希望杯五年级培训100题
五年级希望杯100题(完整答案)之欧阳歌谷创编

2015年希望杯五年级赛前100题欧阳歌谷(2021.02.01)【1-4,简便计算】1)计算:0.685×5.6+3.4×0.685+0.685。
=0.685×(5.6+3.4+1)=0.685×10=6.852)计算:2015-2014+2013-2012+…+3-2+1。
=(2015-2014)+(2013-2012)+…+(3-2)+(1-0)=10083)计算:21×20.15+350×2.015+4.1×201.5+0.03×2015。
=21×20.15+35×20.15+41×20.15+3×20.15=20.15×(21+35+41+3)=20.15×100=20154)计算:2015×20142015-2014×20152014。
=2015×(20142014+1)-2014×(20152015-1)=2015×20142014+2015-(2014×20152015-2014)=2015+2014=40295)5个连续奇数的和是2015,求其中最大的奇数。
【奇偶数】中间数:2015÷5=403最大者:403+2+2=407答:最大的奇数为407。
6)若将2015分解成5个自然数的和,则这5个自然数的积是“奇数”,“偶数”,还是“奇数或偶数”?【奇偶数】5个自然数之和为2015,是奇数,所以其中有奇数个奇数。
如果全为5个奇数的话,其积为奇数;如果不全为奇数的话,其积为偶数。
答:这五个自然数的积是奇数或偶数。
7)若a是质数,b是合数,试写出一个合数(用a,b表示)。
【质数与合数】答:ab为合数。
8)1,3,8,23,229,2015的和是奇数还是偶数?【奇偶数】其中有5个奇数,所以和为奇数。
2022 奥赛希望杯五年级培训 100题——答案版

2022希望少年俱乐部-五年级培训100题(解析)1.【答案】395【解析】原式=75÷30× 4.67×30+17.9×2.5=2.5×140.1+17.9×2.5=2.5×140.1+17.9=2.5×158=3952.【答案】579557.95【解析】原式=5795.5795×579.5÷5.795=5795.5795×579.5÷5.795=5795.5795×100=579557.953.【答案】27.25【解析】分两段计算,前一段5个数,后一段项数:0.99− 0.11 ÷0.02+1=45原式=0.5× 5 +0.11 + 0.99 × 45 ÷ 2=2.5+1.1 × 45 ÷ 2=2.5 + 24.75=27.254.【答案】5【解析】原式=(0.81+0.83+⋯⋯+0.99)× 0.6=(0.81+0.99)× 10 ÷2× 0.6=1.8× 10 ÷2×0.6=9×0.6=5.4所以结果的整数部分是5。
5.【答案】13【解析】首先考虑商的十位,6□□×□=□□7,商的十位只能是1,可知除数是6□7,接着考虑商的个位,6□7×□=□□61得知,商的个位只能是3,反推可知除数是687,剩下就可以正常推算。
6.【答案】2754【解析】首先□□□×7=□1□,可知前一个乘数百位是1因为结果是2□□□,可知第2行乘积最高位是2接着是1□□×□=20□,可知,前一个乘数的十位是0,后一个乘数是2再回头可知10□×7=□1□,一定是102×7=714,剩下就容易填了。
希望杯第一届至第十届五年级试题与答案

10.三个武术队进行擂台赛,每队派 6 名选手,先由两队各出 1 名选手上擂台比武,负者下台,不再上 台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的双一位选手上台……继续下去。当有 两个队的选手全部被击败时,余下的队即获胜。这时最少要进行_____场比武。
1 6
11.两种饮水器若干个,一种容量 12 升水,另一种容量 15 升水。153 升水恰好装满这些饮水器,其中 15 升容量的_____个。
14.小光前天登录到数理天地网站 ,他在首页看到"您是通过什么方式知道本网站的?" 调查,他查看了投票结果,发现投票总人数是 500 人,"杂志"项的投票率是 68%。当他昨天再次登录数理 天地网站时,发现"杂志"项的投票率上升到 72%,则当时的投票总人数至少是_____ 。
