专题:二次函数中的动点问题

合集下载

中考数学中二次函数常考常新的18种命题方式

中考数学中二次函数常考常新的18种命题方式

专题01 二次函数中的动点问题1、如图①,已知抛物线y =ax 2﹣4amx +3am 2(a 、m 为参数,且a >0,m >0)与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C .(1)求点B 的坐标(结果可以含参数m );(2)连接CA 、CB ,若C (0,3m ),求tan ∠ACB 的值;(3)如图①,在(2)的条件下,抛物线的对称轴为直线l :x =2,点P 是抛物线上的一个动点,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P ,使△POF 成为以点P 为直角顶点的的等腰直角三角形.若存在,求出所有符合条件的点P 的坐标,若不存在,请说明理由.【解析】(1)令y =0,则有ax 2﹣4amx +3am 2=0,解得:x 1=m ,x 2=3m , ①m >0,A 在B 的左边,①B (3m ,0); (2)如图1,过点A 作AD ⊥BC ,垂足为点D ,由(1)可知B (3m ,0),则△BOC 为等腰直角三角形,①OC =OB =3m ,①BC =m ,又①∠ABC =45°,①∠DAB =45°,①AD =BD ,①AB =2m ,①AD =,CD =m ,①tan ∠ACB =AD 1CD 2==;(3)①由题意知x =2为对称轴,①2m =2,即m =1, ①在(2)的条件下有(0,3m ),①3m =3am 2,解得m =1a,即a =1,①抛物线的解析式为y =x 2﹣4x +3, ①当P 在对称轴的左边,如图2,过P 作MN ⊥y 轴,交y 轴于M ,交l 于N ,①△OPF 是等腰直角三角形,且OP =PF ,易得△OMP ≌△PNF ,①OM =PN ,①P (m ,m 2﹣4m +3),则﹣m 2+4m ﹣3=2﹣m ,解得:m①P ); ①当P 在对称轴的右边,如图3,过P 作MN ⊥x 轴于N ,过F 作FM ⊥MN 于M ,同理得△ONP ≌△PMF ,①PN =FM ,则﹣m 2+4m ﹣3=m ﹣2,解得:x 35;P 的坐标为(3122+)或(3122);综上所述,点P )或)或)或)2、如图1,在平面直角坐标系xOy 中,抛物线y =−(x −a )(x −4)(a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,点D 为抛物线的顶点.(1)若D 点坐标为(32,254),求抛物线的解析式和点C 的坐标;(2)若点M 为抛物线对称轴上一点,且点M 的纵坐标为a ,点N 为抛物线在x 轴上方一点,若以C 、B 、M 、N 为顶点的四边形为平行四边形时,求a 的值;(3)直线y =2x +b 与(1)中的抛物线交于点D 、E (如图2),将(1)中的抛物线沿着该直线方向进行平移,平移后抛物线的顶点为D ′,与直线的另一个交点为E ,与x 轴的交点为B ′,在平移的过程中,求D ′E ′的长度;当∠E ′D ′B ′=90°时,求点B ′的坐标.【解析】(1)依题意得:254=−(32−a)(32−4),解得a =−1,①y =-(x +1)(x -4)或y =−x 2+3x +4,①C (0,4) (2)由题意可知A (a,0)、B (4,0)、C (0,−4a ),对称轴为直线x =a+42,则M (a+42,a)①MN//BC ,且MN =BC ,根据点的平移特征可知N (a−42,−3a)则−3a =−(a−42−a)⋅(a−42−4),解得:a =−2±2√13(舍去正值);①当BC 为对角线时,设N (x,y ),根据平行四边形的对角线互相平分可得{a+42+x =4a +y =−4a ,解得{x =4−a2y =−5a , 则−5a =−(4−a 2−a)⋅(4−a 2−4),解得:a =6±2√213,①a 1=−2−2√13,a 2=6−2√213(3)联立{y =2x +134y =−x 2+3x +4 ,解得:{x 1=32y 1=254 (舍去),{x 2=−12y 2=94 则DE =2√5,根据抛物线的平移规律,则平移后的线段D ′E ′始终等于2√5 设平移后的D ′(m,2m +134),则E ′(m −2,2m −34),平移后的抛物线解析式为:y =−(x −m )2+2m +134则D ′B ′:y =−12x +n 过(m,2m +134),①y =−12x +52m +134,则B ′(5m +132,0)抛物线y =−(x −m )2+2m +134过B ′(5m +132,0),解得m 1=−32,m 2=−138①B 1′(−1,0),B 2′(−138,0)(与D ′重合,舍去),①B ′(−1,0)3、如图,抛物线y=x2+bx+c与直线y=12x﹣3交于,B两点,其中点A在y轴上,点B坐标为(﹣4,﹣5),点P为y轴左侧的抛物线上一动点,过点P作PC⊥x轴于点C,交AB于点D.(1)求抛物线对应的函数解析式;(2)以O,A,P,D为顶点的平行四边形是否存在若存在,求点P的坐标;若不存在,说明理由.【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)PD=|m²+4m|,①PD∥A O,则当PD=O A=3时,存在以O,A,P,D为顶点的平行四边形,即PD=|m²+4m|=3,即可求解.【解析】(1)将点A、B的坐标代入抛物线表达式得:16453b cc-+=-⎧⎨=-⎩,解得:923bc⎧=⎪⎨⎪=-⎩,故抛物线的表达式为:y=x2+92x﹣3;(2)存在,理由:同理直线AB的表达式为:y=12x﹣3,设点P(m,m2+92m﹣3),点D(m,12m﹣3)(m<0),则PD=|m2+4m|,①PD∥A O,则当PD=O A=3时,存在以O,A,P,D为顶点的平行四边形,即PD=|m2+4m|=3,①当m2+4m=3时,解得:m=﹣(舍去正值),即m2+92m﹣3=1﹣2,故点P(﹣21﹣2),①当m2+4m=﹣3时,解得:m=﹣1或﹣3,同理可得:点P(﹣1,﹣132)或(﹣3,﹣152);综上,点P(﹣2,﹣1﹣2)或(﹣1,﹣132)或(﹣3,﹣152).【小结】本题考查的是二次函数综合运用,涉及到待定系数法求函数解析式、平行四边形性质等,要注意分类讨论思想的运用.4、在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),B (3,0),与y 轴交于点C (0,3),顶点为G .(1)求抛物线和直线AC 的解析式;(2)如图1,设E (m ,0)为x 正半轴上的一个动点,若△CGE 和△CG O 的面积满足S △CGE =43S △CG O ,求点E 的坐标;(3)如图2,设点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向右运动,运动时间为t s ,点M 为射线AC 上一动点,过点M 作MN ∥x 轴交抛物线对称轴右侧部分于点N .试探究点P 在运动过程中,是否存在以P ,M ,N 为顶点的三角形为等腰直角三角形,若存在,求出t 的值;若不存在,请说明理由. 【分析】(1)用待定系数法即能求出抛物线和直线AC 解析式.(2)△CGE 与△CG O 虽然有公共底边CG ,但高不好求,故把△CGE 构造在比较好求的三角形内计算.延长GC 交x 轴于点F ,则△FGE 与△FCE 的差即为△CGE .(3)设M 的坐标(e ,3e +3),分别以M 、N 、P 为直角顶点作分类讨论,利用等腰直角三角形的特殊线段长度关系,用e 表示相关线段并列方程求解,再根据e 与AP 的关系求t 的值. 【解析】(1)将点A (-1,0),B (3,0),点C (0,3)代入抛物线y =ax 2+bx +c 得,09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得123a b c =-⎧⎪=-⎨⎪=⎩,①2y x 2x 3=-++,设直线AC 的解析式为y =kx +n , 将点A (-1,0),点C (0,3)代入得:03k n n -+=⎧⎨=⎩,解得:k =3,n =3,①直线AC 的解析式为:y =3x +3(2)延长GC 交x 轴于点F ,过点G 作GH ⊥x 轴于点H , ①2(1)4y x =--+,①G (1,4),GH =4,①11331222CGOG S OC x =⨯=⨯⨯=, 若S △CGE =43S △CG O ,则S △CGE =43S △CG O =43232⨯=, ①若点E 在x 轴的正半轴,设直线CG 为13y k x =+,将G (1,4)代入得134k +=,①11k =,①直线CG 的解析式为y =x +3,①当y =0时,x =-3,即F (-3,0),又①E (m ,0),①EF =m -(-3)=m +3 ①CGEFGEFCE S SS=-=1122EF GH EF OC ⋅-⋅= 1()2EF GH OC ⋅-=1(3)(43)2m +⋅-=1(3)2m + ①1(3)22m +=,解得:m =1,①E 的坐标为(1,0)①若点E 在x 轴的负半轴上,则点E 到直线CG 的距离与点(1,0)到直线CG 的距离相等, 即点E 到点F 的距离等于点(1,0)到点F 的距离,①EF =-3-m =1-(-3)=4,①m =-7,即E (-7,0) 综上所述,点E 的坐标为:(1,0)或(-7,0)(3)存在以P ,M ,N 为顶点的三角形为等腰直角三角形, 设M (e ,3e +3),e >-1,则33N M y y e ==+,①如图2,若∠MPN =90°,PM =PN ,过点M 作MQ ⊥x 轴于点Q ,过N 作NR ⊥x 轴于点R , ①MN ∥x 轴,①MQ =NR =3e +3①Rt △MQP ≌Rt △NRP (HL ),①PQ =PR ,∠MPQ =∠NPR =45° ①MQ =PQ =PR =NR =3e +3①x N =x M +3e +3+3e +3=7e +6,即N (7e +6,3e +3)①N 在抛物线上,①−(7e +6)2+2(7e +6)+3=3e +3,解得:11e =-(舍去),22449e =- ①AP =t ,O P =t −1,O P +O Q =PQ ,①t −1−e =3e +3,①t =4e +4=10049,①如图3,若∠PMN=90°,PM=MN,①MN=PM=3e+3①x N=x M+3e+3=4e+3,即N(4e+3,3e+3)①−(4e+3)2+2(4e+3)+3=3e+3,解得:e1=−1(舍去),e2=3 16 -,①t=AP=e−(−1)=31311616 -+=,①如图4,若∠PNM=90°,PN=MN,①MN=PN=3e+3,N(4e+3,3e+3),解得:e=3 16 -①t=AP=O A+O P=1+4e+3=13 4综上所述,存在以P,M,N为顶点的三角形为等腰直角三角形,t的值为10049或1316或134.【小结】本题考查了待定系数法求函数解析式,坐标系中三角形面积计算,等腰直角三角形的性质,解一元二次方程,考查了分类讨论和方程思想.第(3)题根据等腰直角三角形的性质找到相关线段长的关系是解题关键,灵活运用因式分解法解一元二次方程能简便运算.5、如图,已知直线AB 与抛物线C :y =ax 2+2x +c 相交于点A (﹣1,0)和点B (2,3)两点. (1)求抛物线C 函数表达式;(2)若点M 是位于直线AB 上方抛物线上的一动点,当MAB △的面积最大时,求此时MAB △的面积S 及点M 的坐标.【解析】(1)由题意把点(﹣1,0)、(2,3)代入y =ax 2+2x +c ,得20443a c a c -+=⎧⎨++=⎩,解得1,3,a c =-⎧⎨=⎩,①此抛物线C 函数表达式为:y =﹣x 2+2x +3; (2)如图,过点M 作MH ⊥x 轴于H ,交直线AB 于K ,将点(﹣1,0)、(2,3)代入y =kx +b 中,得023k b k b -+=⎧⎨+=⎩,解得1,1,k b =⎧⎨=⎩,①y AB =x +1,设点M (x ,﹣x 2+2x +3),则K (x ,x +1), 则MK =﹣x 2+2x +3﹣(x +1)=﹣x 2+x +2, ①S △MAB =S △AMK +S △BMK =12MK •(x M ﹣x A )+ 12MK •(x B ﹣x M )=12MK •(x B ﹣x A )=12×(-x 2+x +2)×3 =23127()228x --+, ①302-<,当x =12时,S △MAB 最大=278,此时21115()23224M y =-+⨯+=,①△MAB 的面积最大值是278,M (12,154).6、如图,直线y =34x +a 与x 轴交于点A (4,0),与y 轴交于点B ,抛物线y =34x 2+bx +c 经过点A ,B .点M(m ,0)为x 轴上一动点,过点M 且垂直于x 轴的直线分别交直线AB 及抛物线于点P ,N . (1)填空:点B 的坐标为 ,抛物线的解析式为 ; (2)当点M 在线段OA 上运动时(不与点O ,A 重合), ①当m 为何值时,线段PN 最大值,并求出PN 的最大值; ①求出使△BPN 为直角三角形时m 的值;(3)若抛物线上有且只有三个点N 到直线AB 的距离是h ,请直接写出此时由点O ,B ,N ,P 构成的四边形的面积.【解析】(1)把点A 坐标代入直线表达式y =34x +a ,解得:a =﹣3,则:直线表达式为:y ═34x ﹣3, 令x =0,则:y =﹣3,则点B 坐标为(0,﹣3),将点B 的坐标代入二次函数表达式得:c =﹣3,把点A 的坐标代入二次函数表达式得:34×16+4b ﹣3=0, 解得:b =﹣94,故抛物线的解析式为:y =34x 2﹣94x ﹣3, (2)①①M (m ,0)在线段O A 上,且MN ⊥x 轴, ①点P (m ,34m ﹣3),N (m ,34m 2﹣94m ﹣3),①PN =34m ﹣3﹣(34m 2﹣94m ﹣3)=﹣34(m ﹣2)2+3,①a =﹣34<0,①抛物线开口向下,①当m =2时,PN 有最大值是3, ①当∠BNP =90°时,点N 的纵坐标为﹣3,把y =﹣3代入抛物线的表达式得:﹣3=34m 2﹣94m ﹣3,解得:m =3或0(舍去m =0),①m =3; 当∠NBP =90°时,①BN ⊥AB ,两直线垂直,其k 值相乘为﹣1, 设:直线BN 的表达式为:y =﹣43x +n ,把点B 的坐标代入上式,解得:n =﹣3,则:直线BN 的表达式为:y =﹣43x ﹣3,将上式与抛物线的表达式联立并解得:m =119或0(舍去m =0),当∠BPN =90°时,不合题意舍去,故:使△BPN 为直角三角形时m 的值为3或43;(3)①O A =4,O B =3,在Rt △A O B 中,tan α=43,则:c osα=35,si n α=45, ①PM ∥y 轴,①∠BPN =∠AB O =α,若抛物线上有且只有三个点N 到直线AB 的距离是h ,则只能出现:在AB 直线下方抛物线与过点N 的直线与抛物线有一个交点N ,在直线AB 上方的交点有两个. 当过点N 的直线与抛物线有一个交点N ,点M 的坐标为(m ,0),设:点N 坐标为:(m ,n ),则:n =34m 2﹣94m ﹣3,过点N 作AB 的平行线, 则点N 所在的直线表达式为:y =34x +b ,将点N 坐标代入,解得:过N 点直线表达式为:y =34x +(n ﹣34m ),将抛物线的表达式与上式联立并整理得:3x 2﹣12x ﹣12+3m ﹣4n =0,△=144﹣3×4×(﹣12+3m ﹣4n )=0, 将n =34m 2﹣94m ﹣3代入上式并整理得:m 2﹣4m +4=0,解得:m =2,则点N 的坐标为(2,﹣92), 则:点P 坐标为(2,﹣32),则:PN =3,①O B =3,PN ∥O B ,①四边形O BNP 为平行四边形,则点O 到直线AB 的距离等于点N 到直线AB 的距离, 即:过点O 与AB 平行的直线与抛物线的交点为另外两个N 点,即:N ′、N ″, 直线O N 的表达式为:y =34x ,将该表达式与二次函数表达式联立并整理得:x 2﹣4x ﹣4=0,解得:x =2±2√2,则点N ′、N ″的横坐标分别为2+2√2,2﹣2√2, 作NH ⊥AB 交直线AB 于点H ,则h =NH =NP si n α=125,作N ′P ′⊥x 轴,交x 轴于点P ′,则:∠O N ′P ′=α,O N ′=OP ′sinα=54(2+2√2), S 四边形O BPN =BP •h =52×125=6,则:S 四边形O BP ′N ′=S △O P ′N ′+S △O BP ′=6+6√2,同理:S 四边形O BN ″P ″=6√2﹣6,故:点O ,B ,N ,P 构成的四边形的面积为:6或6+6√2或6√2﹣67、在平面直角坐标系xOy 中,直线1(0)y kx k =+≠经过点23A (,),与y 轴交于点B ,与抛物线2y ax bx a =++的对称轴交于点C m 2(,).(1)求m 的值;(2)求抛物线的顶点坐标;(3)11N x y (,)是线段AB 上一动点,过点N 作垂直于y 轴的直线与抛物线交于点22P x y (,),33Q x y (,)(点P 在点Q 的左侧).若213x x x <<恒成立,结合函数的图象,求a 的取值范围. 【解析】(1)①()10y kx k =+≠ 经过点23A (,), ①将点A 的坐标代入1y kx =+ ,即321k =+ ,得1k =.①直线1y x =+ 与抛物线2y ax bx a =++ 的对称轴交于点(,2)C m , ①将点(,2)C m 代入1y x =+,得1m = . (2)①抛物线2y ax bx a =++ 的对称轴为1x =, ①12ba-= ,即2b a =-. ①22y ax ax a =-+()21a x =-①抛物线的顶点坐标为()10, . (3)当0a >时,如图,若拋物线过点01B (,) ,则1a = . 结合函数图象可得01a << . 当0a <时,不符合题意.综上所述,a 的取值范围是01a <<.8、如图①,在平面直角坐标系中,二次函数y=13-x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段O B上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)点M在抛物线上,且△A O M的面积与△A O C的面积相等,求出点M的坐标。

