最新怎样把无限循环小数化成分数教学内容
教学设计:无限循环小数化分数

设 ,由 可知: ,
∴ ,解方程,得: .于是,得 .
根据小明的做法,请进一步思考,回答下面的问题:
(1)如何把 化为分数形式?动手试一试.
(2)如何把 化为分数形式?动手试一试.
(3)如何把 化为分数形式?动手试一试.
活动二:小组合作探究
我们已经知道,对于一个无限纯循环小数(循环节是从小数点后第一位开始的,例如: , …),可以化为分数.那么对于一个无限混循环小数(循环节不是从小数点后第一位开始的,例如: , , …),我们能否总结出类似的方法呢?
(1)如何把 化为分数形式?动手试一试.
(2)如何把 化为分数形式?动手试一试.
(3)如何把 化为分数形式?动手试一试.
活动三:应用所学
(完整版)无限循环小数如何化为分数汇总

(完整版)无限循环小数如何化为分数汇总无限循环小数如何化为分数由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几……的数。
转化需要先“去掉”无限循环小数的“无限小数部分”。
一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了。
方法一:(代数法)类型1:纯循环小数如何化为分数例题:如何把0.33……和0.4747…… 化成分数例1:0.33……×10=3.33……0.33……×10-0.33……=3.33……-0.33……(10-1) ×0.33……=3即9×0.33……=3那么0.33……=3/9=1/3例2:0.4747……×100=47.4747……0.4747……×100-0.4747……=47.4747……-0.4747……(100-1)×0.4747……=47即99×0.4747……=47那么0.4747……=47/9由此可见, 纯循环小数化为分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。
练习:(1)0.3……=3/(10-1)=1/3(2)0.31 31……=31/(100-1)=31/99。
(3)0.312 312……=类型2:混循环小数如何化为分数例题:把0.4777……和0.325656……化成分数例3:0.4777……×10=4.777……①0.4777……×100=47.77……②用②-①即得:0.4777……×90=47-4所以:0.4777……=43/90例4:0.325656……×100=32.5656……①0.325656……×10000=3256.56……②用②-①即得:0.325656……×9900=3256.5656……-32.5656……0.325656……×9900=3256-32所以:0.325656……=3224/9900练习:(1)0.366……=(2)1.25858……=(3)6.23898989……=可见,无限循环小数是有理数,是有理数就可以化成分数。
(完整版)无限循环小数如何化为分数汇总

无限循环小数如何化为分数由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几……的数。
转化需要先“去掉”无限循环小数的“无限小数部分”。
一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了。
方法一:(代数法)类型1:纯循环小数如何化为分数例题:如何把 0.33……和 0.4747…… 化成分数例1: 0.33……×10=3.33……0.33……×10-0.33……=3.33……-0.33……(10-1) ×0.33……=3即9×0.33……=3那么0.33……=3/9=1/3例2:0.4747……×100=47.4747……0.4747……×100-0.4747……=47.4747……-0.4747……(100-1)×0.4747……=47即99×0.4747……=47那么 0.4747……=47/9由此可见, 纯循环小数化为分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。
练习:(1)0.3……=3/(10-1)=1/3(2)0.31 31……=31/(100-1)=31/99。
(3)0.312 312……=类型2:混循环小数如何化为分数例题:把0.4777……和0.325656……化成分数例3:0.4777……×10=4.777……①0.4777……×100=47.77……②用②-①即得:0.4777……×90=47-4所以:0.4777……=43/90例4:0.325656……×100=32.5656……①0.325656……×10000=3256.56……②用②-①即得:0.325656……×9900=3256.5656……-32.5656……0.325656……×9900=3256-32所以: 0.325656……=3224/9900练习:(1)0.366……=(2)1.25858……=(3)6.23898989……=可见,无限循环小数是有理数,是有理数就可以化成分数。
无限循环小数化为分数的方法