的四位数是
。
8. a , b , c 都是质数,并且 a + b =33, b + c =44, c + d =66,那么 d =
,
BA
9.如果A◆B= A B ,那么1◆2-2◆3-3◆4-…-2002◆2003-2003◆2004=
。
10.用1-8这八个自然数中的四个组成四位数,从个位到千位的的数字依次增大,且任意两个数字的
1.计算
_______ 。
2.将 1、2、3、4、5、6 分别填在右图中的每个方格内,使折叠成的正方体中对面数字的 和相等。
3.在纸上画 5 条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:
景区
千岛湖 张家界 庐山 三亚 丽江 大理 九寨沟 鼓浪屿
气温(℃) 11/1
算英语,平均分是91分。小永三门功课的平均成绩是
05 年级“希望杯”培训题

五年级“希望杯”培训试题1、将20082007 ,20072008 ,20092008 ,20082009 这四个数从小到大排列是:____________________________。
2、计算:1.01•+2.12•+3.23•+4.34•+5.45•+…+9.89•3、计算:1×2+2×4+3×6+…+1005×20104、计算:2009×0.23+34×20.09+4.3×200.95、计算:1×(2×3)÷(3×4)×(4×5)÷(5×6)×……×(2008×2009)÷(2009×2010)6、计算:(12345+23451+34512+45123+51234)÷(1+2+3+4+5)7、计算:1-2-3+4+5-6-7+8+9-……+2004+2005-2006-2007+40178、计算:29292929×88888888÷10101010÷111111119、计算:2008×200920092009-2009×20082008200810、计算:2÷3÷7+4÷6÷14+14÷21÷494÷7÷9+8÷14÷18+28÷49÷6311、以m表示个位及十位数字均为偶数的两位数的个数,以n表示个位十位数字均为奇数的两位数的个数,则m与n之间的大小关系是__________。
12、在两位数中,个位数字与十位数字奇偶性不同的数共有__________个。
13、在三位数中,百位数字是十位数字的2倍,十位数字是个位数字的2倍的数有__________个。
第十二届小学“希望杯”全国数学邀请赛培训题(五年级)100题打印版.pdf

1.计算:3.14×67+8.2×31.4-90×0.314。
2.计算:12.65÷12.5÷0.8。
3.计算:16.92÷[2.64×(5.6-2.1)+0.16]。
4.计算:(32×0.63×0.95)÷(11 6×21×1.9)。
5. 用[a]表示不超过 a 的最大整数, {a}表示 a 的小数部分, 即{a}=a-[a], 定义一种运算“*”: a*b=(a+b)÷(b -1),求[4.1]+{2.6}*[3.5]的值。
67.父亲和儿子在同一所学校工作和学习。一天,父子二人同时从家出发步行去学校,父亲每分钟比儿子多 走 20 米,30 分钟后父亲到学校,到校后发现忘了带手机,就立即按原路返回,在离学校 350 米的地方遇上 儿子。问儿子到校需要多少分钟?
23.在一次数学竞赛中,前五名的平均成绩比前三名的平均成绩少 1 分,前七名的平均成绩比前五名的平均 成绩少 3 分。若第四名到第七名的平均成绩是 84 分,则前三名的平均成绩是多少分?
24.有九个数,平均数是 16,如果把其中一个数改为 30,那么这九个数的平均数是 18,则改动的这个数原 来是多少?
15.有 100 个数排成一排:0,2,6,16,42,110,288, …,前两个数分别是 0 和 2,从第二个数开始,每 个数的 3 倍恰好是与它相邻的两个数之和,求最后一个数除以 4 的余数。
16.一个自然数有 15 个因数,它乘以 2006 后至少可能有多少个因数?最多可能有多少个因数?
39.一个两位质数,它的个位数字比十位数字大 3,求这个质数。
40.三个互不相等的质数的和是 40,求这三个质数的乘积。
41.有一个三位数,被 11 除余 7,被 7 除余 3,被 5 除余 1,这个数最小是多少?
