2020年云南省曲靖一中高考(理科)数学二模试卷 含解析
云南省曲靖市2019-2020学年高考第二次模拟数学试题含解析

云南省曲靖市2019-2020学年高考第二次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2015年以来,“一带一路”建设成果显著.如图是2015—2019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误..的是( )A.这五年,出口总额之和....比进口总额之和....大B.这五年,2015年出口额最少C.这五年,2019年进口增速最快D.这五年,出口增速前四年逐年下降【答案】D【解析】【分析】根据统计图中数据的含义进行判断即可.【详解】对A项,由统计图可得,2015年出口额和进口额基本相等,而2016年到2019年出口额都大于进口额,则A正确;对B项,由统计图可得,2015年出口额最少,则B正确;对C项,由统计图可得,2019年进口增速都超过其余年份,则C正确;对D项,由统计图可得,2015年到2016年出口增速是上升的,则D错误;故选:D【点睛】本题主要考查了根据条形统计图和折线统计图解决实际问题,属于基础题.2.若i为虚数单位,网格纸上小正方形的边长为1,图中复平面内点Z表示复数z,则表示复数2iz的点是()A .EB .FC .GD .H【答案】C【解析】【分析】 由于在复平面内点Z 的坐标为(1,1)-,所以1z i =-+,然后将1z i =-+代入2i z 化简后可找到其对应的点. 【详解】由1z i =-+,所以22(1)11i i i i i z i ==--=--+,对应点G . 故选:C【点睛】此题考查的是复数与复平面内点的对就关系,复数的运算,属于基础题. 3.对某两名高三学生在连续9次数学测试中的成绩(单位:分)进行统计得到折线图,下面是关于这两位同学的数学成绩分析.①甲同学的成绩折线图具有较好的对称性,故平均成绩为130分;②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内;③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关;④乙同学连续九次测验成绩每一次均有明显进步.其中正确的个数为( )A .B .C .D . 【答案】C【解析】【分析】利用图形,判断折线图平均分以及线性相关性,成绩的比较,说明正误即可.【详解】 ①甲同学的成绩折线图具有较好的对称性,最高分,平均成绩为低于分,①错误; ②根据甲同学成绩折线图提供的数据进行统计,估计该同学平均成绩在区间内,②正确; ③乙同学的数学成绩与测试次号具有比较明显的线性相关性,且为正相关,③正确;④乙同学在这连续九次测验中第四次、第七次成绩较上一次成绩有退步,故④不正确.故选:C .【点睛】本题考查折线图的应用,线性相关以及平均分的求解,考查转化思想以及计算能力,属于基础题.4.已知1F ,2F 是双曲线222:1x C y a-=()0a >的两个焦点,过点1F 且垂直于x 轴的直线与C 相交于A ,B 两点,若2AB =△2ABF 的内切圆的半径为( )A 2B .3C .23D 23【答案】B【解析】【分析】设左焦点1F 的坐标, 由AB 的弦长可得a 的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF 2的面积,再由三角形被内切圆的圆心分割3个三角形的面积之和可得内切圆的半径.【详解】由双曲线的方程可设左焦点1(,0)F c -,由题意可得222b AB a==, 由1b =,可得2a =所以双曲线的方程为: 2212x y -= 所以12(3,0),(3,0)F F -,所以21211223622ABF S AB F F =⋅⋅==V 三角形ABF 2的周长为()()22112242422262C AB AF BF AB a AF a BF a AB =++=++++=+==设内切圆的半径为r ,所以三角形的面积11623222S C r r r =⋅⋅=⋅⋅=, 所以326r =,解得3r =, 故选:B【点睛】 本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.5.为计算23991223242...100(2)S =-⨯+⨯-⨯++⨯-, 设计了如图所示的程序框图,则空白框中应填入( )A .100i <B .100i >C .100i ≤D .100i ≥【答案】A【解析】【分析】 根据程序框图输出的S 的值即可得到空白框中应填入的内容.【详解】由程序框图的运行,可得:S =0,i =0满足判断框内的条件,执行循环体,a =1,S =1,i =1满足判断框内的条件,执行循环体,a =2×(﹣2),S =1+2×(﹣2),i =2满足判断框内的条件,执行循环体,a =3×(﹣2)2,S =1+2×(﹣2)+3×(﹣2)2,i =3…观察规律可知:满足判断框内的条件,执行循环体,a =99×(﹣2)99,S =1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i =1,此时,应该不满足判断框内的条件,退出循环,输出S 的值,所以判断框中的条件应是i <1.故选:A .【点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题.6.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .26C .5D .534【答案】B【解析】【分析】 先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解.【详解】如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC ,所以1//AQ PC ,同理1//AP QC ,所以四边形1APC Q 是平行四边形.即正方体被平面截的截面.因为12B P PC =,所以112C B PC =,即1PC PB ==所以11AP PC AC === 由余弦定理得:22211111cos 25AP PC AC APC AP PC +-∠==⨯所以1sin 5APC ∠= 所以S 四边形1APQC 1112sin 2AP PC APC =⨯⨯⨯∠=故选:B【点睛】 本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.7.已知集合M ={x|﹣1<x <2},N ={x|x (x+3)≤0},则M∩N =( )A .[﹣3,2)B .(﹣3,2)C .(﹣1,0]D .(﹣1,0) 【答案】C【解析】【分析】先化简N ={x|x (x+3)≤0}={x|-3≤x≤0},再根据M ={x|﹣1<x <2},求两集合的交集.【详解】因为N ={x|x (x+3)≤0}={x|-3≤x≤0},又因为M ={x|﹣1<x <2},所以M∩N ={x|﹣1<x≤0}.故选:C【点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.8.已知函数()()f x x R ∈满足(1)1f =,且()1f x '<,则不等式()22lg lg f x x <的解集为( ) A .10,10⎛⎫ ⎪⎝⎭B .()10,10,10骣琪??琪桫C .1,1010⎛⎫ ⎪⎝⎭D .()10,+∞ 【答案】B【解析】【分析】 构造函数()()g x f x x =-,利用导数研究函数的单调性,即可得到结论.【详解】设()()g x f x x =-,则函数的导数()()1g x f x ''=-,()1f x Q '<,()0g x '∴<,即函数()g x 为减函数,(1)1f =Q ,(1)(1)1110g f ∴=-=-=,则不等式()0<g x 等价为()(1)g x g <,则不等式的解集为1x >,即()f x x <的解为1x >,22(1)1f g x g x Q <,由211g x >得11gx >或11gx <-,解得10x >或1010x <<, 故不等式的解集为10,(10,)10⎛⎫⋃+∞ ⎪⎝⎭.故选:B . 【点睛】 本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.9.已知集合A={y|y=|x|﹣1,x ∈R},B={x|x≥2},则下列结论正确的是( )A .﹣3∈AB .3∉BC .A∩B=BD .A ∪B=B【答案】C【解析】试题分析:集合{}|1A y y =≥- A B B B A ∴⊆∴⋂=考点:集合间的关系10.在等差数列{}n a 中,若n S 为前n 项和,911212a a =+,则13S 的值是( )A .156B .124C .136D .180【答案】A【解析】【分析】因为711911212a a a a +==+,可得712a =,根据等差数列前n 项和,即可求得答案.【详解】 Q 711911212a a a a +==+,∴712a =,∴()113137131313121562a a S a +===⨯=. 故选:A.【点睛】本题主要考查了求等差数列前n 项和,解题关键是掌握等差中项定义和等差数列前n 项和公式,考查了分析能力和计算能力,属于基础题.11.已知函数()f x 的定义域为[]0,2,则函数()()282x g x f x =+-的定义域为( )A .[]0,1B .[]0,2 C .[]1,2D .[]1,3 【答案】A【解析】 试题分析:由题意,得022{820x x ≤≤-≥,解得01x ≤≤,故选A . 考点:函数的定义域.12.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A 发生的概率为A .14B .58C .38D .12 【答案】D【解析】【分析】【详解】由(2)12{(2)4f f ≤-≤得4212424b c b c ++≤⎧⎨-+≤⎩,分别以,b c 为横纵坐标建立如图所示平面直角坐标系,由图可知,()12P A =.二、填空题:本题共4小题,每小题5分,共20分。