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧

二次函数动点问题的解题技巧
以下是 8 条关于二次函数动点问题的解题技巧:
1. 大胆设未知数呀!比如在一个直角坐标系里,有个二次函数图像上有个动点 P,那咱就大大方方设它的坐标为(x,y),这样不就能更好地分析啦!就像给这个动点取了个名字,好指挥它呀!
2. 把条件都用上呀!可别漏了,像找到某个线段长度与动点坐标的关系,哎呀呀,这可是关键呢!比如已知一个线段的长度是 5,和动点 P 的横坐标有关,那可不能放过这个线索,得好好挖掘挖掘!
3. 找等量关系呀!这就好比寻宝,到处去找那些能关联起来的等量哦。

比如说一个三角形面积和另一个图形面积相等,这不就找到宝贝线索啦!
4. 注意特殊位置呀!嘿,动点有时候会跑到一些特殊的点呢,那可有意思啦。

比如它跑到对称轴上时,那说不定会有惊喜发现呢!像突然发现一些对称关系,多神奇呀!
5. 画画图呀!通过图形能更直观地看到动点的运动呀,这就像给你一双眼睛看着它怎么跑。

看看它跑到不同地方时整个图形发生的变化,多好玩呀!
6. 多试试分类讨论呀!有时候动点的情况不唯一呢,那咱就别怕麻烦,一种一种来。

难道还能被它难住不成?像动点在不同区间时可能有不同的结果,咱就一个个算清楚嘛!
7. 利用函数解析式呀!这可是个好宝贝,通过它能知道很多信息呢。

比如知道了二次函数的解析式,那动点在上面的一些性质不就清楚啦?
8. 要敢想敢做呀!别犹豫,大胆去尝试各种方法。

不试试看怎么知道行不行呢?就像冒险一样,多刺激呀!
总之,面对二次函数动点问题,别怕!勇敢地去探索,一定能找到答案的!。

二次函数动点专项练习30题(有答案)

二次函数动点专项练习30题(有答案)

