第一讲线性规划及其对偶问题运筹学讲解

合集下载

运筹学讲义_1线性规划

运筹学讲义_1线性规划

第一章 线性规划【教学内容】线性规划模型,图解法,可行区域的几何结构,基本可行解及线性规划的基本定理,单 纯形方法,单纯形表,两阶段法,关于单纯形方法的几点说明,对偶线性规划,对偶理论, 对偶单纯形法,求解线性规划问题的几个常用软件。

【教学要求】要求学生理解线性规划的标准形式,能熟练的将一般的线性规划问题化为标准形式;掌 握图解法,能用单纯形法求解线性规划问题;掌握灵敏度分析方法,能够建立线性规划模型 及用常用软件求解线性规划问题。

【教学重点】线性规划模型,图解法,单纯形方法,单纯形表,两阶段法,对偶线性规划,对偶单纯 形法,灵敏度分析。

【教学难点】基本可行解及线性规划的基本定理,单纯形方法,对偶线性规划,对偶理论,对偶单纯 形法。

第一节 线性规划模型线性规划(Linear Programming , 简记为 LP )问题研究的是在一组线性约束条件下一个线 性函数最优问题。

§1.1 线性规划问题举例例 1.1.1 某工厂用 3 种原料 3 2 1 , , P P P 生产 3 种产品 3 2 1 , , Q Q Q 。

已知单位产品所需原 料数量如表 1.1.1 所示,试制订出利润最大的生产计划。

453 单位产品的利润(千元)20005 2 800 4 2 0 P 2 1500 0 3 2 P 1 原料可用量Q 3Q 2 Q 1 单位产品所需产品原料数量(kg)原料3P 3表 1.1.1分析 设产品 j Q 的产量为 j x 个单位, 3 , 2 , 1 = j ,它们受到一些条件的限制。

首先, 它们不能取负值,即必须有 3 , 2 , 1 , 0 = ³ j x j ;其次,根据题设,三种原料的消耗量分别不 能超过它们的可用量,即它们又必须满足:1223 123 231500 24800 3252000 x x x x x x x +£ ì ï+£ í ï ++£ î我们希望在以上约束条件下,求出 3 2 1 , , x x x ,使总利润 3 2 1 4 5 3 x x x z + + = 达到最大, 故求解该问题的数学模型为:123 12 23 123 max 354 231500 24800 .. 3252000 0,1,2,3j z x x x x x x x s t x x x x j =++ +£ ì ï +£ ï í++£ ï ï ³= î 类似这样的问题非常多。