2020届云南省曲靖市高三第二次教学质量监测数学(理)试题解析

绝密★启用前2020届云南省曲靖市高三第二次教学质量监测数学(理)试题学校:___________姓名:___________班级:___________考号:___________注意事项:注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上一、单选题1.设集合{}0A x x =>,{}22150,B x x x x Z =+-<∈,则A B =I ( )A .{}1,2B .{}1,2,3C .{}1,2,3,4D .{}1,2,3,4,5 答案:A本题先计算集合B,然后结合集合交集运算性质,即可.解: ()(){}{}=3504,3,2,1,0,1,2B x x x x Z x -+<∈=----,,所以 {}1,2A B =I ,故选A.点评:本道题考查了集合交集运算性质,难度较小.2.若复数z 满足:(1)2z i ⋅+=,则||z =( )A .1B C D .2 答案:B根据复数满足的等式化简变形,结合复数除法运算即可化简得z ,根据复数模的定义及运算即可求解.解:复数z 满足(1)2z i ⋅+=, 则21iz =+, 由复数除法运算化简可得()()()2121111i z i i i i -===-++-,由复数模的定义及运算可得z ==故选:B.点评:本题考查了复数模的定义,复数的除法运算,属于基础题.3.已知4cos45aπ⎛⎫-=⎪⎝⎭,则sin2a=( )A.7-25B.725C.1-5D.15答案:B分析:利用诱导公式与二倍角的余弦公式,即可得结果.详解:4 cos-45πα⎛⎫=⎪⎝⎭Q所以2247 2cos-22cos-12124525sinππααα⎛⎫⎛⎫⎛⎫==-=⨯-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选B.点睛:本题主要考查诱导公式以及二倍角的余弦公式,属于中档题. 解答给值求值问题时要注意:(1)观察角,分析角与角之间的差异以及角与角之间的和、差、倍的关系,巧用诱导公式或拆分技巧;(2)观察名,尽可能使三角函数统一名称;(3)观察结构,以便合理利用公式,整体化简求值.4.执行如图所示的程序框图,则输出的结果为()A.7 B.9 C.10 D.11答案:B列出循环的每一步,根据条件1S≤-成立,循环结束,可得出输出结论.解:运行该程序,输入1i =,0S =,则110lg lg 33S =+=; 11lg lg 1310S =>=-,不满足判断框,则1313,lg lg lg 355i S ==+=; 11lg lg 1510S =>=-,不满足判断框,则1515,lg lg lg 577i S ==+=; 11lg lg 1710S =>=-,不满足判断框,则1717,lg lg lg 799i S ==+=; 11lg lg 1910S =>=-,不满足判断框,则1919,lg lg lg 91111i S ==+=; 11lg lg 11110S =<=-,满足判断框,输出9i =. 故选:B.点评:本题考查程序框图,考查学生的推理能力与计算求解能力,属于基础题.5.已知向量,a b r r ,2a =r ,()()cos ,sin b R ααα=∈r ,若2a b +=r r 则a r 与b r 夹角是( )A .56πB .23πC .3πD .6π 答案:C首先根据b r 的坐标计算b r ,根据2a b +=r r 1a b =r r g ,再代入夹角公式计算即可. 解:1b ==r ,222(2)4412a b a a b b +=++=r r r r r r g ,即44412a b ++=r r g ,解得1a b =r rg . 设a r 与b r 夹角为θ,则1cos 2a b a b θ==r r g r r , 又因为0θπ<<,所以3πθ=.点评:本题主要考查平面向量的夹角的计算,同时考查了平面向量的模长,属于中档题.6.在《九章算术》中,将四个面都为直角三角形的四面体称之为鳖膳(bi ē n ào ).如图,网格纸上小正方形的边长1,粗实线画出的是某鳖臑的三视图,则该鳖臑表面积为( )A .6B .21C .27D .54答案:C 结合三视图,还原直观图,计算表面积,即可.解:结合三视图,还原直观图为已知3,4,3AB BC CD ===,则该四面体1111272222S AB BC AC CD AB BD BC CD =⋅+⋅+⋅+⋅=,故选C. 点评:本道题考查了三视图还原直观图,难度中等.7.已知,x y 满足202080x y x y -≥⎧⎪-≥⎨⎪+-≤⎩,()0z ax by a b =+>>的最大值为2,则直线10ax by +-=过定点( )A .()3,1B .()1,3-C .()1,3D .()3,1- 答案:A。
云南省曲靖市2019-2020学年高考数学二模考试卷含解析

云南省曲靖市2019-2020学年高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知向量()()1,3,2a m b ==-v v ,,且()a b b +⊥vv v ,则m=( )A .−8B .−6C .6D .8【答案】D 【解析】 【分析】由已知向量的坐标求出a b +rr 的坐标,再由向量垂直的坐标运算得答案.【详解】∵(1,),(3,2),(4,2)a m b a b m ==-∴+=-r r r r ,又()a b b +⊥rr r ,∴3×4+(﹣2)×(m ﹣2)=0,解得m =1. 故选D . 【点睛】本题考查平面向量的坐标运算,考查向量垂直的坐标运算,属于基础题. 2.已知复数z 满足(12)43i z i +=+,则z 的共轭复数是( ) A .2i - B .2i +C .12i +D .12i -【答案】B 【解析】 【分析】根据复数的除法运算法则和共轭复数的定义直接求解即可. 【详解】由()1243i z i +=+,得43i2i 12iz +==-+,所以2z i =+. 故选:B 【点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题. 3.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫ ⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4 B .6C .3D .8【答案】A【分析】根据所给函数解析式满足的等量关系及指数幂运算,可得()()m f f n f m n ⎛⎫+=⎪⎝⎭;利用定义可证明函数()f x 的单调性,由赋值法即可求得函数()f x 在[]1,16上的最大值.【详解】函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫ ⎪⎝⎭⋅=,则()()m f f n f m n ⎛⎫+= ⎪⎝⎭; 任取()12,0,x x ∈+∞,且12x x <,则1201x x <<, 故120x f x ⎛⎫< ⎪⎝⎭, 令1m x =,2n x =,则()()1212x f f x f x x ⎛⎫+=⎪⎝⎭, 即()()11220x f x f x f x ⎛⎫-=< ⎪⎝⎭,故函数()f x 在()0,∞+上单调递增, 故()()max 16f x f =, 令16m =,4n =,故()()()44164f f f +==, 故函数()f x 在[]1,16上的最大值为4. 故选:A. 【点睛】本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.4.设函数()22cos cos f x x x x m =++,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()17,22f x ⎡⎤∈⎢⎥⎣⎦,则m =( ) A .12B .32C .1D .72【答案】A 【解析】由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值. 【详解】()22cos cos f x x x x m =++1cos22x x m =+++2sin(2)16x m π=+++,0,2x π⎡⎤∈⎢⎥⎣⎦时,72[,]666x πππ+∈,1sin(2)[,1]62x π+∈-,∴()[,3]f x m m ∈+,由题意17[,3][,]22m m +=,∴12m =. 故选:A . 【点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键. 5.博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P 1,P 2,则( ) A .P 1•P 2=14B .P 1=P 2=13C .P 1+P 2=56D .P 1<P 2【答案】C 【解析】 【分析】将三辆车的出车可能顺序一一列出,找出符合条件的即可. 【详解】三辆车的出车顺序可能为:123、132、213、231、312、321 方案一坐车可能:132、213、231,所以,P 1=36; 方案二坐车可能:312、321,所以,P 1=26; 所以P 1+P 2=56故选C. 【点睛】本题考查了古典概型的概率的求法,常用列举法得到各种情况下基本事件的个数,属于基础题. 6.下列判断错误的是( )A .若随机变量ξ服从正态分布()()21,,40.78N P σξ≤=,则()20.22P ξ≤-=B .已知直线l ⊥平面α,直线//m 平面β,则“//αβ”是“l m ⊥”的充分不必要条件C .若随机变量ξ服从二项分布: 14,4B ξ⎛⎫⎪⎝⎭:, 则()1E ξ= D .am bm >是a b >的充分不必要条件 【答案】D 【解析】 【分析】根据正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,依次对四个选项加以分析判断,进而可求解. 