第一届希望杯培训题(五年级)_4

第一届希望杯培训题(五年级)1.一个四位数,给它加上小数点后比原数小1982.97,这个四位数是_____。
2.将0.1234567加上两个表示循环节的点,变成循环小数,使小数点后第2003位上的数字为5,则这个循环小数是_____________。
3.小马虎一不留神将四个循环小数中表示循环节的点都写丢了,结果出现了下面这个错误的不等式.请你帮他补上表示循环节的点,使得不等式成立.0.2003>0.2003>0.2003>0.20034.用“四舍五入”法把某些自然数百位后面的尾数省略,可以得到数5000,则这些自然数与5000的最大差值是__________。
5.如图1,平行四边形ABCD 的面积是72平方厘米,E 是CD 边上的任一点,AF =FG =GB ,则阴影部分的面积是_______平方厘米.6.A 、B 、C 、D 四人加工零件,已知A 、B 两人加工的总数C 、D 两人加工的总数相等,D 加工得只比B 多,那么四个人中____加工得最多.7.已知a 、b 是两个自然数,并且a 2=2b ,如果b 不超过50,那么a 的最大值是______。
8.如果200≤a ≤400,600≤b ≤1200,那么ab 的最大值是______。
9.一个最简分数,分子、分母的和是86,如果分子、分母都减去9,得到的分数是9,则原分数是______。
10.如图2,已知长方形面积是56平方厘米,A 、B 分别是长和宽的中点,则阴影部分的面积是________平方厘米.11.有质量为100千克的物品,先将它的质量增加101,再将后来物品的质量减少101,最后物品的质量是______千克. 12.租用仓库堆放2吨货物,每月租金6000元,这些货物原来估计要销售2个月,实际降低了价格,结果一个月就销售完了,由于节省了租金,结算下来,反而多赚了1000元.那么每千克货物降低了______元.13.把一根竹竿垂直插入水底,竹竿湿了40厘米,然后将竹竿转过来插入水底,这时竹竿湿的部分比它的一半长13厘米,则竹竿长____厘米.14.一些红棒与黑棒,红棒的一半与黑棒的31之和是13根,黑棒的一半与红棒的31之和是12根,则黑棒有______根,红棒有______根.15.自行车越野赛全程220千米,被分为20个路段,其中一部分路段长14千米,其余路段长9千米,则长为9千米的路段有_____个.16.如图3,大小两个正方形拼在一起,阴影部分面积为28平方厘米,小正方形边长为4厘米,则图中空白部分的面积是____平方厘米.17.甲、乙两个书架中摆放的书一样多,从甲书架中拿走18本,从乙书架中拿走42本后,甲书架中余下的书是乙书架中余下的书的4倍.则甲、乙两个书架中原来共摆放_____本书.18.小华在计算出2003个数的平均数后,把所求的平均数也混在了原先的2003个数中.小华求得混在一起的数的平均数为200,则原来的2003个数的平均数是______。
希望杯五年级赛前培训100题

希望杯五年级赛前集训100题1. 计算:12.5×111-1.5×25= 。
2. 计算:49.2492492÷1.23123123=3. 计算:(0.3+0.5)÷0.25×1.2=4. 填上适当的数,使等式成立:[25+54.9÷( -2.37)]×2.1=115.5。
5. 在下面的四个□中填入+、-、×、÷四个符号,使结果最大,并计算出来:20□1.5□18□12.6□2.1= 。
6. 32,53,75,97,119中,第三大的数是 。
7. 在3.1415926的小数部分的某一个或两个数位上加表示循环节的点,将它变成循环小数,则得到的循环小数中最大的是 ,最小的是 。
8. 1+21+31+……+101的计算结果是一个循环小数,它的循环节是 。
9. 对于数a 和b ,规定☆运算如下:a ☆b=4a+3b 。
请比较:5.1☆2.3 2.3☆5.1。
(填“>”、“<”或“=”)10. 设[a]表示不大于数a 的最大整数,如[1.9]=1,[2]=2。
那么[1.36]+[1.36+301]+[1.36+302]+……+[1.36+3028]+[1.36+3029]= 。
11.如图1,欢欢在一张大纸上画“长方形螺旋”,由里向外依次画长度为1cm,1cm,2cm,2cm,3cm,3cm,4cm,4cm,……的线段。