线性规划原问题与对偶问题的转化及其应用

线性规划原问题与对偶问题的转化及其应用

线性规划原问题与对偶问题的转化及其应用摘要线性规划对偶问题是运筹学中应用较广泛的一个重要分支,它是辅助人们进行科学管理的一种数学方法.线性规划对偶问题能从不同角度为管理者提供更多的科学理论依据,使管理者的决定更加合理准确.本文主要探讨了线性规划原问题与对偶问题之间的关系、线性规划原问题与对偶问题的转化以及对偶理论的应用.本文的研究主要是将复杂的线性规划原问题转化成对偶问题进行解决,简化了线性规划问题,使人们能够快速的找出线性规划问题的最优解.关键词:线性规划;原问题;对偶问题;转化LinearProgrammingistheOriginalProblemandtheTransformationoftheDualProblemandApplicationsAbstract:Linearprogramminginoperationalresearchisresearchearlier,rapiddevelopmentandw ideapplication,themethodisanimportantbranchofmature,itisoneofthescientificmanagementofa uxiliarypeoplemathematicalmethod.Canfromdifferentanglestolinearprogrammingdualproble mforpolicymakerstoprovidemorescientifictheorybasis.Thisarticlemainlyprobesintothelinearp rogrammingproblemandtherelationshipbetweenthedualproblem,linearprogrammingproblem andthetransformationofthedualproblem,theapplicationoflinearprogrammingdualproblem.Thi sarticleisthecomplexoftheoriginalproblemintoitsdualproblemtobesolved,simplifiesthelinearp rogrammingproblem,enablesustorapidlyfindtheoptimalsolutionoflinearprogrammingproble m.Keywords:linearprogramming;theoriginalproblem;thedualproblem;conversion目录4.4非对称型原问题转化为对偶问题 (10)1引言线性规划问题是运筹学里的一个重要的分支,它的应用比较广泛,因而是辅助人们进行现代科学管理的一种数学方法.随着线性规划理论的逐步深入,人们发现线性规划问题具有对偶性,即每一个线性问题都伴有另外一个线性问题的产生,两者相互配对,密切联系,反之亦然.我们把线性规划的这个特性称为对偶性.于是,我们将其中的一个问题称为原问题,另一个问题则称为它的对偶问题.对偶性不仅仅是数学上的理论问题,而且也是线性规划中实际问题的内在经济联系的必然反映.我们通过对对偶问题的深入研究,发现对偶问题能从不同角度对生产计划进行分析,从而使管理者能够间接地获得更多比较有用的信息.2文献综述2.1国内外研究现状在所查阅到的国内外参考文献[1-15]中,有不少文章是探讨了原问题转化为对偶问题的方法以及对偶性质的证明,并在对偶理论的应用方面有所研究.如郝英奇,胡运权在[1]、[10]中主要介绍了线性规划中原问题与对偶问题中的一些基本概念,探究了实际问题中的数学模型以及解.孙君曼,冯巧玲,孙慧君,李淑君等在[2]中探讨了对偶理论中互补松弛定理在各种情况下的使用方法,使学生更好地掌握互补松弛定理的含义和应用方法.胡运权,郭耀煌,殷志祥等在[3]、[5]中系统的介绍了线性规划中原始问题与对偶问题的两种形式.郭鹏,徐玖平等在[6]、[8]中用不同例子来说明了原问题转化为对偶问题的必要性.崔永新等在[9]、[15]中探讨了对偶问题的相关定理以及对偶问题的可行解和最优解之间的若干性质.李师正,王德胜在[11]中探讨了如何用计算机计算对偶问题的最优解.岳宏志,蔺小林,孙文喻等在[12]、[14]中探讨了对偶理论的证明过程,并用常见的例子来说明对偶理论的基本思想和解题方法.曾波,叶宗文在[13]中主要从经济管理的实际问题中阐述了线性规划的基本概念,基本原理,对偶理论,灵敏度分析等.2.2国内外研究现状评价文献[1-15]分别探讨了线性规划问题中原问题转化为对偶问题的理论依据以及如何利用对偶理论去解决实际生产问题.文献中主要探讨了对称型的原问题转化为对偶问题的方法.没有全面介绍非对称型的原问题与对偶问题之间转化的具体步骤,而且文献中对原问题转化为对偶问题的步骤提及甚少,大都一带而过,对应用中存在的问题也未给出详细深入的说明.2.3提出问题在线性规划问题中,根据实际生产中具体情况的需要,我们常常要把原问题与它的对偶问题进行转换,以解决一些复杂的线性规划问题,因而对偶问题的应用较为广泛.