【详解】对于A 选项,若随机变量ξ服从正态分布()()21,,40.78N P σξ≤=,根据正态分布曲线的对称性,有()()()241410.780.22P P P ξξξ≤-=≥=-≤=-=,故A 选项正确,不符合题意;对于B 选项,已知直线l ⊥平面α,直线//m 平面β,则当//αβ时一定有l m ⊥,充分性成立,而当l m ⊥时,不一定有//αβ,故必要性不成立,所以“//αβ”是“l m ⊥”的充分不必要条件,故B 选项正确,不符合题意;对于C 选项,若随机变量ξ服从二项分布: 14,4B ξ⎛⎫⎪⎝⎭:, 则()114E np ξ==4⨯=,故C 选项正确,不符合题意;对于D 选项,am bm >Q ,仅当0m >时有a b >,当0m <时,a b >不成立,故充分性不成立;若a b >,仅当0m >时有am bm >,当0m <时,am bm >不成立,故必要性不成立. 因而am bm >是a b >的既不充分也不必要条件,故D 选项不正确,符合题意. 故选:D 【点睛】本题考查正态分布、空间中点线面的位置关系、充分条件与必要条件的判断、二项分布及不等式的性质等知识,考查理解辨析能力与运算求解能力,属于基础题.7.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ).A .15B .25C .310D .14【答案】A 【解析】 【分析】基本事件总数4520n =⨯=,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率. 【详解】解:从四个阴数和五个阳数中分别随机选取1个数, 基本事件总数4520n =⨯=,其和等于11包含的基本事件有:(9,2),(3,8),(7,4),(5,6),共4个,∴其和等于11的概率41205p ==. 故选:A . 【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题. 8.已知集合{}{}22(,)4,(,)2xA x y x yB x y y =+===,则A B I元素个数为( )A .1B .2C .3D .4【答案】B 【解析】 【分析】作出两集合所表示的点的图象,可得选项. 【详解】由题意得,集合A 表示以原点为圆心,以2为半径的圆,集合B 表示函数2xy =的图象上的点,作出两集合所表示的点的示意图如下图所示,得出两个图象有两个交点:点A 和点B ,所以两个集合有两个公共元素,所以A B I 元素个数为2, 故选:B.【点睛】本题考查集合的交集运算,关键在于作出集合所表示的点的图象,再运用数形结合的思想,属于基础题.9.已知非零向量,a b r r 满足0a b ⋅=r r ,||3a =r ,且a r 与a b +r r 的夹角为4π,则||b =r ( )A .6B .32C .22D .3【答案】D 【解析】 【分析】利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可. 【详解】解:非零向量a r ,b r 满足0a b =r r g ,可知两个向量垂直,||3a =r ,且a r 与a b +r r 的夹角为4π,说明以向量a r ,b r为邻边,a b +r r 为对角线的平行四边形是正方形,所以则||3b =r .故选:D . 【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题. 10.已知函数()1f x +是偶函数,当()1,x ∈+∞时,函数()f x 单调递减,设12a f ⎛⎫=- ⎪⎝⎭,()3b f =,()0c f =,则a b c 、、的大小关系为()A .b a c <<B .c b d <<C .b c a <<D .a b c <<【答案】A 【解析】 【分析】 根据()1f x +图象关于y 轴对称可知()f x 关于1x =对称,从而得到()f x 在(),1-∞上单调递增且()()31f f =-;再根据自变量的大小关系得到函数值的大小关系.【详解】()1f x +Q 为偶函数 ()1f x ∴+图象关于y 轴对称()f x ∴图象关于1x =对称()1,x ∈+∞Q 时,()f x 单调递减 (),1x ∈-∞∴时,()f x 单调递增又()()31f f =-且1102-<-< ()()1102f f f ⎛⎫∴-<-< ⎪⎝⎭,即b a c << 本题正确选项:A 【点睛】本题考查利用函数奇偶性、对称性和单调性比较函数值的大小关系问题,关键是能够通过奇偶性和对称性得到函数的单调性,通过自变量的大小关系求得结果.11.设x 、y 、z 是空间中不同的直线或平面,对下列四种情形:①x 、y 、z 均为直线;②x 、y 是直线,z 是平面;③z 是直线,x 、y 是平面;④x 、y 、z 均为平面.其中使“x z ⊥且y z x y ⊥⇒∥”为真命题的是( ) A .③④ B .①③C .②③D .①②【答案】C 【解析】 【分析】①举反例,如直线x 、y 、z 位于正方体的三条共点棱时②用垂直于同一平面的两直线平行判断.③用垂直于同一直线的两平面平行判断.④举例,如x 、y 、z 位于正方体的三个共点侧面时. 【详解】①当直线x 、y 、z 位于正方体的三条共点棱时,不正确; ②因为垂直于同一平面的两直线平行,正确; ③因为垂直于同一直线的两平面平行,正确; ④如x 、y 、z 位于正方体的三个共点侧面时, 不正确. 故选:C. 【点睛】此题考查立体几何中线面关系,选择题一般可通过特殊值法进行排除,属于简单题目.12.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( )A .15B .120C .112D .340【答案】C 【解析】 【分析】先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率. 【详解】所有的情况数有:310120C =种,3个数中至少有2个阳数且能构成等差数列的情况有:()()()()()()()()()()1,2,3,3,4,5,5,6,7,7,8,9,1,4,7,3,6,9,1,3,5,3,5,7,5,7,9,1,5,9,共10种,所以目标事件的概率10112012P ==. 故选:C. 【点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算. 二、填空题:本题共4小题,每小题5分,共20分。
云南省曲靖市2020届高三第二次模拟考试数学(理)试题 含答案

曲靖市2020届高三第二次模拟考试数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷一、选择题(共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项符合要求.)1. 已知集合{})2lg(x y x A -==,集合⎭⎬⎫⎩⎨⎧≤≤=4241x xB ,则B A ⋂=( ) A .{}2-≥x x B .{}22<<-x xC .{}22<≤-x xD .{}2<x x 2. 若复数)(122R a iia ∈++是纯虚数,则i a 22+在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3. 定义运算⎩⎨⎧>≤=⊗)()(b a b b a a b a ,则函数xx f 21)(⊗=的图象大致为( )A .B .C .D .4. 抛物线方程为x y 42=,一直线与抛物线交于B A 、两点,其弦AB 的中点坐标为(1,1),则直线的方程为( )A .012=--y xB .012=-+y xC .012=+-y xD .012=---y x5. 在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( )A .2550100,,777 B .252550,,1477 C .100200400,,777 D .50100200,,7776. 若p 是q ⌝的充分不必要条件,则p ⌝是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 7. 阅读右边程序框图,为使输出的数据为31, 则①处应填的数字为( ) A .3 B .4 C .5 D .68. 已知y x ,满足⎪⎩⎪⎨⎧≥≥+≥-100x y x y x ,则32y x --的取值范围为( )A .3[,4]2B .(1],2 C .(,0][2)-∞⋃+∞,D .(,1)[2)-∞⋃+∞, 9. 已知点(30),(03)A B -,,,若点P 在曲线21x y --=上运动,则PAB △面积的最小值为( )A .6B .22329+ C .3 D .22329- 10.已知双曲线()2222:100x y a b a bΓ-=>>,的右焦点为F ,过原点的直线l 与双曲线Γ的左、右两支分别交于A B ,两点,延长BF 交右支于C 点,若AF FB ⊥,3CF FB =,则双曲线Γ的离心率是( ) A .173B .32C .53D .10211. 已知)172(log 22+-=x x y 的值域为),[+∞m ,当正数b a ,满足m ba b a =+++2132时,则b a 47+的最小值为( ) A .49B .5C .4225+ D .912. 已知函数)()(R x e x x f x∈=,若关于x 的方程01)(=+-m x f 恰好有3个不相等的实数根,则实数m 的取值范围为( )A .),(122e e B .),(e e 220 C .),(111+e D .)1221(+e e ,第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.) 13. 522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为______.14. 在平行四边形ABCD 中,2AB =,1AD =,则AC BD ⋅的值为_____.15. 在直三棱柱111ABC A B C -内有一个与其各面都相切的1O ,同时在三棱柱111ABC A B C -外有一个外接球2O .若AB BC ⊥,3AB =,4BC =,则球2O 的表面积为______. 