当“长方形螺旋”的总长度为3000cm 时,欢欢正在画的线段长度是 cm 。
12. 1012010+252010的末两位数是 .13. 22,33和44分别可以按如图2所示的方式“分裂”成2个、3个和4个连续奇数的和,63也能按此规律进行“分裂”,则“分裂”出的奇数中最大的是 。
14. 将若干个黑色的小球和白色小球按如下规律排成一串,则第2010个小球是色的。
15. 如图3,从3×3的方格中取出两个有一个公共顶点但是没有公共边的小方格,一共有种不同的取法。
希望杯5年级考前100题题目和答案

第十五届(2017年)小学“希望杯”全国数学邀请赛五年级培训题1. 计算:2016×20172017-2017×20162016.2. 计算:32.2÷2.7+386÷54-4.88÷0.27.3. 计算:6051×0.125-0.375×1949+3.75×1.2.5. 用[a]表示不超过a的最大整数,{a}表示a 的小数部分,即{a}=a-[a],定义一种运算“⊕”:a⊕b=(a-b)÷(b+1),求[3.9]⊕{5.6}+[4.7]的值.6. 找规律,填数:0,2,12,36,80,150,252,______,_______,…7. 如图1 所示的七个圆内填入七个连续自然数,使每相邻圆内的数之和等于连线上的数,求这七个自然数的和.8. 有一串数,最前面的4 个数是2,0,1,6,从第5 个数起,每一个数是它前面相邻4 个数之和的个位数字,问在这一串数中,会依次出现2,0,1,7 这4个数吗?9. 小华在电脑上玩一种游戏:输入一个大于零的自然数,则输出的数比输入的数扩大一倍还多1,若先输入的数既不是质数,也不是合数,再将输出的数输入,…则输出的数中,首先超过100的数是多少?10. 从1123个1×1的正方形纸片中,依次取出1个,3个,5个,7 个,…,(2n-1)个,求最大的n.11. 已知x是两位数,y是一位数,若1123=x×x+11y×y,求x+y.12. 20152015+20162016+20172017的个位数字是多少?(定义:x n表示n个x相乘)13. 1×2×3×4×…×2016×2017 的积的末尾有多少个连续的0?14. 111a是四位数,若111a-3是7的倍数,求自然数a.15. 有三个连续的自然数,它们的和是三位数,并且是31 的倍数,求这三个数的和的最小值.16. 若是四位数,并且-3是7的倍数,那么a + b有多少个不同的值?17. 100 名同学面向老师站成一行.大家先从左至右按1,2,3,…依次报数;再让报数是4 的倍数的同学向后转,接着又让报数是5 的倍数的同学向后转. 问:背向老师的有多少人?18. 一个自然数,它除了1以外的两个不同约数的和最大是60,求这个自然数.19. 三位数中,被6 除,余数是5的有多少个?20. 有一类四位数,除以5余3,除以7余6,除以9余6,求这类四位数中最小的数.21. 求被7除余5,被8除余2的最小的三位数.22. 是三位数,若-a可被13整除,求自然数a的最小值.23 .是三位数,若+1 是7的倍数,-1是13的倍数,求自然数a.24. ,求a÷7 得到的余数.25. 五年级(2)班同学分为5 组,按组活动.第一组到第五组的人数分别是12 人,6人,10人,13人,7 人. 其中有一个小组需要留在教室内,其余四组去操场跑步和跳绳,若跑步的人数比跳绳的人数的2 倍多5人,则留在教室的是第几组?26. 小华将连续偶数2,4,6,8,10,…逐个相加,结果是2016. 验算时发现漏加了一个数,那么,这个漏加的数是多少?27. 三个质数的平方和是390,这三个质数分别是多少?28. 3个不同的质数a,b,c满足a+b=c,且b×c=143,求a×(b+c)的值.29. 下面是著名的百羊问题.原文如下:《算法统宗》(明)程大位甲赶羊群逐草茂,乙拽一羊随其后,戏问甲及一百否? 甲云所说无差谬,所得这般一群凑,再添半群小半群,得你一只来方凑,玄机奥妙谁猜透?原文的意思是说,一个牧羊人赶着一群羊,有人牵着一只羊从后面跟来,问牧羊人:“你这群羊有100 只吗?”牧羊人说:“如果我再有这样一群羊,加上这群羊的一半,再加上一半的一半,连同你这一只羊,就刚好满100 只.”