二次函数动点专项练习30题(有答案)1.在平面直角坐标系xOy中,二次函数y=﹣x2+x+2的图象与x轴交于点A,B(点B在点A的左侧),与y 轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣x2+x+2的图象相交于点D,E.(1)写出点A,点B的坐标;(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由.2.如图,已知抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m﹣1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D 分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连接EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.3.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.4.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.5.如图,已知二次函数图象的顶点坐标为M(2,0),直线y=x+2与该二次函数的图象交于A、B两点,其中点A 在y轴上,P为线段AB上一动点(除A,B两端点外),过P作x轴的垂线与二次函数的图象交于点Q设线段PQ 的长为l,点P的横坐标为x.(1)求二次函数的解析式;(2)求l与x之间的函数关系式,并求出l的取值范围;(3)线段AB上是否存在一点P,使四边形PQMA为梯形?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=﹣2x+7经过抛物线上一点B(5,m),且与直线x=2交于点E.(1)求m的值及该抛物线的函数关系式;(2)若点D是x轴上一动点,当△DCB∽△ECB时,求点D的坐标;(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PC?若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.7.矩形OABC在平面直角坐标系中的位置如图所示,其中OA=5,AB=2,抛物线y=﹣x 2+3x的图象与BC交于D、E两点.(1)求DE的长_________;(2)M是BC上的动点,若OM⊥AM,求点M的坐标;(3)在抛物线上是否存在点Q,使以D、O、Q、M为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.8.如图,已知抛物线与x轴交于A(﹣4,0)和B(1,0)两点,与y轴交于C(0,﹣2)点.(1)求此抛物线的解析式;(2)设G是线段BC上的动点,作GH∥AC交AB于H,连接CH,当△BGH的面积是△CGH面积的3倍时,求H点的坐标;(3)若M为抛物线上A、C两点间的一个动点,过M作y轴的平行线,交AC于N,当M点运动到什么位置时,线段MN的值最大,并求此时M点的坐标.9.如图,抛物线y=ax 2+bx+3(a≠0)的图象经过A(3,0),B(4,1)两点,且与y轴交于点C.(1)直接写出点C的坐标;(2)试求抛物线y=ax2+bx+3(a≠0)的函数关系式;(3)连接AC,点E为线段AC上的动点(不与A、C重合),经过A、E、O三点的圆交直线AB于点F.当△OEF 的面积取得最小值时,请求出点E的坐标.10.抛物线y=a(x+6)2﹣3与x轴相交于A,B两点,与y轴相交于C,D为抛物线的顶点,直线DE⊥x轴,垂足为E,AE2=3DE.(1)求这个抛物线的解析式;(2)P为直线DE上的一动点,以PC为斜边构造直角三角形,使直角顶点落在x轴上.若在x轴上的直角顶点只有一个时,求点P的坐标;(3)M为抛物线上的一动点,过M作直线MN⊥DM,交直线DE于N,当M点在抛物线的第二象限的部分上运动时,是否存在使点E三等分线段DN的情况?若存在,请求出所有符合条件的M的坐标;若不存在,请说明理由.11.如图,已知抛物线y=ax 2+bx+c经过点A(2,3),B(6,1),C(0,﹣2).(1)求此抛物线的解析式,并用配方法把解析式化为顶点式;(2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标;(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC 的面积为S.当S取何值时,满足条件的点E只有一个?当S取何值时,满足条件的点E有两个?12.如图,抛物线的对称轴是直线x=1,它与x轴交于A、B两点,与y轴交于C点,点A、C的坐标分别是(﹣1,0)、(0,3)(1)求此抛物线对应的函数解析式;(2)若点P是抛物线上位于x轴上方的一个动点,求△ABP面积的最大值;(3)若过点A(﹣1,0)的直线AD与抛物线的对称轴和x轴围成的三角形的面积为6,求此直线的解析式.13.已知抛物线y=ax 2+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P在抛物线上运动(点P异于点A).①如图1.当△PBC面积与△ABC面积相等时.求点P的坐标;②如图2.当∠PCB=∠BCA时,求直线CP的解析式.14.如图,平面直角坐标系xOy中,点A的坐标为(﹣2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.15.如图,抛物线y=ax2+bx+(a≠0)经过A(﹣3,0)、C(5,0)两点,点B为抛物线的顶点,抛物线的对称轴与x轴交于点D.(1)求此抛物线的解析式;(2)动点P从点B出发,沿线段BD向终点D作匀速运动,速度为每秒1个单位长度,运动时间为ts,过点P作PM⊥BD交BC于点M,过点M作MN∥BD,交抛物线于点N.①当t为何值时,线段MN最长;②在点P运动的过程中,是否有某一时刻,使得以O、P、M、C为顶点的四边形为等腰梯形?若存在,求出此刻的t值;若不存在,请说明理由.参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是.16.如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q 的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.17.在平面直角坐标系xOy中,抛物线y=ax2++c与x轴交于点(﹣1,0)和点B,与y轴交于点C(0,4).(1)求抛物线的解析式;(2)若P是抛物线上一点,且△ABP的面积是,求P点的坐标;(3)若D是线段BC上的一个动点,过点D作DE⊥BC,交OC于E点.设CD的长为t,四边形DEOB的周长为l,求l与t之间的函数关系式,并写出t的取值范围.18.(2011?宝安区三模)如图,在直角坐标系中,点A(2,0),点B(0,4),AB的垂直平分线交AB于C,交x 轴于D,(1)求点C、D的坐标;(2)求过点B、C、D的抛物线的解析式;(3)点P为CD间的抛物线上一点,求当点P在何处时,以P,C,D,B为顶点的四边形的面积最大?19.(2010?菏泽)如图所示,抛物线y=ax2+bx+c经过原点O,与x轴交于另一点N,直线y=kx+4与两坐标轴分别交于A、D两点,与抛物线交于B(1,m)、C(2,2)两点.(1)求直线与抛物线的解析式;(2)若抛物线在x轴上方的部分有一动点P(x,y),设∠PON=α,求当△PON的面积最大时tanα的值;(3)若动点P保持(2)中的运动路线,问是否存在点P,使得△POA的面积等于△PON面积的?若存在,请求出点P的坐标;若不存在,请说明理由.20.已知抛物线y=ax 2+bx+c的顶点为A(3,﹣3),与x轴的一个交点为B(1,0).(1)求抛物线的解析式.(2)P是y轴上一个动点,求使P到A、B两点的距离之和最小的点P0的坐标.(3)设抛物线与x轴的另一个交点为C.在抛物线上是否存在点M,使得△MBC的面积等于以点A、P0、B、C 为顶点的四边形面积的三分之一?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.21.如图,已知抛物线y=+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,﹣1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.22.如图,已知抛物线y=ax 2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.23.如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a﹣b=﹣1.(1)求a,b,c的值;(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E 到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.①试求出S与t之间的函数关系式,并求出S的最大值;②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.24.如图,抛物线经过A(4,0),B(1,0),C(0,﹣2)三点.(1)求出抛物线的解析式;(2)P是(1)中抛物线AB段上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△ACO相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.25.