16. 在数列}{n a 中,11=a ,n n a n a -=+21,则数列}{n a 的通项公式=n a ______. 三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.(本小题满分12分)已知函数)(,212cos sin 23)(2R x x x x f ∈-+= (1) 当],0[π∈x 时,求函数的值域;(2) ABC △的角C B A ,,的对边分别为c b a ,,且 ,1)(,3==C f c 求AB 边上的高h 的最大值.18.(本小题满分12分)如图,三棱锥ABC P -中,3===PC PB PA ,BC AC CB CA ⊥==,2(1) 证明:ABC PAB 面面⊥; (2) 求二面角B PA C --的余弦值.19.(本小题满分12分)治疗某种慢性病的创新药研发成了当务之急.某药企加大了研发投入,市场上治疗一类慢性病的特效药品A 的研发费用x (百万元)和销量y (万盒)的统计数据如下:研发费用x (百万元) 2 3 6 10 13 15 18 21 销量y (万盒)1122.53.53.54.56(1)求y 与x 的相关系数r 精确到0.01,并判断y 与x 的关系是否可用线性回归方程模型拟合?(规定:0.75r ≥时,可用线性回归方程模型拟合);(2)该药企准备生产药品A 的三类不同的剂型1A ,2A ,3A ,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型1A ,2A ,3A 合格的概率分别为12,45,35,第二次检测时,三类剂型1A ,2A ,3A 合格的概率分别为45,12,23.两次检测过程相互独立,设经过两次检测后1A ,2A ,3A 三类剂型合格的种类数为X ,求X 的数学期望.附:(1)相关系数1222211ni ii n ni i i i x y nx yr x nx y ny ===-=⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑(2)81347i ii x y==∑,8211308i i x ==∑,82193i i y ==∑,178542.25≈.20.(本小题满分12分)如图所示,设椭圆)0(12222>>=+b a b y a x 的左右焦点分别为12(,0),(,0)F c F c -,离心率N M e ,,22=是直线ca x l 2:=上的两个动点,且满足021=⋅N F M F .(1) 若5221==N F M F ,求b a ,的值;(2) 证明:当MN 取最小值时,N F M F 21+与21F F 共线.21.(本小题满分12分)设函数)),((其中∞+∈-++=0,1)1()(2-x kx e e x f x,且函数)(x f 在2=x 处的切线与直线0)2(2=-+y x e 平行. (1) 求k 的值;(2) 若函数x x x g ln )(-=,求证:)()(x g x f >恒成立.请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.22.(本小题满分10分)【选修4−4:坐标系与参数方程】 已知直线l 的参数方程:12x ty t =⎧⎨=+⎩(t 为参数)和圆C 的极坐标方程:2sin ρθ=(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)已知点()1,3M ,直线l 与圆C 相交于A 、B 两点,求MA MB +的值.23.(本小题满分10分)【选修4−5:不等式选讲】 已知函数b x a x x f -++=)(,(其中0,0>>b a ) (1) 求函数)(x f 的最小值M .(2) 若M c >2,求证:ab c c a ab c c -+<<--22.曲靖市2020届高三第二次模拟考试数学(理科)参考答案一、选择题(本大题共12小题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20分)13.40 14. -3 15. 29π 16. ⎩⎨⎧-)(1)(为偶数为奇数n n n n三、解答题(本大题共6个小题,共70分) 17.(本小题满分12分)解:(1)21cos 2121sin 23)(-++=x x x f =)6sin(π+x π≤≤x 0 ππ676≤≤∴x 1)6sin(21≤+≤-∴πx ∴函数的值域为]1,21[-∴(6分)(2) 1)6sin()(=+=πC C f26ππ=+∴C 3π=∴C2123cos 22-=-+=ab b a C ab ab b a 2322≥-=+∴ 3≤∴ab≤==C ab h S sin 2132134323323=⨯⨯ 23≤∴h h ∴的最大值为23(12分)18.(本小题满分12分)解:(1)取AB 中点O ,连结PO ,OC . ∵PA =PB ,∴PO ⊥AB , ∵PB=AP = 3∴PO =2,CO =1 ∴∠POC 为直角 ∴PO ⊥0C∴PO ⊥平面ABC ,∴面PAB ⊥面ABC (6分)(2)如图所示,建立空间直角坐标系O -xyz ,则A (1,0,0),P (0,0,2),C (0,1,0),可取m =OC →=(0,1,0)为平面PAB 的一个法向量.设平面PAC 的一个法向量为n =(l ,m ,n ).则PA →·n =0,AC →·n =0,其中PA →=(1,0,-2),AC →=(-1,1,0),∴⎩⎨⎧l -2n =0,-l +m =0.∴⎩⎪⎨⎪⎧n =22l ,m =l .不妨取l =2,则n =(2,2,1).cos 〈m ,n 〉=m ·n|m ||n |=0×2+1×2+0×102+12+02·22+22+12=105. ∵C -PA -B 为锐二面角, ∴二面角C -PA -B 的余弦值为105.(12分) 19.(本小题满分12分)【详解】解:(1)由题意可知2361021131518118x +++++++==,112 2.56 3.5 3.5 4.538y +++++++==,由公式0.983402121785r ==≈⨯,0.980.75r ≈>,∴y 与x 的关系可用线性回归模型拟合;(2)药品A 的每类剂型经过两次检测后合格的概率分别为1142255A P =⨯=,2412525A P =⨯=,3322535A P =⨯=,由题意,235XB ⎛⎫ ⎪⎝⎭, , ()26355E X ∴=⨯=.20.(本小题满分12分)解:由e =22,得b =c =22a ,所以焦点F 1(-22a,0),F 2(22a,0),直线l 的方程为x =2a ,设M (2a ,y 1),N (2a ,y 2),(1)∵|F 1M →|=|F 2N →|=25,∴12a 2+y 22=20,92a 2+y 21=20,消去y 1,y 2,得a 2=4,故a =2,b = 2.(6分)(2)|MN |2=(y 1-y 2)2=y 21+y 22-2y 1y 2≥-2y 1y 2-2y 1y 2=-4y 1y 2=6a 2.当且仅当y 1=-y 2=62a 或y 2=-y 1=62a 时,|MN |取最小值6a , 此时,F 1M →+F 2N →=(322a ,y 1)+(22a ,y 2)=(22a ,y 1+y 2)=(22a,0)=2F 1F 2→,故F 1M →+F 2M→与F 1F 2→共线.(12分)21.(本小题满分12分)解:(1)k e e x f x++='-)1()(22)1()2(222+=++='-e k e e f ,解得1=k .(4分)(2) )()(x g x f >得x x x e e xln 1)1(2-->-++,变形得x x x e e x ln 1)1(2--->+令函数x x x x h ln 1)(--=x x h ln 2)(--='令0ln 2=--x 解得2-=e x当),0(2-∈e x 时0)(>'x h ,),(2+∞∈-e x 时0)(<'x h .∴函数)(x h 在),0(2-e 上单调递增,在),(2+∞-e 上单调递减∴221)()(--+=≤e e h x h而函数xe e x F )1()(2-+=在区间),0(+∞上单调递增∴)1()0()(2-+=>e F x F∴x x x x h e F x F ln 1)()1()0()(2--=≥+=>-即x x x e e xln 1)1(2-->+- 即x x x e e x ln 1)1(2->+-+-∴)()(x g x f >恒成立(12分)22.(本小题满分10分)解:(1)消去参数t ,得直线l 的普通方程为21y x =+, 将2sin ρθ=两边同乘以ρ得22sin ρρθ=,()2211x y +-=,∴圆C 的直角坐标方程为()2211x y +-=;(2)经检验点()1,3M 在直线l 上,12x t y t =⎧⎨=+⎩可转化为1535x y t⎧=+⎪⎪⎨⎪=+⎪⎩①,将①式代入圆C 的直角坐标方程为()2211x y +-=得2212155t ⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,化简得240t ++=,设12,t t是方程240t ++=的两根,则12t t +=-124t t =, ∵1240t t =>,∴1t 与2t 同号,由t的几何意义得1212MA MB t t t t +=+=+=23.(本小题满分10分)解: (1)b a b a b x a x b x a x +=+=--+≥-++)()(- 11 - b a M +=∴(2)证明:为要证c a c <<+只需证a c <-<即证a c -<, 也就是22()a c c ab -<-,即证22a ac ab -<-,即证2()ac a a b >+,∵0,2,0a c a b b >>+>,∴2a b c +>≥,故2c ab >即有20c ab ->, 又 由2c a b >+可得2()ac a a b >+成立,∴所求不等式c a c -<<+成立.。
2020届云南省曲靖一中高三二模数学(理)试题(解析版)

x ex
,故
f