请问牧羊人赶着多少只羊?30. 用两个3,三个2,两个1可以组成多少个互不相同的七位数?31. 从1 到2017的所有奇数的平方数中,个位数是5的有几个?32. 从1 到101这101 个自然数中,(1) 至少选出_____个才能保证其中一定有两个数的和是7的倍数;(2) 如果要保证其中一定有两个数的和是6的倍数至少要选出______个.33. A,B,C,D四人久别重逢.(1) 四人站成一排照相,问有多少种站法?(2) 四人围成一圈照相有多少种站法?34. 电视台打算3天播完6集电视剧,其中可以有若干天不播,共有多少种播出的方法?35. 属相各异的12 位同学按鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、犬、猪的顺序围成一圈传递一袋不足200 颗糖的幸运礼包.每人接到礼包后取出一颗糖,然后将礼包往下传.属牛的最牛,先取糖,将礼包传给属虎的同学,…,若最后取到糖的同学属龙,则(1) 礼包里至少有多少颗糖?(2) 礼包里至多有多少颗糖?36. 纸箱中有赤,橙,黄,绿,青,蓝,紫七色袜子,每种袜子都是单色,且数量足够多,那么从中至少取多少只袜子可以保证有一双同色的袜子?37. 五年(1)班有46 名学生参加3 项活动.其中有24 人参加了数学小组,20 人参加了语文小组,参加美术小组的人数是既参加数学小组又参加美术小组人数的4倍,又是3项都参加的人数的8倍,既参加美术小组也参加语文小组的人数是3项都参加的人数的 3 倍,既参加数学小组又参加语文小组的有10 人,问参加美术小组的人数是多少?38. 有1 克、2克、4 克、8克、16 克重的砝码5枚,若只能在一边放砝码,问:(1) 用这些砝码可称出多少种不同的重量?(2) 若4克的砝码破损后只剩下3克,则可称出多少种不同的重量?39. 小明家住在一条胡同里,这条胡同里的门牌号码从1号、2号、…连续下去.全胡同所有住户的门牌号之和减去小明家的门牌号码,其结果为265. 则(1) 这条胡同共有多少家住户?(2) 小明家的门牌号码是几号?40. 数一数,图2中共有多少个三角形?41. (1) 图3中有多少个长方形(包括正方形)?(2) 图3中包含*的长方形有多少个(包括正方形)?42. 波兰数学家谢尔宾斯基(Sierpinski)在1915年提出了谢尔宾斯基三角形. 以下是它的构造方法:①取一个实心的等边三角形;②沿三边中点的连线,将它分成四个小三角形;③去掉中间的那一个小三角形;④对其余三个小三角形重复②③④.这样下去可以重复无数次操作,如图4 所示. 如果原来的大等边三角形面积为256,那么在4次操作之后,三角形中被去掉的空白部分面积为多少?43. 如图5,8个小等边三角形组成了一个梯形.(1) 数一数图5中有几个等边三角形;(2) 若去掉一个三角形,使得三角形的总数减少1个,你能办得到么?减少两个呢?44. 所谓闭折线,就是一些线段首尾相接构成一个回路.比如五角星,它是一个有5条边的闭折线,并且它的5条边互相相交,共有5个交点(不包括线段的端点交点). 请问:一个有6 条边的闭折线,它的6 条边之间最多可以有多少个交点(不包括线段的端点交点)?45. 如图6,将正面为白色,背面为红色,面积为105 的长方形彩纸背面向正面折起一部分,使这部分重合到彩纸内,这时,白色彩纸的面积只剩下了原来的0.2倍,求被折起的这部分(阴影部分)的面积.46. 如图7,长方形ABCD 中,△ABP 的面积为30,△CDQ 的面积为35,求阴影部分的面积.47. 如图8,8边形的8个内角都是135°.已知AB=EF,BC=20,DE=10,GF=30,求AH的长.48. 如图9,四边形ABCD 是一个正方形,梯形AEBD 的面积是26,△AOE 的面积比△BOD的面积小10,求正方形的边长.49. 如图10,直角梯形ABCD 中,DF⊥BC,AB=10,DE 的长度是EF 的4 倍,阴影部分的面积为90. 求梯形ABCD的面积.50. 如图11,在梯形ABCD中,AB=15,CD=5,梯形的面积为80,求△AOB的面积.51. 如图12,过平行四边形ABCD 内的一点P 作边的平行线EF,GH,若平行四边形BEPH的面积为4,平行四边形PFDG的面积为7,求△PAC 的面积.52. 