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.26.如图1,在平面直角坐标系xOy中,已知A、B两点的坐标分别为(4,0)、(0,2),将△OAB绕点O逆时针旋转90°后得到△OCD,抛物线y=ax2﹣2ax+4经过点A.(1)求抛物线的函数表达式,并判断点D是否在该抛物线上;(2)如图2,若点P是抛物线对称轴上的一个动点,求使|PC﹣PD|的值最大时点P的坐标;(3)设抛物线上是否存在点E,使△CDE是以CD为直角边的直角三角形?若存在,请求出所有点E的坐标;若不存在,请说明理由.27.已知抛物线y=x2+bx+1的顶点在x轴上,且与y轴交于A点.直线y=kx+m经过A、B两点,点B的坐标为(3,4).(1)求抛物线的解析式,并判断点B是否在抛物线上;(2)如果点B在抛物线上,P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E,设线段PE的长h,点P的横坐标为x,当x为何值时,h取得最大值,求出这时的h值.28.如图,已知直线y=x+1与y轴交于点A,与x轴交于点D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求该抛物线的解析式;(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;(3)在抛物线的对称轴上找一点M,使|AM﹣MC|的值最大,求出点M的坐标.29.阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求抛物线和直线AB的解析式;(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB;(3)是否存在抛物线上一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由.30.如图,抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1>x2,与y轴交于点C(0,4),其中x1,x2是方程x2﹣2x﹣8=0的两个根.(1)求这条抛物线的解析式;(2)点P是线段AB上的动点,过点P作PE∥AC,交BC于点E,连接CP,当△CPE的面积最大时,求点P的坐标;(3)探究:若点Q是抛物线对称轴上的点,是否存在这样的点Q,使△QBC成为等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.二次函数动点30题参考答案:1.解:(1)当y=0时,有,解得:x1=4,x2=﹣1,∴A、B两点的坐标分别为(4,0)和(﹣1,0).(2)∵⊙Q与x轴相切,且与交于D、E两点,∴圆心Q位于直线与抛物线对称轴的交点处,∵抛物线的对称轴为,⊙Q的半径为H点的纵坐标m(m>0),∴D、E两点的坐标分别为:(﹣m,m),(+m,m)∵E点在二次函数的图象上,∴,解得或(不合题意,舍去).(3)存在.①如图1,当∠ACF=90°,AC=FC时,过点F作FG⊥y轴于G,∴∠AOC=∠CGF=90°,∵∠ACO+∠FCG=90°,∠GFC+∠FCG=90°,∴∠ACO=∠CFG,∴△ACO≌△CFG,∴CG=AO=4,∵CO=2,∴m=OG=2+4=6;反向延长FC,使得CF=CF′,此时△ACF′亦为等腰直角三角形,易得y C﹣y F′=CG=4,∴m=CO﹣4=2﹣4=﹣2.②如图2,当∠CAF=90°,AC=AF时,过点F作FP⊥x轴于P,∵∠AOC=∠APF=90°,∠ACO+∠OAC=90°,∠FAP+∠OAC=90°,∴∠ACO=∠FAP,∴△ACO≌△∠FAP,∴FP=AO=4,∴m=FP=4;反向延长FA,使得AF=AF′,此时△ACF’亦为等腰直角三角形,易得y A﹣y F′=FP=4,∴m=0﹣4=﹣4.③如图3,当∠AFC=90°,FA=FC时,则F点一定在AC的中垂线上,此时存在两个点分别记为F,F′,分别过F,F′两点作x轴、y轴的垂线,分别交于E,G,D,H.∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA,∵∠CDF=∠AEF,CF=AF,∴△CDF≌△AEF,∴CD=AE,DF=EF,∴四边形OEFD为正方形,∴OA=OE+AE=OD+AE=OC+CD+AE=OC+2CD,∴4=2+2?CD,∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CF′G+∠GF′A,∴∠HF′C=∠GF′A,∵∠HF′C=∠GF′A,CF′=AF′,∴△HF′C≌△GF′A,∴HF′=GF′,CH=AG,∴四边形OHF′G为正方形,∴OH=CH﹣CO=AG﹣CO=AO﹣OG﹣CO=AO﹣OH﹣CO=4﹣OH﹣2,∴OH=1,∴m=﹣1.∵y=﹣x2+x+2=﹣(x﹣)2+,∴y的最大值为.∵直线l与抛物线有两个交点,∴m<.∴m可取值为:﹣4、﹣2、﹣1或3.综上所述,直线l上存在一点F,使得△ACF是等腰直角三角形,m的值为﹣4、﹣2、﹣1或3 2.(1)∵抛物线y=﹣+bx+c图象经过A(﹣1,0),B(4,0)两点,∴根据题意,得,解得,所以抛物线的解析式为:;(2)①证明:∵把C(m,m﹣1)代入得∴,解得:m=3或m=﹣2,∵C(m,m﹣1)位于第一象限,∴,∴m>1,∴m=﹣2舍去,∴m=3,∴点C坐标为(3,2),过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,由A(﹣1,0)、B(4,0)、C(3,2)得AH=4,CH=2,BH=1,AB=5∵,∠AHC=∠BHC=90°∴△AHC∽△CHB,∴∠ACH=∠CBH,∵∠CBH+∠BCH=90°∴∠ACH+∠BCH=90°∴∠ACB=90°,∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∴?DECF是矩形;②存在;连接CD∵四边形DECF是矩形,∴EF=CD,当CD⊥AB时,CD的值最小,∵C(3,2),∴DC的最小值是2,∴EF的最小值是2;3. (1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).此时点Q坐标为(3,1)或(,)4.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y=ax2+bx+2.将A(﹣1,0),B(4,0)代入,得,解得,∴抛物线的解析式为:y=﹣x2+x+2.(2)存在.由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.在Rt△BOC中,OC=2,OB=4,∴BC==.在Rt△BOC中,设BC边上的高为h,则×h=×2×4,∴h=.∵△BEA∽△COB,设E点坐标为(x,y),∴=,∴y=±2将y=2代入抛物线y=﹣x2+x+2,得x1=0,x2=3.当y=﹣2时,不合题意舍去.∴E点坐标为(0,2),(3,2).(3)如图2,连结AC,作DE⊥x轴于点E,作BF⊥AD于点F,∴∠BED=∠BFD=∠AFB=90°.设BC的解析式为y=kx+b,由图象,得,∴,y BC=﹣x+2.由BC∥AD,设AD的解析式为y=﹣x+n,由图象,得0=﹣×(﹣1)+n∴n=﹣,y AD=﹣x﹣.∴﹣x2+x+2=﹣x﹣,解得:x1=﹣1,x2=5∴D(﹣1,0)与A重合,舍去;∴D(5,﹣3).∵DE⊥x轴,∴DE=3,OE=5.由勾股定理,得BD=.∵A(﹣1,0),B(4,0),C(0,2),∴OA=1,OB=4,OC=2.∴AB=5在Rt△AOC中,Rt△BOC中,由勾股定理,得AC=,BC=2,∴AC2=5,BC2=20,AB2=25,∴AC2+BC2=AB2∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=,在Rt△BFD中,由勾股定理,得DF=,∴DF=BF,∴∠ADB=45°5.解:(1)依题意,设二次函数的解析式为y=a(x﹣2)2,由于直线y=x+2与y轴交于(0,2),∴x=0,y=2满足y=a(x﹣2)2,于是求得a=,二次函数的解析式为y=(x﹣2)2;(2)∵PQ⊥x轴且横坐标为x,∴l=(x+2)﹣(x﹣2)2=﹣x2+3x,由得点B的坐标为B(6,8),∵点p在线段AB上运动,∴0<x<6.∵,∴当x=3时,.∴0<l<;(3)作MQ∥AP.过M作MD∥PQ,MD交AB于N,则四边形PQMD为平行四边形.∴MD=PQ,∵M(2,0),∴D(2,4),∴MD=4.∴.∴x2﹣6x+8=0,∴x1=2,x2=4.∵2<x<6,∴x=4.∴P(4,6),Q(4,2).即P点的坐标为:(4,6)6.:(1)∵点B(5,m)在直线y=﹣2x+7上,∴m=﹣5×2+7=﹣3,∴B(5,﹣3),∵抛物线经过原点O和点A,对称轴为x=2,∴点A的坐标为(4,0)设所求的抛物线对应函数关系式为y=a(x﹣0)(x﹣4),将点B(5,﹣3)代入上式,得﹣3=a(5﹣0)(5﹣4),∴a=﹣,∴所求的抛物线对应的函数关系式为y=﹣x(x﹣4),即y=﹣x2+x.