'(x)
1 2x 2 xex
,函数在
0,
1 2
上单调递增,在
1 2
,
第 8 页 共 19 页
上单调递减,且
f
1 2
2e ; 2e
当 x 0 时, f 0 0;
当 x 0 时, f (x)
x , f '(x) 1 2x 0 ,函数单调递减;
ex
2 xex
如图所示画出函数图像,则 0
2020 届云南省曲靖一中高三二模数学(理)试题
一、单选题
1.已知集合 A
x y lg 2 x
,集合 B
x
1 4
2x
4 ,则
A
B(
)
A.x x 2
B.x 2 x 2 C.x 2 x 2 D.x x 2
【答案】C 【解析】求出集合的等价条件,利用交集的定义进行求解即可. 【详解】
作出不等式组对应的平面区域如图:
由图可知当过点 D 的直线平行于 x 轴时,此时 k y 3 0 成立; x2
k y 3 取所有负值都成立; x2
当过点
A 时, k
y3 x2
x 1 取正值中的最小值, x y
0
A(1,1)
,此时
k y 3 13 2; x 2 12
故 y 3 的取值范围为 (, 0] [2, ) ; x2
10.已知双曲线 :
x2 a2
y2 b2
1(a
0,
b 0) 的右焦点为 F ,过原点的直线 l 与双曲
线 的左、右两支分别交于 A, B 两点,延长 BF 交右支于 C 点,若
第 6 页 共 19 页
2020年云南省曲靖一中高考数学二模试卷(理科)

2020年云南省曲靖一中高考数学二模试卷(理科)一、选择题(共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项符合要求.)1.(5分)已知集合{|(2)}A x y lg x ==-,集合1{|24}4xB x =剟,则(A B =I )A .{|2}x x -…B .{|22}x x -<<C .{|22}x x -<„D .{|2}x x <2.(5分)若复数22()1a iR iα+∈+是纯虚数,则复数22a i +在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.(5分)定义运算:,(),()a ab a b b a b ⎧=⎨>⎩⊗„,则函数()12x f x =⊗的图象是( )A .B .C .D .4.(5分)抛物线方程为24y x =,一直线与抛物线交于A 、B 两点,其弦AB 的中点坐标为(1,1),则直线的方程为( ) A .210x y --=B .210x y +-=C .210x y -+=D .210x y ---=5.(5分)在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗10=升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?( ) A .257,507,1007B .2514,257,507C.1007,2007,4007D.507,1007,20076.(5分)若p是q⌝的充分不必要条件,则p⌝是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(5分)阅读程序框图,为使输出的数据为31,则①处应填的数字为()A.4B.5C.6D.78.(5分)已知x,y满足1x yx yx-⎧⎪+⎨⎪⎩………,则32yx--的取值范围为()A.3[2,4]B.(1,2]C.(-∞,0][2U,)+∞D.(,1)[2-∞U,)+∞9.(5分)已知点(3,0)A-,(0,3)B,若点P在曲线21y x=--上运动,则PAB∆面积的最小值为()A.6B.93222C.3D.9322210.(5分)已知双曲线2222:1(0,0)x ya ba bΓ-=>>的右焦点为F,过原点的直线l与双曲线Γ的左、右两支分别交于A,B两点,延长BF交右支于C点,若AF FB⊥,||3||CF FB=,则双曲线Γ的离心率是()A17B.32C.53D1011.(5分)已知22log(217)y x x=-+的值域为[m,)+∞,当正数a,b满足2132ma b a b+=++时,则74a b+的最小值为()A .94B .5C .522+ D .912.(5分)已知函数||()()x f x x R =∈,若关于x 的方程()10f x m -+=恰好有3个不相等的实数根,则实数m 的取值范围为( ) A .2(1,1)e+ B .2(0,)e C .1(1,1)e+D .2(,1)e 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.)13.(5分)252()x x+的展开式中4x 的系数为14.(5分)如图,在平行四边形ABCD 中,2AB =,1AD =.则AC BD u u u r u u u rg 的值为 .15.(5分)在直三棱柱111ABC A B C -内有一个与其各面都相切的球1O ,同时在三棱柱111ABC A B C -外有一个外接球2Q .若AB BC ⊥,3AB =,4BC =,则球2Q 的表面积为16.(5分)在数列{}n a 中,11a =,12n n a n a +=-,则数列{}n a 的通项公式n a = . 三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) 17.(12分)已知函数231()cos ,()22x f x x x R =+-∈. (1)当[0x ∈,]π时,求函数的值域;(2)ABC ∆的角A ,B ,C 的对边分别为a ,b ,c 且3,()1c f C ==,求AB 边上的高h 的最大值.18.(12分)如图,三棱锥P ABC -中,3PA PB PC ===,2CA CB ==,AC BC ⊥. (1)证明:面PAB ⊥面ABC ; (2)求二面角C PA B --的余弦值.19.(12分)2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品A 的研发费用x (百万元)和销量y (万盒)的统计数据如下: 研发费用x (百万元) 2 3 6 10 13 15 18 21 销量y (万盒)1122.53.53.54.56(Ⅰ)求y 与x 的相关系数r (精确到0.01),并判断y 与x 的关系是否可用线性回归方程模型拟合?(规定:||0.75r …时,可用线性回归方程模型拟合); (Ⅱ)该药企准备生产药品A 的三类不同的剂型1A ,2A ,3A ,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型1A ,2A ,3A 合格的概率分别为12,45,35,第二次检测时,三类剂型1A ,2A ,3A 合格的概率分别为45,12,23.两次检测过程相互独立,设经过两次检测后1A ,2A ,3A 三类剂型合格的种类数为X ,求X 的数学期望.附:(1)相关系数1222211()()ni ii n ni i i i x ynxyr x nx y ny ===-=--∑∑∑(2)81347i i i x y ==∑,8211308ii x ==∑,82193i i y ==∑178542.25≈20.(12分)设椭圆22221x y a b+=,({0})a b >>的左右焦点分别为1F ,2F ,离心率2e =,右准线为l ,M ,N 是l 上的两个动点,120F M F N =u u u u r u u u u r g (Ⅰ)若12||||25F M F N ==u u u u r u u u u r,求a ,b 的值;。
2020届云南省曲靖一中高考数学理科二模试题答案

解:∵an+1=2n﹣an, ∴an+1+an=2n①,an+an﹣1=2(n﹣1)(n≥2)②, ①﹣②得:an+1﹣an﹣1=2 (n≥2),又∵a1=1, ∴数列{an}的奇数项为首项为 1,公差为 2 的等差数列, ∴当 n 为奇数时,an=n, 当 n 为偶数时,则 n﹣1 为奇数,∴an=2(n﹣1)﹣an﹣1=2(n﹣1)﹣(n﹣1)=n﹣1,
A.
B.
C.
D.
【分析】记双曲线的左、右焦点分别为 F'、F,设双曲线的实半轴长为 a,半焦距为 c.连 接 AF'、BF'、CF'.由双曲线的对称性和定义,运用勾股定理,离心率公式可得所求. 解:记双曲线的左、右焦点分别为 F'、F,设双曲线的实半轴长为 a,半焦距为 c.连接 AF'、BF'、CF'.
13.(x2+ )5 的展开式中 x4 的系数为 40
【分析】运用二项展开式的通项可得结果.
解:根据题意得,Tr+1= (x2)5﹣r( )r= 2rx10﹣3r
令 10﹣3r=4,得 r=2
∴(x2+ )5 的展开式中 x4 的系数为 22=40;
故答案为 40. 14.如图,在平行四边形 ABCD 中,AB=2,AD=1.则
的值为 ﹣3 .
【分析】根据 ABCD 是平行四边形可得出
,然后代入 AB=2,AD=
1 即可求出
的值.
解:∵AB=2,AD=1,
∴
=
=
=1﹣4 =﹣3. 故答案为:﹣3. 15.在直三棱柱 ABC﹣A1B1C1 内有一个与其各面都相切的球 O1,同时在三棱柱 ABC﹣ A1B1C1 外有一个外接球 Q2.若 AB⊥BC,AB=3,BC=4,则球 Q2 的表面积为 29π 【分析】三棱柱的内切圆的半径等于底面三角形的内切圆的半径,由题意求出三角形的 内切圆的半径,可知三棱柱的高为内切圆的直径,求出三棱柱的高,然后将三棱柱放在 长方体内,求出长方体的对角线,再根据长方体的对角线等于外接球的直径,进而求出 外接球的表面积. 解:由题意知内切球的半径为 R 与底面三角形的内切圆的半径相等可得,而三角形 ABC 为直角三角形,AB⊥BC,AB=3,BC=4,所以 AC=5,
云南省曲靖市2019-2020学年高考第二次质量检测数学试题含解析

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.直线l过抛物线 的焦点且与抛物线交于A,B两点,则 的最小值是
A.10B.9C.8D.7
【答案】B
【解析】
【分析】
根据抛物线中过焦点的两段线段关系,可得 ;再由基本不等式可求得 的最小值.