如图13,△ABC 中,试在AB上取点E,在AC 上取点F,D,连接EF,ED,BD,使得△AEF,△EDF,△BDE,△BCD 的面积都相等(说出一种方法即可,但要证明其正确性).53. 如图14(a)边长分别为13,5 的两个正方形叠放在一起,两个正方形内部的阴影部分的面积差为M. 如图14(b)边长分别为15,9的两个正方形叠放在一起,两个正方形内部的阴影部分的面积差为N. 试比较M与N 的大小.54. 在边长是2米的等边三角形内任意丢放5颗小石子,则总有两颗小石子的距离不大于1米,请说出理由.55. 张大伯利用一堵旧墙AB,用长50m 的篱笆围成一个留有1m 宽的门的梯形场地CDEF(CD∥EF),如图15所示.若DE的长为10m,则梯形场地CDEF的最大面积是多少?56. 如图16,ABCD 是正方形,AEGD,EFHG,FBCH 都是长方形,若图16 中所有长方形(含正方形)的周长之和为190,EF=5,求正方形ABCD的面积.57. 用2017 个等腰直角三角形能不能拼成一个正方形? 请说明理由. (注:等腰直角三角形不要求一样大).、58. 一只乌鸦从其鸟巢飞出,飞向其巢北10 千米东7千米的A地,在A地它发现有一个稻草人,所以就转向巢北4 千米东5 千米的B 地飞去,在B 地吃了一些谷物后立即返巢,其所飞的途径构成了一个三角形,这个三角形的面积为多少平方千米?59. 图17 是一个正方体纸盒的展开图,当折叠成纸盒时,与点1 重合的点的编号有哪些?60. 一组积木组成的图形,从正面看是,从侧面看是,则(1) 这组积木最少是用多少块正方体积木摆出来的?(2) 这组积木最多是用多少块正方体积木摆出来的?61. 甲、乙、丙在猜一个完全平方的两位数.甲说:它的因数个数为奇数,而且它比90大.乙说:它是奇数,而且它比80小.丙说:它是偶数,而且它比100小.如果他们三个人每个人都有半句真话,半句假话,那么这个数是多少?62. 如图18,三根绳子系在一起,现在要在绳子的某处点火,如果每分钟火燃烧的距离是1,那么至少需要几分钟才能烧光这些绳子?63. 已知“西门鸡翅”的价格是3元钱2个鸡翅,“好伦哥”的价格是20元自助餐(无论吃多少个鸡翅都是20 元),请根据图19 中的对话判断,小笨至少能吃多少个鸡翅?64. 小笨得到了一笔压岁钱,但却忘了具体有多少钱. 他只记得这个三位数的各位数字之和是17,其中十位数字比个位数字大 1. 如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198. 请你帮小笨算算,这笔压岁钱有多少元?65. 某次考试共有12 道判断题.小聪划了7 个钩和5 个叉,结果对了8 道;小笨划了3 个钩和9 个叉,结果对了10 道;大壮一道不会,索性全部打叉,那么他至少可以蒙对多少道题?66. 如图20,在空格内填入数字1~4,使得每行、每列和每个粗线围成的区域里数字都是1~4恰好各一个,若M+N>4,则M×N 的值是多少?67. 有61 个人坐成一横排.首先,正中间的一个人站起来,然后,按下述方法大家都或坐或站:(1) 如果邻座的人站起来,那么1秒钟后自己也站起来;(2) 站起1秒钟后坐下;(3) 如果左右邻座的人都是站着的,那么即使过了1秒钟,自己仍然坐着.那么最初的那个人站起7秒钟后,有几个人站着?68. 某学生俱乐部有11 个成员,他们的名字分别是A~K.这些人分为两派,一派人总说实话,另一派人总说谎话.某日,老师问:“11 个人里面,总说谎话的有几个人?”那天,J 和K休息,余下的9个人这样回答:那么这个学生俱乐部的11 个成员中,总说谎话的有多少个人?69. 某单位空降一名总经理,五位职员了解了这位经理的一些情况,现列表如下:这五位职员了解的情况,每人只有1项是正确的,请判定该经理的情况.70. 班长小英让x 名同学去种少于100棵的树苗.若每人种7棵,则余下5棵;若每人种8棵,则有1 人只须种6棵. 求:(1)人数x;(2)树苗的棵数.71. 全家四口人,父亲比母亲大3岁,姐姐比弟弟大2岁. 4年前他们全家的年龄之和是58岁,而现在是73岁. 问现在母亲的年龄是多少岁?72. 有一根木棍有三种刻度,第一种刻度将木棍分成10 等份,第二种刻度将木棍分成12等份,第三种刻度将木棍分成15等份.如果沿每条刻度线将木棍锯断,请问木棍共被锯成多少段?73. 