(2)∵点A(4,0),B(5,﹣3),C(2,0),∴AC=4﹣2=2,BC==3,当点D在直线x=2的右侧时,当△DCB∽△ECB,∴=,即=,解得:CD=9,∴点D的坐标为:(11,0),当点D在直线x=2的左侧时,∵∠ACB=∠CDB+∠CBA,且∠ACB<∠DCB,∴在△DCB中不可能存在与∠DCB相等的角,即此时不存在点使三角形相似;综上所述,存在点D的坐标是(11,0),使三角形相似;(3)存在符合条件的点P使PB=PC,∵C(2,0),B(5,﹣3),∴∠ACB=45°,BC垂直平分线的解析式为:y=x﹣5,∴,∴解得:,,∴符合条件的点P的坐标为(,)或(,).7.解:(1)由图知:点D、E的纵坐标为2,依题意,有:﹣x2+3x=2,解得:x1=1、x2=2∴D(1,2)、E(2,2),DE=1.(2)如右图;矩形OABC中,∠OMA=90°,∴∠CMO=∠MAB=90°﹣∠AMB,又∠OCM=∠MBA=90°,∴△OCM∽△MBA,有:=设点M(m,2),则:CM=m,BM=5﹣m∴=,解得m1=1,m2=4∴点M的坐标为(1,2)或(4,2).(3)若以D、O、Q、M为顶点的四边形是平行四边形,那么点D、M不共点,所以点M取(4,2);①当DM为平行四边形的对角线时,点O、Q关于DM的中点对称,即点Q的纵坐标为4,由图知,点Q必不在抛物线图象上,不合题意;②当DM为平行四边形的边时,OM∥OQ,且OM=OQ;∵D(1,2)、M(4,2)∴OQ=DM=3,即Q(﹣3,0)或(3,0);经验证,点(﹣3,0)不在抛物线图象上;点(3,0)在抛物线图象上;综上,存在符合条件的点Q,且坐标为(3,0)8. 解:(1)设抛物线的解析式:y=a(x+4)(x﹣1),代入C(0,﹣2),得:﹣2=a(0+4)(0﹣1),解得:a=故抛物线的解析式:y=(x+4)(x﹣1)=x2+x﹣2.(2)∵当△BGH的面积是△CGH面积的3倍,∴BG:CG=3:1,即BG:BC=3:4;∵GH∥AC,∴==;易知:BA=OB+OA=5,则BH=AB=,∴OH=BH﹣OB=﹣1=,即H(﹣,0).(3)设直线AC:y=kx+b,代入A(﹣4,0)、C(0,﹣2),得:,解得故直线AC:y=﹣x﹣2;设M(x,x2+x﹣2),则N(x,﹣x﹣2),则:MN=(﹣x﹣2)﹣(x2+x﹣2)=﹣x2﹣2x=﹣(x+2)2+2因此当M运动到OA的中垂线上,即M(﹣2,﹣3)时,线段MN的长最大.9.(1)令x=0,可得y=3,故点C的坐标为(0,3);(2)将点A(3,0),B(4,1)代入可得:,解得:,故函数解析式为y=x2﹣x+3;(3)如图,∵点A(3,0),点B(4,1),∴直线AB的解析式为:y=x﹣3,∵A(3,0),C(0,3),∴OA=3,OC=3,∴tan∠OAC===1,∴∠OAC=45°,∴∠OAC=∠OAF=45°,∵∠OEF=∠OAF=45°,∠OFE=∠OAE=45°,∴OE=OF,∠EOF=180°﹣45°×2=90°,∴△OEF是等腰直角三角形,∴S△OEF=×OE×OF=OE2,当OE最小时,S△FEO最小,根据等腰直角三角形的性质,当OE⊥AC时,OE最小,此时点E为AC的中点,故点E的坐标为(,).10.解:(1)易知抛物线的顶点D(﹣6,﹣3),则DE=3,OE=6;∵AE2=3DE=9,∴AE=3,即A(﹣3,0);将A点坐标代入抛物线的解析式中,得:a(﹣3+6)2﹣3=0,即a=,即抛物线的解析式为:y=(x+6)2﹣3=x2+4x+9.(2)设点P(﹣6,t),易知C(0,9);则PC的中点Q(﹣3,);易知:PC=;若以PC为斜边构造直角三角形,在x轴上的直角顶点只有一个时,以PC为直径的圆与x轴相切,即:||=,解得t=1,故点P(﹣6,1),当点P与点E重合时,由抛物线的解析式可知,A(﹣3,0),B(﹣9,0).所以P(﹣6,0),故点P的坐标为(﹣6,1)或(﹣6,0),(3)设点M(a,b)(a<0,b>0),分两种情况讨论:①当NE=2DE时,NE=6,即N(﹣6,6),已知D(﹣6,﹣3),则有:直线MN的斜率:k1=,直线MD的斜率:k2=;由于MN⊥DM,则k1?k2==﹣1,整理得:a2+b2+12a﹣3b+18=0…(△),由抛物线的解析式得:a2+4a+9=b,整理得:a2+12a﹣3b+27=0…(□);(△)﹣(□)得:b2=9,即b=3(负值舍去),将b=3代入(□)得:a=﹣6+3,a=﹣6﹣3,故点M(﹣6+3,3)或(﹣6﹣3,3);②当2NE=DE时,NE=,即N(﹣6,),已知D(﹣6,﹣3),则有:直线MN的斜率:k1=,直线DM的斜率:k2=;由题意得:k1?k2==﹣1,整理得:a2+b2+b+12a+=0,而a2+12a﹣3b+27=0;两式相减,得:2b2+9b+9=0,解得b=﹣2,b=﹣,(均不符合题意,舍去);综上可知:存在符合条件的M点,且坐标为:M(﹣6+3,3)或(﹣6﹣3,3).11.(1)将A,B,C三点坐标代入y=ax2+bx+c中,得,解得,∴y=﹣x2+x﹣2=﹣(x﹣)2+;(2)设点P(,m),分别过A、C两点作对称轴的垂线,垂足为A′,C′,∵AP⊥CP,∴△AA′P∽△PC′C,可得=,即=,解得m1=,m2=﹣,∴P(,)或(,﹣);(3)①由B(6,1),C(0,﹣2),得直线BC的解析式为y=x﹣2,∴D(4,0),当E点为抛物线顶点时,满足条件的点E只有一个,此时S=×4×2+×4×=,∵S△BOC=×2×6=6,∴当6≤S<时,满足条件的点E有两个.②当4<S<6时,﹣x2+x﹣2=0的△>0,方程有两个不相等的实数根,此时0<n<1,需满足的条件点E只能在点H与点B之间的抛物线上,故此时满足条件的点E只有一个.12. 解:(1)∵抛物线的对称轴是直线x=1,设抛物线的解析式是y=a(x﹣1)2+k,∴解得:,∴y=﹣(x﹣1)2+4即y=﹣x2+2x+3(2)∵y=﹣x2+2x+3,当y=0时,∴x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴B(3,0),A(﹣1,0)∴AB=4.设P(a,﹣a2+2a+3)∴S△ABP==﹣2(a﹣1)2+8,∴△ABP面积的最大值为8(3)设D的坐标为(1,b),∴=6,∴b=±6,∴D(1,6)或(1,﹣6),设AD的解析式为y=kx+b,得或解得:或∴直线AD的解析式为:y=3x+3或y=﹣3x﹣313. 解:(1)由题意,得,解得∴抛物线的解析式为y=﹣x2+4x﹣3;(2)①令﹣x2+4x﹣3=0,解得x1=1,x2=3,∴B(3,0),当点P在x轴上方时,如图1,过点A作直线BC的平行线交抛物线于点P,易求直线BC的解析式为y=x﹣3,∴设直线AP的解析式为y=x+n,∵直线AP过点A(1,0),代入求得n=﹣1.∴直线AP的解析式为y=x﹣1解方程组,得,∴点P1(2,1)当点P在x轴下方时,如图1:设直线AP1交y轴于点E(0,﹣1),把直线BC向下平移2个单位,交抛物线于点P2,P3,得直线P2P3的解析式为y=x﹣5,解方程组,得,∴P2(,),P3(,),综上所述,点P的坐标为:P1(2,1),P2(,),P3(,),②∵B(3,0),C(0,﹣3)∴OB=OC,∴∠OCB=∠OBC=45°设直线CP的解析式为y=kx﹣3如图2,延长CP交x轴于点Q,设∠OCA=α,则∠ACB=45°﹣α,∵∠PCB=∠BCA,∴∠PCB=45°﹣α,∴∠OQC=∠OBC﹣∠PCB=45°﹣(45°﹣α)=α,∴∠OCA=∠OQC又∵∠AOC=∠COQ=90°∴Rt△AOC∽Rt△COQ∴,∴,∴OQ=9,∴Q(9,0)∵直线CP过点Q(9,0),∴9k﹣3=0∴∴直线CP的解析式为.其它方法略.114.解:(1)设直线AB解析式为y=kx+b,将A(﹣2,2),B(6,6)代入,得,解得,∴y=x+3,令x=0,∴E(0,3);(2)设抛物线解析式为y=ax2+bx+c,将A(﹣2,2),B(6,6),O(0,0)三点坐标代入,得,解得,∴y=x2﹣x(3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m,联立,得x2﹣6x﹣4m=0,当△=36+16m=0时,过N点与OB平行的直线与抛物线有唯一的公共点,则点N到BO的距离最大,所以△BON面积最大,解得m=﹣,x=3,y=,即N(3,);此时△BON面积=×6×6﹣(+6)×3﹣××3=;(4)过点A作AS⊥GQ于S,∵A(﹣2,2),B(6,6),N(3,),∵∠AOE=∠OAS=∠BOH=45°,OG=3,NG=,NS=,AS=5,在Rt△SAN和Rt△NOG中,∴tan∠SAN=tan∠NOG=,∴∠SAN=∠NOG,∴∠OAS﹣∠SAN=∠BOG﹣∠NOG,∴∠OAN=∠NOB,∴ON的延长线上存在一点P,使得△BOP∽△OAN,∵A(﹣2,2),N(3,),∵△BOP与△OAN相似(点B、O、P分别与点O、A、N对应),即△BOP∽△OAN,∴BO:OA=OP:AN=BP:ON又∵A(﹣2,2),N(3,),B(6,6),∴BO=6,OA=2,AN=,ON=,∴OP=,BP=,设P点坐标为(4x,x),∴16x2+x2=()2,解得x=,4x=15,∵P、P′关于直线y=x轴对称,∴P点坐标为(15,)或(,15).15.解:(1)∵抛物线y=ax2+bx+与x轴交于点A(﹣3,0),C(5,0)∴解得.∴抛物线的函数关系式为y=﹣x2+x+.(2)①延长NM 交AC 于E ,∵B 为抛物线y=﹣x 2+x+的顶点,∴B (1,8).(5分)∴BD=8,OD=1.∵C (5,0),∴CD=4.∵PM ⊥BD ,BD ⊥AC ,∴PM ∥AC .∴∠BPM=∠BDC=90°,∠BMP=∠BCD .∴△BPM ∽△BDC .∴=.根据题意可得BP=t ,∴=.∴PM=t .∵MN ∥BD ,PM ∥AC ,∠BDC=90°,∴四边形PMED 为矩形.∴DE=PM=t .