故选C.
【点睛】
本题主要考查充分条件和必要条件的判断,根据不等式的解法是解决本题的关键.
4.已知函数 若关于 的方程 有六个不相等的实数根,则实数 的取值范围为()
A. B. C. D.
【答案】B
【解析】
【分析】
令 ,则 ,由图象分析可知 在 上有两个不同的根,再利用一元二次方程根的分布即可解决.
【详解】
【详解】
由复数的除法运算化简可得
,
因为是纯虚数,所以 ,
∴ ,
故选:A.
【点睛】
本题考查了复数的概念和除法运算,属于基础题.
7.设变量 满足约束条件 ,则目标函数 的最大值是()
A.7B.5C.3D.2
【答案】B
【解析】
【分析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.
A. B.
C. D.
【答案】C
【解析】
【分析】
将函数 解析式化简,并求得 ,根据当 时 可得 的值域;由函数 在 上单调递减可得 的值域,结合存在性成立问题满足的集合关系,即可求得 的取值范围.
【详解】
依题意
,
则 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考(理科)数学二模试卷一、选择题1.已知集合A={x|y=lg(2﹣x)},集合B={x|≤2x≤4},则A∩B=()A.{x|x≥﹣2}B.{x|﹣2<x<2}C.{x|﹣2≤x<2}D.{x|x<2}2.若复数(α∈R)是纯虚数,则复数2a+2i在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.定义运算:,则函数f(x)=1⊗2x的图象是()A.B.C.D.4.抛物线方程为y2=4x,一直线与抛物线交于A、B两点,其弦AB的中点坐标为(1,1),则直线的方程为()A.2x﹣y﹣1=0B.2x+y﹣1=0C.2x﹣y+1=0D.﹣2x﹣y﹣1=0 5.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?()A.,,B.,,C.,,D.,,6.若p是¬q的充分不必要条件,则¬p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.阅读程序框图,为使输出的数据为31,则①处应填的数字为()A.4B.5C.6D.78.已知x,y满足,则的取值范围为()A.[,4]B.(1,2]C.(﹣∞,0]∪[2,+∞)D.(﹣∞,1)∪[2,+∞)9.已知点A(﹣3,0),B(0,3),若点P在曲线上运动,则△PAB面积的最小值为()A.6B.C.3D.10.已知双曲线Γ:﹣=1(a>0,b>0)的右焦点为F,过原点的直线l与双曲线Γ的左、右两支分别交于A,B两点,延长BF交右支于C点,若AF⊥FB,|CF|=3|FB|,则双曲线Γ的离心率是()A.B.C.D.11.已知的值域为[m,+∞),当正数a,b满足时,则7a+4b的最小值为()A.B.5C.D.912.已知函数(x∈R),若关于x的方程f(x)﹣m+1=0恰好有3个不相等的实数根,则实数m的取值范围为()A.B.C.D.二、填空题(共4小题)13.(x2+)5的展开式中x4的系数为14.如图,在平行四边形ABCD中,AB=2,AD=1.则的值为.15.在直三棱柱ABC﹣A1B1C1内有一个与其各面都相切的球O1,同时在三棱柱ABC﹣A1B1C1外有一个外接球Q2.若AB⊥BC,AB=3,BC=4,则球Q2的表面积为16.在数列{a n}中,a1=1,a n+1=2n﹣a n,则数列{a n}的通项公式a n=.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.已知函数.(1)当x∈[0,π]时,求函数的值域;(2)△ABC的角A,B,C的对边分别为a,b,c且,求AB边上的高h的最大值.18.如图,三棱锥P﹣ABC中,PA=PB=PC=,CA=CB=,AC⊥BC.(1)证明:面PAB⊥面ABC;(2)求二面角C﹣PA﹣B的余弦值.19.2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品A的研发费用x(百万元)和销量y(万盒)的统计数据如下:研发费用x(百万元)2361013151821销量y(万盒)112 2.5 3.5 3.5 4.56(Ⅰ)求y与x的相关系数r(精确到0.01),并判断y与x的关系是否可用线性回归方程模型拟合?(规定:|r|≥0.75时,可用线性回归方程模型拟合);(Ⅱ)该药企准备生产药品A的三类不同的剂型A1,A2,A3,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型A1,A2,A3合格的概率分别为,,,第二次检测时,三类剂型A1,A2,A3合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后A1,A2,A3三类剂型合格的种类数为X,求X的数学期望.附:(1)相关系数(2),,,.20.设椭圆,({a>b>0})的左右焦点分别为F1,F2,离心率,右准线为l,M,N是l上的两个动点,(Ⅰ)若,求a,b的值;(Ⅱ)证明:当|MN|取最小值时,与共线.21.设函数f(x)=(1+e﹣2)e x+kx﹣1,(其中x∈(0,+∞)),且函数f(x)在x=2处的切线与直线(e2+2)x﹣y=0平行.(1)求k的值;(2)若函数g(x)=﹣xlnx,求证:f(x)>g(x)恒成立.请考生在第22、23两题中任选一题作答,并用2B铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程:(t为参数)和圆C的极坐标方程:ρ=2sinθ.(1)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;(2)已知点M(1,3),直线l与圆C相交于A、B两点,求|MA|+|MB|的值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣b|,(其中a>0,b>0).(1)求函数f(x)的最小值M.(2)若2c>M,求证:.参考答案一、选择题(共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项符合要求.)1.已知集合A={x|y=lg(2﹣x)},集合B={x|≤2x≤4},则A∩B=()A.{x|x≥﹣2}B.{x|﹣2<x<2}C.{x|﹣2≤x<2}D.{x|x<2}【分析】求出集合的等价条件,利用交集的定义进行求解即可.解:∵A={x|x<2},B={x|﹣2≤x≤2},∴A∩B={x|﹣2≤x<2},故选:C.2.若复数(α∈R)是纯虚数,则复数2a+2i在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】化简复数,根据纯虚数的定义求出a的值,写出复数2a+2i对应复平面内点的坐标,即可得出结论.解:复数==(a+1)+(﹣a+1)i,该复数是纯虚数,∴a+1=0,解得a=﹣1;所以复数2a+2i=﹣2+2i,它在复平面内对应的点是(﹣2,2),它在第二象限.故选:B.3.定义运算:,则函数f(x)=1⊗2x的图象是()A.B.C.D.【分析】本题需要明了新定义运算a⊗b的意义,即取两数中的最小值运算.之后对函数f(x)=1⊗2x就可以利用这种运算得到解析式再来求画图解.解:由已知新运算a⊗b的意义就是取得a,b中的最小值,因此函数f(x)=1⊗2x=,因此选项A中的图象符合要求.故选:A.4.抛物线方程为y2=4x,一直线与抛物线交于A、B两点,其弦AB的中点坐标为(1,1),则直线的方程为()A.2x﹣y﹣1=0B.2x+y﹣1=0C.2x﹣y+1=0D.﹣2x﹣y﹣1=0【分析】设A(x1,y1),B(x2,y2),利用点差法得到,所以直线AB 的斜率为2,又过点(1,1),再利用点斜式即可得到直线AB的方程.解:设A(x1,y1),B(x2,y2),∴y1+y2=2,又,两式相减得:,∴(y1+y2)(y1﹣y2)=4(x1﹣x2),∴,∴直线AB的斜率为2,又∴过点(1,1),∴直线AB的方程为:y﹣1=2(x﹣1),即2x﹣y﹣1=0,故选:A.5.