某快递公司已囤积部分快件,但仍有快件不断运来,公司决定用快递专车将快件分给客户,若9 辆车发货,12 小时运完;若用8 辆车发货,16 小时可以运完. 问:如果先用6 辆车运,3小时后需再增加几辆车,再过5小时可以运完?74. 10 点多的某个时刻,小明发现1 分钟后表的时针与1 分钟前表的分针夹角是180°,那么现在是10点几分?75. 三堆苹果共48 个. 先从第一堆中拿出与第二堆个数相等的苹果放入第二堆,再从第二堆中拿出与第三堆个数相等的苹果放入第三堆,最后又从第三堆中拿出与第一堆个数相等的苹果放入第一堆,这时三堆苹果数恰好相等.第一堆苹果原来有多少个?76. 甲、乙共有26 颗糖.甲先拿走乙的一半,乙发现后,也拿走了甲的一半. 甲不服气,又偷偷拿了乙5颗糖,此时甲比乙多2颗,问:乙刚开始时有多少颗糖果?77. 甲、乙两车同时从A,B两地相向而行,在距A地70千米处第一次相遇.各自到达对方出发地后立即返回,途中又在距A 地50 千米处相遇. 问:A,B 两地相距多少千米?78. 一列火车速度不变地驶过长为600米的铁路桥需1分钟,以相同的速度完全穿过长为2200米的隧道需要3分钟,问:火车长多少米? (从车头上桥到车尾离桥即为完全驶过铁路桥)79. 张华从家到学校上课,先用每分钟80 米的速度走了3 分钟,发现这样走下去将迟到3分钟;于是她就改用每分钟110米的速度前进,结果提前了3分钟到校.张华家离学校有多远?80. 有A,B,C 三辆车同时从同一地点出发,沿同一条公路追赶前面的一个骑车人,这三辆车分别用6分钟、10 分钟、12 分钟追上骑车人.现在知道A车每小时行24 千米,B车每小时行20千米,那么,C 车每小时行多少千米?81. 某人沿着电车道旁的便道以4.5千米每小时的速度步行,每14.4 分钟有一辆电车迎面开过,每24 分钟有一辆电车从后面追过来,如果电车按相等的时间间隔以同一速度不停的往返运行,问:电车发车间隔是多少分?82. 星期六小王去球馆打球,去时发现家中的钟没电了,于是换上电池,把钟暂时调整到8 时整,到球馆时球馆的钟刚好是8 时整,打球到11 时整,他以原速度回家发现家中的钟刚好是12 时整,小王根据这些时间关系再次调整了时间,如果小王在路上的速度是60米/分钟,请问:(1) 从家到球馆的路程是多少米?(2) 小王到家的准确时间是几点?83. 某汽车从A 地开往B 地,如果在计划行驶时间的前一半时间每小时行驶30千米,而后一半时间每小时行驶50千米,则按时到达;但汽车以每小时行驶40千米的速度从A地行驶至离A,B中点还差40 千米的地方发生故障,而停车检修半小时,此后以50 千米每小时的速度行驶,仍按时到达B地,问:(1) 原计划时间是几小时?(2) A,B两地的距离是多少千米?84. 甲、乙两名同学从山脚开始爬山,到达山顶后立即下山,在山脚和山顶之间不断往返运动. 已知山坡长360 米,甲上山的速度是乙上山的速度的 1.5 倍,并且甲乙下山的速度是各自上山速度的1.5 倍. 当甲第三次到达山顶时,乙所在的位置距山顶多少米?85. 熊大和熊二清晨起床后去学校的环形跑道上跑步锻炼,已知环形跑道的一周是400 米,两只熊分别在相距80 米的A,B 两处同时跑,熊大每秒跑3 米,熊二每秒跑2米,那么熊大和熊二几秒后第一次相遇?86. 甲、乙二人在一条相距20 千米的平直公路的两处同时同向骑自行车(时速不超过60 千米)前进,一小时后两人相距15 千米,已知乙的时速比甲的时速的2倍少10 千米,求甲,乙二人的时速.87. 加工一批零件,如果甲先做4 小时,乙再加入一起做,完成时甲比乙多做400个,如果乙先做4 小时,甲再加入一起做,完成时甲比乙多做40 个. 如果一开始甲乙就一起做,那么,完成时甲比乙多做多少个?88. 猴子A,B 一起上山摘桃子,猴子B 单独摘完需要50 天,如果猴子A 第一天摘,猴子B第二天摘,这样交替摘,恰好整天数可摘完. 如果猴子B 第一天摘,猴子A 第二天摘,这样交替摘,恰好比上次轮流的方法多用半天摘完,那么猴子A单独摘完需要多少天?89. 一个玻璃容器里所装的糖水中含有10克糖,再倒入浓度为5%的糖水200克,配成浓度为2.5%的糖水. 那么原来这个玻璃容器的水有多少克?90. 