∴OE=OD+DE=1+t .∴E (1+t ,0).∵点N 在抛物线上,横坐标为1+t ,∴点N 的纵坐标为﹣(1+t )2+(1+t )+.∴NE=﹣(1+t )2+(1+t )+=﹣t 2+8.∵PB=t ,PD=ME ,∴EM=8﹣t .∴MN=NE ﹣EM=﹣t 2+8﹣(8﹣t )=﹣(t ﹣4)2+2.当t=4时,MN 最大=2.②存在符合条件的t 值.连接OP ,如图(2).若四边形OPMC 是等腰梯形,只需OD=EC .∵OD=1,DE=PM=t ,∴EC=5﹣(t+1).∴5﹣(t+1)=1.解得t=6.∴当t=6时,四边形OPMC是等腰梯形16.(1)由题意,得:,解得:,∴所求抛物线的解析式为:y=﹣x2﹣x+4.(2)设点Q的坐标为(m,0),过点E作EG⊥x轴于点G.由﹣x2﹣x+4=0,得x1=2,x2=﹣4,∴点B的坐标为(2,0),∴AB=6,BQ=2﹣m,∵QE∥AC,∴△BQE∽△BAC,∴,即,∴EG=(2﹣m),∴S△CQE=S△CBQ﹣S△EBQ=BQ?CO﹣BQ?EG=(2﹣m)[4﹣(2﹣m)]=﹣(m+1)2+3又∵﹣4≤m≤2,∴当m=﹣1时,S△CQE有最大值3,此时Q(﹣1,0).(3)存在.在△ODF中.(ⅰ)若DO=DF,∵A(﹣4,0),D(﹣2,0)∴AD=OD=DF=2,又在Rt△AOC中,OA=OC=4,∴∠OAC=45°,∴∠DFA=∠OAC=45°,∴∠ADF=90°.此时,点F的坐标为(﹣2,2)(ⅱ)若FO=FD,过点F作FM⊥x轴于点M由等腰三角形的性质得:OM=MD=1,∴AM=3,∴在等腰直角△AMF中,MF=AM=3,∴F(﹣1,3);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°,∴AC=4,∴点O到AC的距离为2,而OF=OD=2<2,∴此时不存在这样的直线l,使得△ODF是等腰三角形,综上所述,存在这样的直线l,使得△ODF是等腰三角形,所求点F的坐标为:F(﹣2,2)或(﹣1,3).17.解:(1)∵抛物线y=ax2++c与x轴交于点(﹣1,0)和点B,与y轴交于点C(0,4).∴,解得:,∴y=﹣x2++4;(2)令y=0,可得x1=﹣1,x2=3,∴B点坐标为:(3,0),设P点坐标为(x,y),依据题意得出:×4×|y|=,∴|y|=,∵y=﹣x2++4;=﹣(x﹣1)2+,∴抛物线开口向下,顶点坐标为(1,),∴纵坐标最大值为:,∴y=﹣,∴﹣=﹣x2++4;解得:x1=﹣2,x2=4,∴P点的坐标为:(4,﹣),(﹣2,﹣);(3)如图所示:在△ABC中,OB=3,CO=4,∠BOC=90°,由勾股定理得BC=5,∵DE⊥BC,∴∠EDC=∠BOC=90°,∵∠DCE=∠OCB,∴△DCE∽△OCB,∴==,∵CD=t,∴==,∴CE=t,DE=t,∴四边形DEOB的周长为l=EO+BO+DB+DE=4﹣t+3+t+5﹣t=12﹣t,t的取值范围是:0<t<.18.:(1)过C作CD⊥x轴于G,∵点C为线段AB的中点,∴CG是△OAB的中位线,∴点C的坐标是(1,2),┅┅┅┅┅┅┅┅(1分)又∵OA=2,OB=4,∴AB=,AC=,显然△ABO∽△ADC,∴,即,┅┅┅┅┅┅┅┅┅┅┅(2分)∴AD=5OD=AD﹣OA=3,∴点D的坐标是(﹣3,0);┅┅┅┅┅┅┅┅┅(3分)(2)解:设过B(0,4),C(1,2),D(﹣3,0)的抛物线的关系式为y=ax2+bx+c,∴,┅┅┅┅┅┅(4分)解得:,┅┅┅┅┅┅┅┅┅┅┅┅(5分)∴抛物线的关系式为;┅┅┅┅┅┅┅┅┅(6分)(3)解:设点P的坐标为(x,y)连BD,过点P作PH⊥x轴于H,交BD于E,S四边形PBCD=S△BCD+S△PBD,∵S△BCD=S△ACD为定值,∴要使四边形PBCD的面积最大就是使△PBD的面积最大,①当P在BD间的抛物线上时,即﹣3<x<0,S△PBD=S△PBE+S△PED=PE×DH+PE×OH=PE×OD=PE,∵PE=PH﹣EH=y P﹣y E,┅┅┅┅┅┅┅┅(7分)直线BD的关系式为y=,∴PE=,=,当x=时,PE最大为,∴点P的坐标(,),┅┅┅┅┅┅┅┅┅┅(8分)②当P在BC间的抛物线上时,即0<x<1,同理可求出四边形PBCD的面积,很显然,此时四边形PBCD的面积要小于点P在BD间的抛物线上时的四边形PBCD的面积,故P点的坐标是(,).┅┅┅┅┅┅┅┅┅(9分)19.解:(1)将点C(2,2)代入直线y=kx+4,可得k=﹣1所以直线的解析式为y=﹣x+4当x=1时,y=3,所以B点的坐标为(1,3)将B、C、O三点的坐标分别代入抛物线y=ax2+bx+c,可得解得,所以所求的抛物线为y=﹣2x2+5x.(2)因为ON的长是一定值,所以当点P为抛物线的顶点时,△PON的面积最大,又该抛物线的顶点坐标为(),此时tan∠PON=.(3)存在;把x=0代入直线y=﹣x+4得y=4,所以点A(0,4)把y=0代入抛物线y=﹣2x2+5x得x=0或x=,所以点N(,0)设动点P坐标为(x,y),其中y=﹣2x2+5x (0<x<)则得:S△OAP=|OA|?x=2xS△ONP=|ON|?y=?(﹣2x2+5x)=(﹣2x2+5x)由S△OAP=S△ONP,即2x=?(﹣2x2+5x)解得x=0或x=1,舍去x=0得x=1,由此得y=3所以得点P存在,其坐标为(1,3)20.解:(1)设抛物线的解析式为:y=a(x﹣3)2﹣3,依题意有:a(1﹣3)2﹣3=0,a=,∴该抛物线的解析式为:y=(x﹣3)2﹣3=x2﹣x+.(2)设B点关于y轴的对称点为B′,则B′(﹣1,0);设直线AB′的解析式为y=kx+b,则有:,解得;∴y=﹣x﹣;故P0(0,﹣).(3)由(1)的抛物线知:y=x 2﹣x+=(x﹣1)(x﹣5),故C(5,0);∵S四边形AP0BC=S△AB′C﹣S△BB′P0=×6×3﹣×2×=;∴S△BCM=S四边形AP0BC=;易知BC=4,则|y M|=;当M的纵坐标为时,x2﹣x+=,解得x=3+,x=3﹣;当M的纵坐标为﹣时,x2﹣x+=﹣,解得x=3+,x=3﹣;故符合条件的M点有四个,它们的坐标分别是:M1(3+,),M2(3﹣,),M3(3+,﹣),M4(3﹣,﹣).21.:(1)由于抛物线经过A(2,0),C(0,﹣1),则有:,解得;∴抛物线的解析式为:y=﹣x﹣1.(2)∵A(2,0),C(0,﹣1),∴直线AC:y=x﹣1;设D(x,0),则E(x,x﹣1),故DE=0﹣(x﹣1)=1﹣x;∴△DCE的面积:S=DE×|x D|=×(1﹣x)×x=﹣x2+x=﹣(x﹣1)2+,因此当x=1,即D(1,0)时,△DCE的面积最大,且最大值为.(3)由(1)的抛物线解析式易知:B(﹣1,0),可求得直线BC的解析式为:y=﹣x﹣1;设P(x,﹣x﹣1),因为A(2,0),C(0,﹣1),则有:AP2=(x﹣2)2+(﹣x﹣1)2=2x2﹣2x+5,AC2=5,CP2=x2+(﹣x﹣1+1)2=2x2;①当AP=CP时,AP2=CP2,有:2x2﹣2x+5=2x2,解得x=2.5,∴P1(2.5,﹣3.5);②当AP=AC时,AP2=AC2,有:2x2﹣2x+5=5,解得x=0(舍去),x=1,∴P2(1,﹣2);③当CP=AC时,CP2=AC2,有:2x2=5,解得x=±,∴P3(,﹣﹣1),P4(﹣,﹣1);综上所述,存在符合条件的P点,且P点坐标为:P1(2.5,﹣3.5)、P2(1,﹣2)、P3(,﹣﹣1)、P4(﹣,﹣1).22.解:(1)∵抛物线的顶点为Q(2,﹣1),∴设抛物线的解析式为y=a(x﹣2)2﹣1,将C(0,3)代入上式,得:3=a(0﹣2)2﹣1,a=1;∴y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)分两种情况:①当点P1为直角顶点时,点P1与点B重合;令y=0,得x2﹣4x+3=0,解得x1=1,x2=3;∵点A在点B的右边,∴B(1,0),A(3,0);∴P1(1,0);②当点A为△AP2D2的直角顶点时;∵OA=OC,∠AOC=90°,∴∠OAD2=45°;当∠D2AP2=90°时,∠OAP2=45°,∴AO平分∠D2AP2;又∵P2D2∥y轴,∴P2D2⊥AO,∴P2、D2关于x轴对称;设直线AC的函数关系式为y=kx+b(k≠0).将A(3,0),C(0,3)代入上式得:,解得;∴y=﹣x+3;设D2(x,﹣x+3),P2(x,x2﹣4x+3),则有:(﹣x+3)+(x2﹣4x+3)=0,即x2﹣5x+6=0;解得x1=2,x2=3(舍去);∴当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1;∴P2的坐标为P2(2,﹣1)(即为抛物线顶点).∴P点坐标为P1(1,0),P2(2,﹣1);(3)由(2)知,当P点的坐标为P1(1,0)时,不能构成平行四边形;当点P的坐标为P2(2,﹣1)(即顶点Q)时,平移直线AP交x轴于点E,交抛物线于F;∵P(2,﹣1),∴可设F(x,1);∴x2﹣4x+3=1,解得x1=2﹣,x2=2+;∴符合条件的F点有两个,即F1(2﹣,1),F2(2+,1).23.解:(1)由已知A(0,6),B(6,6)在抛物线上,得方程组,(1分)解得.(3分)(2)①运动开始t秒时,EB=6﹣t,BF=t,S=EB?BF=(6﹣t)t=﹣t2+3t,(4分)以为S=﹣t2+3t=﹣(t﹣3)2+,所以当t=3时,S有最大值.(5分)②当S取得最大值时,∵由①知t=3,∴BF=3,CF=3,EB=6﹣3=3,若存在某点R,使得以E,B,R,F为顶点的四边形是平行四边形,则FR1=EB且FR1∥EB,。