在明代程大位所著的《算法统宗》中有这样一首歌谣,“放牧人粗心大意,三畜偷偷吃苗青,苗主扣住牛马羊,要求赔偿五斗粮,三畜户主愿赔偿,牛马羊吃得异样.马吃了牛的一半,羊吃了马的一半.”请问各畜赔多少?它的大意是放牧人放牧时粗心大意,牛、马、羊偷吃青苗,青苗主人扣住牛、马、羊向其主人要求赔偿五斗粮食(1斗=10升),三畜的主人同意赔偿,但牛、马、羊吃的青苗量各不相同.马吃的青苗是牛的一半,羊吃的青苗是马的一半.问羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食?()A.,,B.,,C.,,D.,,【分析】设羊、马、牛吃的青苗分别为a1,a2,a3,则{a n}是公比为2的等比数列,由此利用等比数列的性质能求出羊、马、牛的主人应该分别向青苗主人赔偿多少升粮食.解:设羊、马、牛吃的青苗分别为a1,a2,a3,则{a n}是公比为2的等比数列,∴a1+a2+a3=a1+2a1+4a1=7a1=50,解得,∴羊、马、牛的主人应该分别向青苗主人赔偿升,升,升粮食.故选:D.6.若p是¬q的充分不必要条件,则¬p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】通过逆否命题的同真同假,结合充要条件的判断方法判定即可.解:由p是¬q的充分不必要条件知“若p则¬q”为真,“若¬q则p”为假,根据互为逆否命题的等价性知,“若q则¬p”为真,“若¬p则q”为假,故选:B.7.阅读程序框图,为使输出的数据为31,则①处应填的数字为()A.4B.5C.6D.7【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.解:程序在运行过程中各变量的值如下表示:S i是否继续循环循环前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当i<5时退出,故选:B.8.已知x,y满足,则的取值范围为()A.[,4]B.(1,2]C.(﹣∞,0]∪[2,+∞)D.(﹣∞,1)∪[2,+∞)【分析】设k=,则k的几何意义为点(x,y)到点(2,3)的斜率,利用数形结合即可得到结论.解:设k=,则k的几何意义为点P(x,y)到点D(2,3)的斜率,作出不等式组对应的平面区域如图:由图可知当过点D的直线平行与OA时是个临界值,此时k=K OA=1不成立,需比1小;当过点A时,k=取正值中的最小值,⇒A(1,1),此时k===2;故的取值范围为(﹣∞,1)∪[2,+∞);故选:D.9.已知点A(﹣3,0),B(0,3),若点P在曲线上运动,则△PAB面积的最小值为()A.6B.C.3D.【分析】曲线表示单位圆x2+y2=1的下半部分,,直线AB的方程为x﹣y+3=0,设出点P的坐标,求出点P到直线AB的最小距离,即可三角形PAB 面积的最小值.解:依题意,,直线AB的方程为x﹣y+3=0,曲线表示单位圆x2+y2=1的下半部分,要使△PAB面积的最小,则需点P到直线AB的距离最小,不妨设P(cosθ,sinθ)(π≤θ≤2π),∴点P到直线AB的距离为,∵π≤θ≤2π,∴,∴,∴.故选:C.10.已知双曲线Γ:﹣=1(a>0,b>0)的右焦点为F,过原点的直线l与双曲线Γ的左、右两支分别交于A,B两点,延长BF交右支于C点,若AF⊥FB,|CF|=3|FB|,则双曲线Γ的离心率是()A.B.C.D.【分析】记双曲线的左、右焦点分别为F'、F,设双曲线的实半轴长为a,半焦距为c.连接AF'、BF'、CF'.由双曲线的对称性和定义,运用勾股定理,离心率公式可得所求.解:记双曲线的左、右焦点分别为F'、F,设双曲线的实半轴长为a,半焦距为c.连接AF'、BF'、CF'.∵AF⊥FB,结合双曲线的对称性可知四边形AFBF'是矩形,∴.设|FB|=x,则|CF|=3x,|BF'|=2a+x,|CF'|=2a+3x.在Rt△CBF'中,|BF'|2+|BC|2=|CF'|2,即(2a+x)2+16x2=(2a+3x)2可得x=a,从而|BF'|=2a+x=3a,|FB|=a,在Rt△BFF'中,|BF'|2+|FB|2=|FF'|2,即(3a)2+a2=(2c)2,∴10a2=4c2,即有e==.故选:D.11.已知的值域为[m,+∞),当正数a,b满足时,则7a+4b的最小值为()A.B.5C.D.9【分析】利用的值域为[m,+∞),求出m,再变形,利用1的代换,即可求出7a+4b的最小值.解:∵=的值域为[m,+∞),∴m=4,∴+=4,∴7a+4b=[(6a+2b)+(a+2b)](+)=[5++]≥=,当且仅当=时取等号,∴7a+4b的最小值为.故选:A.12.已知函数(x∈R),若关于x的方程f(x)﹣m+1=0恰好有3个不相等的实数根,则实数m的取值范围为()A.B.C.D.【分析】讨论x的范围,求函数的导数,研究函数的单调性和极值,利用数形结合进行求解即可.解:当x≤0时,为减函数,f(x)min=f(0)=0;当x>0时,,,则时,f'(x)<0,时,f'(x)>0,即f(x)在上递增,在上递减,.其大致图象如图所示,若关于x的方程f(x)﹣m+1=0恰好有3个不相等的实数根,则,即,故选:A.二、填空题(共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.)13.(x2+)5的展开式中x4的系数为40【分析】运用二项展开式的通项可得结果.解:根据题意得,T r+1=(x2)5﹣r()r=2r x10﹣3r令10﹣3r=4,得r=2∴(x2+)5的展开式中x4的系数为22=40;故答案为40.14.如图,在平行四边形ABCD中,AB=2,AD=1.则的值为﹣3.【分析】根据ABCD是平行四边形可得出,然后代入AB=2,AD=1即可求出的值.解:∵AB=2,AD=1,∴===1﹣4=﹣3.故答案为:﹣3.15.在直三棱柱ABC﹣A1B1C1内有一个与其各面都相切的球O1,同时在三棱柱ABC﹣A1B1C1外有一个外接球Q2.若AB⊥BC,AB=3,BC=4,则球Q2的表面积为29π【分析】三棱柱的内切圆的半径等于底面三角形的内切圆的半径,由题意求出三角形的内切圆的半径,可知三棱柱的高为内切圆的直径,求出三棱柱的高,然后将三棱柱放在长方体内,求出长方体的对角线,再根据长方体的对角线等于外接球的直径,进而求出外接球的表面积.解:由题意知内切球的半径为R与底面三角形的内切圆的半径相等可得,而三角形ABC 为直角三角形,AB⊥BC,AB=3,BC=4,所以AC=5,设三角形内切圆的半径为r,由面积相等可得:r(3+4+4)=3•4,所以r=,所以R==1,由题意可知三棱柱的高h为2R=2,将该三棱柱放在长方体中,设三棱柱的外接球的半径为R'则(2R)2=32+42+22=29,所以外接球的表面积S=4πR'2=29π,故答案为:29π.16.在数列{a n}中,a1=1,a n+1=2n﹣a n,则数列{a n}的通项公式a n=.【分析】由题意可得a n+1﹣a n﹣1=2 (n≥2),又a1=1,数列{a n}的奇数项为首项为1,公差为2的等差数列,对n分奇数和偶数两种情况,分别求出a n,从而得到数列{a n}的通项公式.解:∵a n+1=2n﹣a n,∴a n+1+a n=2n①,a n+a n﹣1=2(n﹣1)(n≥2)②,①﹣②得:a n+1﹣a n﹣1=2 (n≥2),又∵a1=1,∴数列{a n}的奇数项为首项为1,公差为2的等差数列,∴当n为奇数时,a n=n,当n为偶数时,则n﹣1为奇数,∴a n=2(n﹣1)﹣a n﹣1=2(n﹣1)﹣(n﹣1)=n﹣1,∴数列{a n}的通项公式,故答案为:.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)17.已知函数.(1)当x∈[0,π]时,求函数的值域;(2)△ABC的角A,B,C的对边分别为a,b,c且,求AB边上的高h的最大值.【分析】(1)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的定义域和值域,得出结论.(2)由题意利用余弦定理、三角形的面积公式、基本不等式求得ab的最大值,可得AB 边上的高h的最大值.解:(1)∵函数f(x)=sin x+﹣=sin x+﹣=sin(x+),当x∈[0,π]时,x+∈[,],sin(x+)∈[﹣,1].