但大部分书籍都只介绍了线性规划问题的基础知识,并没有给出原问题与对偶问题转换的具体步骤.因此本文主要探讨了线性规划原问题与对偶问题之间转化的具体步骤,体会不同类型原问题的转化过程.3预备知识首先我先简单的介绍一些关于线性规划问题中的原问题和对偶问题的一些基本的知识.3.1对称形式的原问题我们将满足下列条件的线性规划问题称之为具有对称形式的线性规划问题.这类问题的变量都具有非负约束,当目标函数求极大值时,它的约束条件都取“≤”号,当目标函数求极小值时它的约束条件均取“≥”号.因而,这类数学模型的特点是:(1)所有的决策变量都是非负的;(2)所有的约束条件都是“≤”型;(3)目标函数是最大化类型.一般形式为:线性规划原问题的对称形式的]1[⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤+++≤+++≤+++),,2,1(0.22112222212111212111n j x b x a x a x a b x a x a x a b x a x a x a t s j m n mn m m n n n n ΛΛMΛΛ(3.1) 3.2非对称形式的原问题不是所有的线性规划问题都具有对称的形式,我们将没有对称形式的线性规划问题称之为非对称形式的线性规划问题.非对称形式的线性规划问题指的是一般情况下的线性规划问题,即是目标函数值求极小或者求极大;约束条件;,或是无限制的随意的组合.例如: ⎪⎪⎩⎪⎪⎨⎧≤≥≤++=++≤++无约束321333323213123232221211313212111,0,0.x x x b x a x a x a b x a x a x a b x a x a x a t s (3.2) 3.3对偶问题的定义在运筹学中,关于对线性规划的对偶规划给出的]2[定义如下.设给定的线性规划为:⎩⎨⎧≥≤0.X b AX t s (3.2) 其中()T n x x x X ,,,21Λ=,()nm ij a A ⨯=,()T m b b b b ,,,21Λ=,()n c c c C ,,,21Λ= 因此,定义它的对偶问题为:⎩⎨⎧≥≥0.Y C YA t s (3.4) 其中()m y y y Y ,,,21Λ=是行向量.(3.4)是对偶问题,(3.3)是原问题,(3.3)与(3.4)合在一起我们就称为是一对对称形式的对偶规划问题.3.4原问题转化为对偶问题的理论依据表所示:我们根据线性规划问题中约束条件和变量的对应关系,统一归纳为下]3[1表14原问题与对偶问题的转化一对对偶的线性规划问题表示了同一个问题的两个侧面,是从两个角度对同一个研究对象提出的极值问题,两类极值的问题都具有相同的目标函数值.我们发现在很多时候求解对偶问题比原问题更加容易,为决策者提供更多的科学理论依据,因此我们常常需要把原问题转化为对偶问题.4.1原问题与对偶问题的关系一对对偶的线性规划问题具有相互对应的关系:(1)原问题中的目标函数值是max,约束条件是“≤”的形式;对偶问题的约束条件是“≥的形式.min目标函数值为,”(2)原问题的价值系数和对偶问题的右端项对应,原始问题的右端项和对偶问题的价值系数对应.(3)原问题的变量和对偶问题的约束条件对应,即,原问题中有个n变量,那么对偶问题就有个m变量.m约束条件,那么对偶问题就有个n约束条件;原问题有个(4)对偶问题的系数矩阵就是原问题的系数矩阵的转置.用矩阵表示,原问题为:则对偶问题为:需要注意的是,我们所讨论的对偶问题一定是指一对问题,而原问题和对偶问题是相对的,它们互为对偶问题,一个问题可以是原问题也可以是对偶问题.4.2对称型原问题转化为对偶问题当线性规划问题为一般形式(3.1)时,我们将根据下面的四条规则转换为它的对偶问题:(1)原问题和它的对偶问题之间的系数矩阵互为转置.(2)原问题中变量的个数等于它的对偶问题的约束条件的个数.(3)原问题的右端常数就是对偶问题的目标函数的系数.(4)原问题的目标函数求极大时,约束条件是“≤”类型,而它的对偶问题的目标函数求极小,约束条件则为“≥”类型.形式:因此,它的对偶问题可以转变为如下的]4[例1生产计划问题云南一公司加工生产甲,乙两种产品,它的市场前景非常的好,销路也不成问题,各种制约因素主要有技术工人、设备台时和原材料供应.已知制造每吨产品的资源消耗系数、每天的资源限量和售价等参数如表2所示.问题:云南的这家公司应该怎样制定每天的生产计划,才能使它的产量得到最大?表2分析:为了建立此问题的数学模型,第一,要选定决策变量.第二,要确定问题的目标,即用来评价不同方案优劣的标准,这种目标总是决策变量的函数,称为目标函数.第三,我们把要确定达到目标时所受的限制条件,称之为约束条件.这里要决策的问题是,在现有人力、设备、矿石的限制下,如何确定产量使得产值自大?设1x 和2x 分别表示该公司A ,B 产品的数量,用z 表示产值,则每天的产值表示为2115090x x z +=,使其最大化,即2115090m ax x x z +=,称为目标函数.将制约因素表达出来,即有:人力不超过320工时,为3206821≤+x x ;设备不超过260台时有,2608621≤+x x ;原材料不超过300公斤有,30010421≤+x x 。