二次函数动点问题解题技巧

二次函数动点问题解题技巧

二次函数动点问题解题技巧
《二次函数动点问题解题技巧》
一、概述
在数学中,二次函数动点问题是用来求解一个二次函数满足某点移动的情况。

这是一个经典的问题,一般涉及到二次函数的开根号法等技巧,因此在解决动点问题上要有所准备。

本文将介绍二次函数动点问题的解题技巧,指导考生正确解答此类问题。

二、解题技巧
1、把问题转化为动点方程。

首先,我们要把问题转化为一个动点方程:y=ax^2+bx+c。

其中a,b,c代表着不同的变量,它们分别代表着二次函数的三个系数。

2、求解动点方程。

接下来,我们要求解动点方程,首先需要解出各个变量的值,即a,b,c的值。

可以使用开根号法来求解,具体的步骤如下:
①把动点方程化为一元二次方程
②使用开方法求出a、b、c的值
3、求解动点问题。

最后,我们要求解动点问题,就是找到动点移动后的位置。

这时可以使用同样的方法,即把二次函数带入动点方程,使用开根号法求出动点移动后的位置。

三、总结
本文介绍了二次函数动点问题的解题技巧,涉及到动点方程的求解和动点移动后位置的求解。

由此可见,要正确解答二次函数动点问
题,必须具备良好的开根号法的技巧,并熟练掌握求解动点方程和动点问题的解题技巧。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线(a ≠0)与轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;32++=bx ax y x(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。

二次函数动点问题类型

二次函数动点问题类型

二次函数动点问题类型一、求解动点坐标问题:1.已知二次函数的图像经过特定点,求该点的坐标。

例如,已知二次函数y=ax^2+bx+c的图像过点(2,5),求a、b、c的值。

解:由于(2,5)是曲线上的一点,所以满足曲线上的点的坐标满足函数的定义关系式,即:y=ax^2+bx+c代入已知点的坐标,得到:5=4a+2b+c再结合二次函数的性质,无论a、b、c取何值,都可以确定一个二次函数,因此需要再提供其他的条件才能完全确定a、b、c的值。

2.已知二次函数的顶点坐标,求顶点坐标与对称轴的方程。

例如,已知二次函数y=ax^2+bx+c的顶点坐标为(2,3),求对称轴的方程和a、b、c的值。

解:根据二次函数的性质,二次函数的顶点坐标位于对称轴上,所以对称轴的方程可以通过已知的顶点坐标得到。

对称轴的方程为x=顶点的横坐标,即x=2然后,再结合二次函数顶点坐标的性质,即顶点坐标(2,3)满足a*(2^2)+b*2+c=3,代入这个关系式,可以求解出a、b、c的值。

3.已知二次函数的零点,求函数的表达式。

例如,已知二次函数y=ax^2+bx+c的零点为x=1和x=3,求函数的表达式。

解:已知x=1和x=3是函数的零点,代入函数的定义关系式,得到a*(1^2)+b*1+c=0和a*(3^2)+b*3+c=0。

进一步整理就可以得到一个由a、b、c构成的方程组,解这个方程组就可以确定a、b、c的值,从而得到二次函数的表达式。

二、研究动点运动规律问题:1.如何通过二次函数的图像研究点的运动规律?二次函数可以表示一个抛物线的图像,通过分析二次函数的各项系数可以得到抛物线的开口方向、顶点坐标等信息,从而研究点的运动规律。