用黑、白两种颜色的皮块缝制而成的足球,黑色皮块是正五边形,白色皮块是正六边形,若一个球上共有黑、白皮块32 块,则(1) 黑色皮块有多少块?(2) 白色皮块有多少块?91. 小聪与小笨一起爬楼梯上楼,小聪家住5层,小笨算了一下,自己的速度必须是小聪的2倍,这样才可以与小聪同时到达各自家中,那么小笨家住几层?92. 一个牧民买了一头母羊,每年能生2只公羊,4只母羊,每只小母羊两年后,又可以每年生6只羊,其中2只公羊,4只母羊.这样从今年开始到第4年底,一共有多少只羊?93. 一辆长途汽车的起点是甲站,终点是丙站,中途停靠乙站. 从甲站到乙站和从乙站到丙站的票价都是2元,而从甲站到丙站的票价是3元,一天这辆长途汽车离开甲站时载有45 名乘客,到了乙站有12 人下车,19 人上车,那么该长途汽车这一天的车票收入是多少元?94. 甲、乙两人共带90 千克行李坐飞机旅行,机场规定:每人所带行李重量不超过规定重量免费,超出部分重量按标准收费.两人分开带行李分别收费是16.8元和13.2 元;如果由一人带行李就要收42元.问:免费规定重量是不超过多少千克?95. 大壮加工一批产品,他每加工出一件正品,得报酬0.75元,每加工出一件次品,罚款1.50元,这天他加工的正品是次品的7倍,得到11.25 元的报酬. 那么他这天加工出几件次品?96. 一个工人与用人单位签订了一个月的短期合同,双方约定,每工作一天得80元,不上班不但没工资,且每天要倒扣10元.月末结账时,该工人领到工资2030元,问这个工人工作了多少天?97. 顾客和店主有如下对话:顾客:老板,这件商品多少元?店主:这件商品五折减5角和六折减6角的结果一样.顾客:按“五折减5 角”的优惠价买可以么?店主:不行!顾客:按“九折减9 角”的优惠价来买可以吗?店主:不行!问:(1) 这件商品的单价是多少?(2) 店主为什么坚持不卖?98. 小聪赶着一头猪到山外的生猪收购站去卖,过秤知猪重150斤,他和收购站的工作人员有如下对话:收购员:你这头猪肚子这么大又这么重,是不是故意让猪吃了很咸的猪食,然后大量喝水造成的?不收!小聪:我们家有诚信的家风,绝不会这样!请收购吧,我走了很远的山路才到这里.收购员:如果马上收购,猪的重量要打九折,如果你明天早上来,当面再称猪的重量,收购价提高两成五,两种选择由你确定!请帮助小聪作出选择,并说明理由.99. 一种商品,甲店:“买四赠一”,乙店:“优惠”,如果只从经济方面考虑,你选择去哪家商店?100. 有27位客人来某厂参观学习,厂领导派车去火车站接人,厂里有两种车子:可乘3 人(司机除外)的小轿车和可乘7 人(司机除外)的面包车,若要求车子全都满载,请确定派车的方案.参考答案1. 02. 13. 304. 105. 5.56. 392,5767. 358. 不会9. 12710. 3311. 3512. 813. 50214. 615. 18616. 1317. 3518. 40 或4519. 15020. 120321. 13822. 123. 9 24. 425. 4或526. 5427. 2,5,1928. 4829. 3630. 21031. 20232. 47,3733. 24,634. 2835. 19636. 837. 2438. 31,2739. 23,1140. 1641. 360,10842. 17543. 10,可以44. 745. 4246. 6547. 2048. 649. 168.7550. 4551. 1.552. 略53. M = N54. 略55. 20556. 10057. 可以58. 1159. 2, 660. 3,961. 8162. 2163. 1464. 47665. 766. 967. 868. 969. 姓黄,男性,年薪240 万.元,硕士学历70. 7,5471. 3172. 2873. 874. 2375. 2276. 1677. 13078. 20079. 2000 80. 1981. 1882. 1800,11:3083. 3,12084. 12085. 32086. 15,20;或5,087. 22088. 2589. 59090. 12,2091. 992. 9793. 16194. 2095. 396. 2697. 1元.98. 略99. 乙100. 9 辆小车或者2 辆小车 3 辆面包车。