(2)△ABC中,=sin(C+),∴C=.由余弦定理可得c2=3=a2+b2﹣2ab•cos C=a2+b2﹣ab≥ab,当且仅当a=b时,取等号,即ab的最大值为3.再根据S△ABC=••h=ab•sin,故当ab取得最大值3时,h取得最大值为.18.如图,三棱锥P﹣ABC中,PA=PB=PC=,CA=CB=,AC⊥BC.(1)证明:面PAB⊥面ABC;(2)求二面角C﹣PA﹣B的余弦值.【分析】(1)由已知可得三角形ABC为直角三角形,取AB中点O,再由PA=PB=PC,可得PO⊥底面ABC,从而得到面PAB⊥面ABC;(2)在平面PAB内,过O作OE⊥PA,垂足为E,连接EC,由平面与平面垂直的性质证明OC⊥PA,进一步得到PA⊥EC,可得∠OEC为二面角C﹣PA﹣B的平面角,然后求解三角形得答案.【解答】(1)证明:由AC⊥BC,得△ABC是以AB为斜边的直角三角形,取AB的中点O,则O为△ABC的外心,连接PO,∵PA=PB=PC,可得△POA≌△POB≌△POC,可得∠POA=∠POB=∠POC=90°,则PO⊥AB,PO⊥OC,又AB∩OC=O,∴PO⊥底面ABC,而PO⊂平面PAB,则面PAB⊥面ABC;(2)解:在平面PAB内,过O作OE⊥PA,垂足为E,连接EC,∵面PAB⊥面ABC,面PAB∩面ABC=AB,OC⊥AB,∴OC⊥平面PAB,得OC⊥PA,∵OE∩OC=O,∴PA⊥平面OEC,则PA⊥EC.即∠OEC为二面角C﹣PA﹣B的平面角.在Rt△ACB中,由CA=CB=,得OC=1,在Rt△POA中,由PA=,OA=1,PO=,求得OE=,在等腰三角形PAC中,由PA=PC=,AC=,求得EC=.由余弦定理可得:cos∠OEC==.∴二面角C﹣PA﹣B的余弦值为.19.2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品A的研发费用x(百万元)和销量y(万盒)的统计数据如下:研发费用x(百万元)2361013151821销量y(万盒)112 2.5 3.5 3.5 4.56(Ⅰ)求y与x的相关系数r(精确到0.01),并判断y与x的关系是否可用线性回归方程模型拟合?(规定:|r|≥0.75时,可用线性回归方程模型拟合);(Ⅱ)该药企准备生产药品A的三类不同的剂型A1,A2,A3,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型A1,A2,A3合格的概率分别为,,,第二次检测时,三类剂型A1,A2,A3合格的概率分别为,,.两次检测过程相互独立,设经过两次检测后A1,A2,A3三类剂型合格的种类数为X,求X的数学期望.附:(1)相关系数(2),,,.【分析】(I)由题意分别求出=11,=3,由公式>0.75,从而y与x的关系可用线性回归模型拟合.(II)求出药品A的每类剂型经过两次检测后合格的概率,推导出,由此能求出X的数学期望.解:(I)由题意可知=(2+3+6+10+21+13+15+18)=11,=(1+1+2+2.5+6+3.5+3.5+4.5)=3,由公式,∵|r|≈0.98>0.75,∴y与x的关系可用线性回归模型拟合.(II)药品A的每类剂型经过两次检测后合格的概率分别为:,,,由题意,,∴.20.设椭圆,({a>b>0})的左右焦点分别为F1,F2,离心率,右准线为l,M,N是l上的两个动点,(Ⅰ)若,求a,b的值;(Ⅱ)证明:当|MN|取最小值时,与共线.【分析】(Ⅰ)设,根据题意由得,由,得,,由此可以求出a,b的值.(Ⅱ)|MN|2=(y1﹣y2)2=y12+y22﹣2y1y2≥﹣2y1y2﹣2y1y2=﹣4y1y2=6a2.当且仅当或时,|MN|取最小值,由能够推导出与共线.解:由a2﹣b2=c2与,得a2=2b2,,l的方程为设则由得①(Ⅰ)由,得②③由①、②、③三式,消去y1,y2,并求得a2=4故(Ⅱ)证明:|MN|2=(y1﹣y2)2=y12+y22﹣2y1y2≥﹣2y1y2﹣2y1y2=﹣4y1y2=6a2当且仅当或时,|MN|取最小值此时,故与共线.21.设函数f(x)=(1+e﹣2)e x+kx﹣1,(其中x∈(0,+∞)),且函数f(x)在x=2处的切线与直线(e2+2)x﹣y=0平行.(1)求k的值;(2)若函数g(x)=﹣xlnx,求证:f(x)>g(x)恒成立.【分析】(1)先求导,再根据导数的几何意义即可求出切线方程;(2)设F(x)=f(x)﹣g(x)=(1+e﹣2)e x+x+xlnx﹣1,原问题转化为证明函数F (x)>0恒成立,再根据导数和函数的最值的关系,即可证明.解:(1)∵f(x)=(1+e﹣2)e x+kx﹣1,x∈(0,+∞),∴f′(x)=(1+e﹣2)e x+k,x∈(0,+∞),∵函数f(x)在x=2处的切线与直线(e2+2)x﹣y=0平行,∴f′(2)=e2+1+k=e2+2,解得k=1.(2)由(1)得f(x)=(1+e﹣2)e x+x﹣1,设F(x)=f(x)﹣g(x)=(1+e﹣2)e x+x+xlnx﹣1,原问题转化为证明函数F(x)>0恒成立,∴F′(x)=(1+e﹣2)e x+lnx+2,x>0,令h(x)=F′(x)=(1+e﹣2)e x+lnx+2,则h'(x)=(1+e﹣2)e x+>0在(0,+∞)上恒成立,∴h(x)在(0,+∞)上单调递增.∵h(e﹣4)=(1+e﹣4)>0;当x→0时,h(x)→﹣∞,∴∃x0∈(0,e﹣4),使得h(x0)=0即,∴当x∈(0,x0)时,h(x)<0,即F′(x)<0,函数F(x)单调递减;当x∈(x0,+∞)时,h(x)>0,即F′(x)>0,函数F(x)单调递增;∴F(x)min=F(x0)==x0+x0lnx0﹣lnx0﹣3,令t(x0)=x0+x0lnx0﹣lnx0﹣3,x0∈(0,e﹣4),则,∵y=lnx和y=在(0,e﹣4)上均为增函数,∴t'(x0)在(0,e﹣4)上单调递增,又t'(e﹣4)=﹣e4<0,∴t'(x0)<t'(e﹣4)<0,即t(x0)在(0,e﹣4)上单调递减,∴t(x0)>t(e﹣4)=e﹣4+e﹣4lne﹣4﹣lne﹣4﹣3=1﹣>0,故f(x)>g(x)恒成立.请考生在第22、23两题中任选一题作答,并用2B铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.已知直线l的参数方程:(t为参数)和圆C的极坐标方程:ρ=2sinθ.(1)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;(2)已知点M(1,3),直线l与圆C相交于A、B两点,求|MA|+|MB|的值.【分析】(1)把直线参数方程中的参数t消去,可得直线的普通方程;把ρ=2sinθ两边同乘以ρ,得ρ2=2ρsinθ,代入ρ2=x2+y2,y=ρsinθ,可得圆C的直角坐标方程;(2)化直线方程为参数方程的标准形式,代入圆的方程,化为关于t的一元二次方程,再由此时t的几何意义即根与系数的关系求解|MA|+|MB|的值.解:(1)把直线l的参数方程(t为参数)消去参数t,得直线l的普通方程为y=2x+1;将ρ=2sinθ两边同乘以ρ,得ρ2=2ρsinθ,将ρ2=x2+y2,y=ρsinθ代入,得x2+(y﹣1)2=1,∴圆C的直角坐标方程为x2+(y﹣1)2=1;(2)经检验点M(1,3)在直线l上,化直线方程为,代入圆C的直角坐标方程x2+(y﹣1)2=1,得,即.设t1,t2是方程的两根,则.∵t1t2=4>0,∴t1与t2同号,由t的几何意义得|MA|+|MB|=.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣b|,(其中a>0,b>0).(1)求函数f(x)的最小值M.(2)若2c>M,求证:.【分析】(1)利用绝对值不等式的性质即可求得最小值M;(2)利用分析法,只需证明,两边平方后结合2c>a+b,a>0即可得证.解:(1)f(x)=|x+a|+|x﹣b|≥|(x+a)﹣(x﹣b)|=|a+b|=a+b,当且仅当(x+a)(x ﹣b)≤0时取等号,∴f(x)的最小值M=a+b;(2)证明:依题意,2c>a+b>0,要证,即证,即证a2﹣2ac+c2<c2﹣ab,即证a2﹣2ac+ab<0,即证a(a﹣2c+b)<0,又2c>a+b,a>0可知,a(a﹣2c+b)<0成立,故原不等式成立.。