线性规划及其对偶问题

线性规划及其对偶问题
1 0
10
3X1+2X2 60
X1+2X2 30
2X2 24
B C
可行域
0
10
2D0
30
X2 0
(2)、求最优解
X2
Z=40X1+50X2
30
0=40X1+50X2
(0,0), (10,-8) 20
C点: X1+2X2 =30
3X1+2X2 =60
A
10
可行解
Z=0
0
等值线
最优解:
令 XN 0

X


B 1b 0

定义 在约束方程组(2) 中,对于 一个选定的基B,令所有的非基变 量为零得到的解,称为相应于基B 的基本解。
定义 在基本解中,若该基本解满足非负约束,
即简称X 基B 可B行1解b ; 0对,应则的称基此B基称本为解可为行基基本。可行解,
基本解中最多有m个非零分量。
Min Z 0.1x1 0.3x2 0.9x3 0x4 1.1x5 0.2x6 0.8x7 1.4x8
2x1 x2 x3 x4 0x5 0x6 0x7 0x8 100
s.t.
0xx1102xx22xx3330xx4403xx5522xx6630xx7740xx88110000

bm

b1,b2,,bm 0
右端常数
(3) 线性规划模型矩阵形式
Max Z CX
s.t
AX b X 0
C c1 c2 cn
价值向量
x1
X

x2

xn

第1章线性规划及对偶问题

第1章线性规划及对偶问题

s.t.
n j1
pj xj
j1
(或,)b
xj
0( j 1,2,L
, n)
(4)矩阵形式:
a1 j
pj
a2 j M
,
(
j
1,
2,L
,n)
a mj
b1
b
b
2
M
bm
M ax(M in)ZC X
x1
a11 a12 L a1n
AX (或,)b
s.t.
X 0
X
x
2
M
解:
MaxZ
(70,
65)
x1 x2
7 3
210
4
2
5
4
x1 x2
200
180
设: X (x1,x2)T
C(c1,c2)(70,65)
a11 a12 7 3
A a21
a22
4
5
a31 a32 2 4
b1 2 1 0
b
b
2
2
0
0
b3 1 8 0
M axZCX
x1
2 1
1 1
1 0
0
1
x2Biblioteka x310 8
x4
AX b
N
2 1 1 0 A 1 1 0 1
B
设:N12
1 1 1,B0
0 1
XN
x1 x2
,
XB
x3 x4
10 b8,CN(3,2),CB(0,0)
则 :A Xb (N ,B ) X X B N N X NB X Bb
MaxZCX
am1

运筹学 对偶原理

运筹学 对偶原理

解:原问题的对偶问题为
mi nW 5 y1 4 y2 6 y3
4 y1 3 y2 2 y3 2
y1 3 y1
2 y2
3 y3 4 y3
3 5
2 y1 7 y2 y3 1
y1
0,
y2
0,
y

3


(3)复杂模型的对偶:可分步骤求对偶;或 依据表2.2求对偶
max Z 2x1 3x2 5x3 x4
( y3 , y4 , y5 )(x1 , x2 , x3 )T 0
( y1 , y2 )(x4 , x5 )T 0 将Y*带入由方程可知,y3=y5=0,y4=1。
∵y2=-2≠0 ∴x5=0
又∵y4=1≠0 ∴x2=0
将x2,x5分别带入原问题约束方程中,得:
x1 x1
x3 x3
4 6
解方程组得:x1=-5,x3=-1, 所以原问题的最优解为
推论2: 在一对对偶问题(P)和(D)中,若原问题可行但目标函 数无界,则对偶问题无可行解;反之不成立。这也是对偶问题的 无界性。
对偶性质
性质3 最优性定理:如果 X 0是原问题的可行 解,Y 0是其对偶问题的可行解,则
CX 0 Y 0b
充分不要条件是,X 0 与 Y 0是原问题和对偶
的最优解。
数列于下表 :
设备 产品
产品数据表
ABC
产品利润
D
(元/件)

2140 2

2204 3
设备可利用机 时数(时)
12
8
16 12
线性规划的对偶模型
•解:设甲、乙型产品各生产x1及x2件,则数 学模型为: max z 2x1 3x2

运筹学课件第二章对偶问题

运筹学课件第二章对偶问题

第二章线性规划的对偶理论与灵敏度分析一、学习目的与要求 1、掌握对偶理论及其性质 2、掌握对偶单纯形法3、熟悉灵敏度分析的概念和内容4、掌握限制常数与价值系数、约束条件系数的变化对原最优解的影响5、掌握增加新变量和增加新的约束条件对原最优解的影响,并求出相应因素的灵敏度范围6、了解参数线性规划的解法 二、课时 6学时第一节 线性规划的对偶问题一、对偶问题的提出定义:一个线性规划问题常伴随着与之配对的、两者有密切联系的另一个线性规划问题,我们将其中一个称为原问题,另一个就称为对偶问题,在求出一个问题的解时,也同时给出了另一问题的解。

应用:在某些情况下,解对偶问题比解原问题更加容易;对偶变量有重要的经济解释(影子价格);作为灵敏度分析的工具;对偶单纯形法(从一个非可行基出发,得到线性规划问题的最优解);避免使用人工变量(人工变量带来很多麻烦,两阶段法则增加一倍的计算量)。

