小格,时针的转速是分针的 ,分针每小时可追及 ;2.时针与分针一昼夜重合22次,垂直44次,成180o为 22次;3.钟表一圈分成12格,时针每小时转一格(300),分针每小时转12格(3600); 4.时针一昼夜转两圈(7200),1小时转圈 (300);分针一昼夜转24圈,1小时转1圈; 5.钟面上每两格之间为300,时针与分针成某个角度一般都有对称的两种情况。
1211121121121212u u u u u +=1212t t t t u u -+=人车21212t t tt T +=2121u u u u t t -+=反同2321s s s +=213s s s -=顺逆顺逆tt t t -2追及公式: ,T 为追及时间、T 0为静态时间(假设时针不动,分针和时针达到条件要求的虚拟时间)。
八、工程问题1.基本公式:工作量=工作效率×工作时间 工作效率=工作量÷工作时间工作时间=工作量÷工作效率 总工作量=各分工作量之和 心竺提醒:在解决实际问题时,常设最小公倍数2.多人合作问题:设工作总量为特值(完成工作所需时间或工作效率的最小公倍数),求各自的效率或者时间,求题目所问。
3.轮流工作问题:计算每人的工作效率,得到一个周期的工作量。
做除法,看工作总量包含几个周期的工作量,还剩余多少工作量分析剩余工作量,得出最终答案。
九、溶液问题1.基本公式:溶液质量=溶质质量+溶剂质量 溶液浓度=溶质质量÷溶液质量溶液质量=溶质质量÷溶液浓度 溶质质量=溶液质量×溶液浓度2.浓度分别为a%、b%的溶液,质量分别为M 、N ,交换质量L 后浓度都变成c %,则:N M N b M a c +⨯+⨯=%%% NM MNL +=3.混合稀释型:①溶液倒出比例为a 的溶液,再加入相同的溶质,则浓度为②溶液加入比例为a 的溶剂,在倒出相同的溶液,则浓度为 4.常用方法:十字交叉、不变量、比例、赋值、调和平均数。
5.反复操作型:先看第一次,抓住不变量。
十、容斥原理1.两集合标准型:总个数 — 两者都不满足的个数 = 满足条件I 的个数 + 满足条件II 的个数 — 两者都满足的个数原浓度次数⨯+)1(a 原浓度次数⨯+)11(aCB AC A C B B A C B A +---++CB A2.三集合标准: =3.三集和图标标数型:利用图形配合,标数解答 A①特别注意“满足条件”和“不满足条件”的区别;②特别注意有没有“三个条件都不满足”的情形; B C③标数时,注意由中间向外标记。
4.三集和整体重复型:假设满足三个条件的元素分别为ABC ,而至少满足三个条件之一的元素的总量为W ,其中:满足一个条件的元素数量为x ,满足两个条件的元素数量为y ,满足三个条件的元素数量为z ,可以得以下等式: ①W =x +y +z ②A +B +C =x +2y +3z十一、利润问题1.利润=销售价(卖出价)-成本利润率= = = -1销售价=成本×(1+利润率) 成本= 2.利息=本金×利率×时期 本金=本利和÷(1+利率×时期)本利和=本金+利息=本金×(1+利率×时期)= 月利率=年利率÷12 月利率×12=年利率例:某人存款2400元,存期3年,月利率为10.2‰(即月利1分零2毫),三年到期后,本利和共是多少元? ∴2400×(1+10.2%×36)=2400×1.3672=3281.28(元) 3.常用方法:方程、比例4.分段计算:水费电费、纳税金额、出租车乘车费等5.折扣十二、排列组合1.计算原理:分类——相加;分步——相乘2.排列、组合:CA BA CB CB A 期限利率)(本金+⨯1成本销售价成本利润成本销售价-成本+利润率销售价1另外: C=C =A ÷A =(规定 =1) 3.常用方法: 4.错位排列:一般都是停车位的问题,主要记3、4和5 5.环形模型: 6.隔板模型:题干特征:①n 个相同的元素; ②分给m 个不同对象; ③每个对象至少一个。
Cn-mnn C m n m nm n m m十三、概率问题十四、几何问题2223.平面图形的周长与面积公式:rn 180n πr(弧长)4.立体图形的表面积与体积公式:5.图形等比缩放型:一个几何图形,若其尺度变为原来的m 倍,则: ①所有对应角度不发生变化; ②所有对应长度变为原来的m 倍; ③所有对应面积变为原来的m 2倍;④所有对应体积变为原来的m 3倍。
6.一些特殊性质: ①三角形三边关系在一个三角形中,任意两边之和大于第三边;任意两边之差小于第三边; ②多边形内角和多边形内角和公式:n 边形内角和等于 。
7.常用方法:①平面几何:割补法、平移法。
②几何重构:数个数:整体涂-内部没涂=至少一面涂; 挖部分:原体积-挖掉的体积; 长短线:勾股定理。
8.几何极限理论:①平面中:周长一定,面积越大越靠近圆。
②立体中:表面积一定,体积越大越靠近球。
十五、方程问题1.定方程:一个方程、一个未知量2.定方程组:特征:多个方程、多个未知量(未知量个数等于方程个数) 方法:带入消元,加减消元︒⨯-180)2(n3.不定方程:特征:一个方程、多个未知量;求某个未知量的值 方法:奇偶特性→因子分析→尾数判定→赋值验证 4.不定方程(组):特征:多个方程、多个未知量(未知量的个数多余方程个数);求一个整体的值 方法:整体分析法——凑整;赋 0法简化计算;数字特性法十六、不等式1.一元二次方程求根公式:ax 2+bx+c =a(x-x 1)(x-x 2)其中:x 1= ;x 2= (b 2-4ac ≥0)根与系数的关系:x 1+x 2=- , x 1·x 2=2.3. 推广: nn 4.一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。