例如,当二次函数的a大于0时,抛物线开口向上,顶点坐标为最低点,点的运动趋势是从下往上;当二次函数的a小于0时,抛物线开口向下,顶点坐标为最高点,点的运动趋势是从上往下。

2.如何通过已知条件研究点的运动规律?已知的条件可以包括点的初始位置、速度、加速度等信息,将这些信息转化成数学问题,从而得到二次函数的各项系数,进而通过研究二次函数的图像研究点的运动规律。

二次函数动点问题专题

二次函数动点问题专题

二次函数动点问题专题一、因动点产生的面积问题1、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由. (3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.cbxxy++-=2ABC2、如图,抛物线y=12x2+b x-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0)。

(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上一个动点,当CM+DM的值最小时,求m的值;(4)点P为直线BC下方抛物线上一动点,问当P在什么位置时,四边形ACPB 的面积最大,求出此时的P点坐标及最大面积。

3.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B 两点,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方抛物线上的动点.(1)求这个二次函数表达式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.4、(2015中大附中一模)如图,已知抛物线c bx ax y ++=2过点A (6,0),B (-2,0),C (0,-3).(1)求此抛物线的解析式;(2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积;(3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠GQA =45º,求点Q 的坐标.5、(2016•越秀区一模)如图,已知抛物线y=x 2﹣(m +3)x +9的顶点C 在x 轴正半轴上,一次函数y=x +3与抛物线交于A 、B 两点,与x 、y 轴分别交于D 、E 两点.(1)求m 的值;(2)求A 、B 两点的坐标;(3)当﹣3<x <1时,在抛物线上是否存在一点P ,使得△PAB 的面积是△ABC 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.二、因动点产生的等腰三角形存在性问题1、已知:如图抛物线a x x y +-=421过点A (0,3),抛物线1y 与抛物线2y 关于y 轴对称,抛物线2y 的对称轴交x 轴于点B ,点P 是x 轴上的一个动点,点Q 是第四象限内抛物线1y 上的一点。

二次函数中的动点问题

二次函数中的动点问题

二次函数中的动点问题二次函数是高中数学课程中比较重要的一种函数类型,它的图像是一个开口朝上或朝下的抛物线,可以用来表达很多实际问题中的关系。

其中,二次函数中的动点问题是一个常见的问题,主要涉及到了抛物线上某点的运动轨迹,对于此类问题的讨论可以帮助我们深入理解二次函数以及抛物线的特点和应用。

一、动点问题的形式通过一个具体的例子来展示二次函数中的动点问题。

设有一根长60m、重量为100N的弹性绳悬挂于两个点P、Q 之间,弹性绳呈现一个U形。

现有一质量为m的物体从点P 处自由下落,然后受到弹性绳的支撑反弹,反弹高度为h,再落回原点P处。

此时,假设物体在下落或反弹的任意时刻都在弹性绳的中垂线上,我们可以通过求出物体在任意时刻的高度求解出反弹的高度h与物体的质量m的关系。

初步分析这个问题,可以列出物体所在的位置函数,即h(t)。

我们假设物体下落时时间t=0s,其高度为0m,则有:h(t) = at^2 + bt其中,a和b都是常数,t是时间。

物体在弹性绳上下运动,向下运动的时候速度会不断加快,直到反弹的时候速度为0,然后速度逐渐加快,到达下落的时候又达到最大值。

因此,可以得出物体的速度函数v(t):v(t) = 2at + b而物体的位置函数是速度函数的积分,因此可以解出:h(t) = at^2 + bt + c其中,c是一个常数,其值等于物体下落的初速度的平方除以2g(g为重力加速度,约为9.8m/s^2)。

由于物体在任意时刻都在弹性绳中垂线上,因此可以确定物体的运动轨迹为抛物线。

在上述问题中,我们可以确定抛物线的顶点V的坐标为(30,hmax),其中hmax即为物体下落时的最大高度。

二、动点问题的解法对于二次函数中的动点问题,主要通过求出抛物线的顶点来解决。

通过求解出顶点的坐标、抛物线的开口方向和方程等,可以确定抛物线的形状和运动轨迹,进而判断动点的位置、速度和加速度等物理量。

具体来说,解决二次函数动点问题的步骤如下:1. 确定抛物线的形状和开口方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
x O
二次函数中的动点问题(二) 平行四边形的存在性问题
一、技巧提炼
1、二次函数y=ax 2
+bx+c 的图像和性质
a >0
a <0
图 象
开 口 对 称 轴 顶点坐标
最 值
当x = 时,y 有最 值是 当x = 时,y 有最 值是 增减

在对称轴左侧
y 随x 的增大而
y 随x 的增大而
在对称轴右侧
y 随x 的增大而 y 随x 的增大而
2、平行四边形模型探究
如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。

平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。

A
B
C x
y
图1 图2
如图2,过A 、B 、C 分别作BC 、AC 、AB 的平行线,则以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。

3、平面直角坐标系中直线和直线l2:
当l1∥l2时k1= k2;
4、二次函数中平行四边形的存在性问题:
解题思路:(1)先分类(2)再画图(3)后计算
二、精讲精练
1、已知抛物线y=ax2+bx+c与x轴相交于A、B两点(A、B分别在原点的左右两侧),与y轴正半轴相交于C 点,且OA:OB:OC=1:3:3,△ABC的面积为6,(如图1)
(1)求抛物线的解析式;
(2)坐标平面内是否存在点M,使得以点M、A、B、C为顶点四边形是平行四边形若存在,请求出点M的坐标;若不存在,请说明理由;
(3)如图2,在直线BC上方的抛物线上是否存在一动点P,△BCP面积最大如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.
2、(2013•黔西南州)如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C
(1)求抛物线的函数解析式;
(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标。

【变式练习】
(2007•河南)如图,对称轴为直线x=2
7
的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;
(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围; ①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?
②是否存在点E ,使平行四边形OEAF 为正方形若存在,求出点E 的坐标;若不存在,请说明理由.
四、方法规律
1、平行四边形模型探究
如图1,点A ()11,x y 、B ()22,x y 、C ()33,x y 是坐标平面内不在同一直线上的三点。

平面直角坐标系中是否存在点D ,使得以A 、B 、C 、D 四点为顶点的四边形为平行四边形,如果存在,请求出点D 的坐标。

A
B
C x
y
图1 图2
以不在同一直线上的三点为顶点的平行四边形有三个。

由已知的三点坐标可根据图形平移的坐标性质,直接写出第四个顶点的坐标。

2、平面直角坐标系中直线和直线l 2:
当l 1 ∥l 2时k 1= k 2;
五、实战训练
1、抛物线y =-(x +2)2
-3的顶点坐标是()
(A ) (2,-3); (B ) (-2,3); (C ) (2,3); (D ) (-2,-3)
2、已知抛物线()20y ax bx c a =++≠在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()
A 、a >0
B 、b <0
C 、c <0
D 、a +b +c >0
3、函数()20y ax a =-≠与()20y ax a =≠在同一平面直角坐标系中的图象可能是()
4、如图,一次函数)0(1≠+=k n kx y 与二次函数)0(2
2≠++=a c bx ax y 的图象相交于A (1-,5)、
B (9,2)两点,则关于x 的不等式c bx ax n kx ++≥+2
的解集为( )
A 、91≤≤-x
B 、91<≤-x
C 、91≤<-x
D 、1-≤x 或9≥x
5、出售某种手工艺品,若每个获利x 元,一天可售出(8)x -个,则当x 为多少元,一天出售该种手工艺品的总利润y 最大。

6、(2012•宜宾)如图,抛物线y=x 2
﹣2x+c 的顶点A 在直线l :y=x ﹣5上。

(1)求抛物线顶点A 的坐标;
(2)设抛物线与y 轴交于点B ,与x 轴交于点C .D (C 点在D 点的左侧),试判断△ABD 的形状; (3)在直线l 上是否存在一点P ,使以点P 、A 、B 、D 为顶点的四边形是平行四边形若存在,求点P 的
坐标;若不存在,请说明理由。

7、已知,如图A(-1,0),B(3,0),C(0,-3),抛物线y=ax2+bx+c经过A、B、C三点,点E为x轴上一个动点,过点B作直线CE的垂线,垂足为D,交y轴于N点.
(1)求这条抛物线的解析式;
(2)设点E(t,0),△BEN的面积为S,请求出S与t的函数关系式;
(3)已知点F是抛物线y=ax2+bx+c上的一动点,点G是坐标平面上的一动点,在点E的移动过程中,是否存在以点B、E、F、G四点为顶点的四边形是正方形,若存在,请求出E点的坐标,若不存在,请说明理由.。

相关文档
最新文档