例:某家具厂木器车间生产木门与木窗;两种产品。

加工木门收入为56元/扇,加工木窗收入为30元/扇。

生产一扇木门需要木工4小时,油漆工2小时;生产一扇木窗需要木工3小时,油漆工1小时;该车间每日可用木工总共时为120小时,油漆工总工时为50小时。

问:(1)该车间应如何安排生产才能使每日收入最大?(2)假若有一个个体经营者,手中有一批木器家具生产订单。

他想利用该木器车间的木工与油漆工来加工完成他的订单。

他就要考虑付给该车间每个工时的价格。

他可以构造一个数学模型来研究如何定价才能既使木器车间觉得有利可图而愿意为他加工这批订单、又使自己所付的工时费用最少。

解(1):设该车间每日安排生产木门x1扇,木窗x2扇,则数学模型为⎪⎩⎪⎨⎧≥≤+≤++=-0502120343056max 21212121x x x x x x x zX*=(15,20)’ Z*=1440元解(2):设y 1为付给木工每个工时的价格,y 2为付给油工每个工时的价格⎪⎩⎪⎨⎧≥≥+≥++=-0303562450120min 21212121y y y y y y y wY*=(2,24)’ W*=1440元将上述问题1与问题2称为一对对偶问题,两者之间存在着紧密的联系与区别:它们都使用了木器生产车间相同的数据,只是数据在模型中所处的位置不同,反映所要表达的含义也不同。

运筹学对偶问题的直观描述

运筹学对偶问题的直观描述

运筹学对偶问题的直观描述
运筹学中的对偶问题是指原始线性规划问题和对应的对偶线性规划问题之间的关系。

直观描述对偶问题可以从几个方面来理解。

首先,可以从成本和效益的角度来理解。

原始线性规划问题通常涉及最小化成本或者最大化利润,而对偶线性规划问题则涉及最大化成本或者最小化利润。

这种对偶关系可以被解释为在资源有限的情况下,通过最小化成本来实现最大化效益,或者通过最大化效益来实现最小化成本。

其次,可以从约束条件的角度来理解。

原始线性规划问题的约束条件对应着对偶线性规划问题的变量,而对偶线性规划问题的约束条件对应着原始线性规划问题的变量。

这种对偶关系可以被理解为在资源分配和利用的过程中,对约束条件和变量之间的转换和对应关系。

另外,可以从几何图形的角度来理解。

原始线性规划问题的最优解和对偶线性规划问题的最优解之间存在着一种对偶关系,即原始问题的最优解和对偶问题的最优解分别对应着凸集的两个相对的极值点,它们之间的距离可以被理解为对偶问题的最优值和原始问
题的最优值之间的关系。

总的来说,对偶问题在运筹学中具有重要的意义,它不仅可以帮助我们理解原始问题和对偶问题之间的关系,还可以为我们寻找最优解提供了一种新的视角和方法。

通过对偶问题的研究和理解,我们可以更好地解决实际生产和管理中的复杂问题。

运筹学第3章 对偶问题

运筹学第3章 对偶问题
y1 + 2 y2 + 4 y3 = 3 2 y1 + y2 + 3 y3 = 2
x1 > 0, x2 > 0
联立求解得: y1 = 0, y2 = 0.5, y3 = 0.5
三、影子价格
设 x* ( j = 1,L, n) 和 yi* (i = 1,L, n) 分别是原问题和 j 对偶问题的最优解,则由对偶性质,有
=b
BX B + NX N + IX S = b X ≥ 0, X ≥ 0 N B
S S
max z = C B X B + C N X N + 0 X s
将XB的系数 矩阵化为单 位矩阵
原来 BX B + NX N + IX IX B + B − 1 NX N + B − 1 X
= b = B
注 上表中我们将松弛变量与剩余变量统称为松弛变量
二、对偶问题的基本性质
1、对偶问题的对偶问题是原问题
max z=CX s.t. AX≤b X ≥0 对偶的定义 min w=b’Y s.t. A’Y≥C Y ≥0
min z’ = - CX s.t. -AX ≥-b X ≥0
对偶的定义
max w = -b’Y s.t. -A’Y≤-C Y ≥0
−1
b
项目
原问题变量
原问题松弛变量
原问 题最 终单 纯形 表
x1
x3 15/2 x1 7/2 x2 3/2 -σj 0 1 0 0
x2
0 0 1 0
x3
1 0 0 0
x4
5/4 1/4 -1/4 1/4
x5
15/2 -1/2 3/2 1/2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档