无限循环小数化为分数的方法无限循环小数化为分数的方法如下:一、等比数列法无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。
例如:0.333333……循环节为3则0.33333.....=3*10^(-1)+3*10^(-2)+……+3*10^(-n)+……前n项和为:0.3[1-(0.1)^(n)]/(1-0.1)当n趋向无穷时(0.1)^(n)=0因此0.3333……=0.3/0.9=1/3注意:m^n的意义为m的n次方。
再如:0.999999.......循环节为9则0.9999.....=9*10^(-1)+9*10^(-2)+……+9*10^(-n)+……前n项和为:{0.9*[1-(0.1)^n]}/(1-0.1)当n趋向无穷时(0.1)^n=0因此:0.99999.....=0.9/0.9=1二、解方程法无限循环小数化分数可分为两类情况,纯循环小数,混循环小数纯小数纯循环小数例:0.1111…… 1的循环,我们可以设此小数为x,可得:10x-x=1.1111……-0.1111……9x=1X=1/9例:0.999999.......=1设x=0.9999999......10x-x=9.999999.....-0.999999.....9x=9x=1关于这方面,还可以运用极限的知识加以证明,这里不在赘述。
例:将无限循环小数0.26(··)化成分数:解题:已知无限循环小数0.26(··),将已知无限循环小数0.26(··)的未知分数设为X,即0.26(··) =X——1式,令100X=100(0.26+0.0026(··)),100X=26+0.26(··)——2式,将(2式)中的无限循环小数0.26(··)更换为X得:100x=26+X,100X-X=26,99X= 26,X=26/99,∴X=0.26(··)=26/99,即:0.26(··)=26/99例:将无限循环小数0.123(··)化成分数:解题:已知无限循环小数0.123(··),将已知无限循环小数0.123(··)的未知分数设为X,即0.123(··)= X ——1式,令1000X=1000(0.123+0.000123(··)),1000X=123+0.123(··)——2式,将(2式)中的无限循环小数0.123(··)更换为X得:1000X=123+X,1000X-X=123, 999 X=123,X=123/999,X=41/333,∴X=0.123(··)=41/333,即:0.123(··)=41/333归纳为了公式化,我们可以这样表示:x·10∧b-x ,其中b是循环节的位数。
《无限循环小数化分数》教学案例

《无限循环小数化分数》教学案例XXXXXX1.案例背景在人教版七年级数学上册《一元一次方程》章节中,教材安排了一节实验与探究内容——《无限循环小数化分数》。
该部分在教材中是作为选学内容,放在《解一元一次方程(1)——合并同类项和移项》之后,但此部分内容的研究却有益于学生思维的拓展和数学探索发现能力的培养,对于方程思想的进一步深化理解也不无裨益。
新课程标准要求数学课程要能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。
故而在教学中我安排了部分时间,采取学生自学和老师讲解相结合的方式对此部分内容进行了教学。
2.教学片断在新内容开始前我先带着学生回顾了之前研究的关于有理数的部分知识,并作为新课的引入。
[师]:我们之前在研究有理数时曾经提到过所有的有理数都可以写成什么形式啊?[生]:都可以写成分数的形式。
[师]:很好。
那我问大家,我们之前研究过的,无限循环小数是不是有理数啊?可不可以化为分数形式啊?[生]:无限轮回小数是有理数,可以化为分数形式。
[师]:那我举个例子,比如说0.3,它的分数形式应该怎么表示呢?[师]:很好,这是大家很早就认识的一个分数了,对它也比较了解。
那任意一个无限循环小数又如何去表示成分数呢?(学生们开始沉思)这就需要大家自己参照我们的课本好好探究了。
在教学中,我安排学生自主阅读教材探究这样一个问题,学生们带着问题去读书,注意力集中,兴趣也提高了。
在看到学生基本上通读过教材内容之后,我对于教材提出了相应的问题,布·置了简单的两个练,学生也很快按照课本上的方法做出了回覆。
练:将0.11和0.1写成分数的形式。
在这两个练的命题上我有自己的处理安排,而学生也很快有了自己的问题:[生]:0.11原本就是0.1,为什么教师要写两个轮回节标记呢?[师]:这位同学的问题很好,也确实如此,写成两个循环节符号是没有必要的。
人教新课标五年级数学上册《 3.4 循环小数 》教案(2)

人教新课标五年级数学上册《 3.4 循环小数》教案(2) 1. 教学目标•能够掌握循环小数的概念和特点。
•能够识别并转换循环小数为分数形式。
•能够灵活运用循环小数的相关知识解决实际问题。
2. 教学重点•循环小数的特点和性质。
•将循环小数转换为分数的方法。
3. 教学难点•灵活运用循环小数知识解决问题。
4. 教学准备•教材:人教新课标五年级数学上册。
•教具:黑板、彩色粉笔、教辅资料。
5. 教学过程5.1 导入•老师出示一个循环小数示例,让学生讨论并总结循环小数的特点。
•引导学生思考:如何将循环小数表示为分数形式?5.2 讲解1.首先,老师讲解循环小数的定义和性质。
2.然后,老师演示如何将一个循环小数转换为分数形式,并让学生跟随操作。
5.3 练习•让学生进行一些循环小数转换为分数的练习,师生共同讨论并纠正错误。
•设计一些实际问题,要求学生运用循环小数知识进行解答。
5.4 拓展•引导学生思考:如果一个循环小数有多个循环节,应该如何处理?•让学生尝试解决一些具有挑战性的循环小数问题。
5.5 总结•总结本节课所学的循环小数知识,强调掌握循环小数与分数之间的转换关系。
6. 作业布置•布置练习题目:将指定的循环小数转换为分数形式,并解答相关问题。
•鼓励学生自主探究和总结,能够运用所学知识解决实际问题。
7. 拓展活动•提供更多难度适中的循环小数转换为分数的问题,激发学生的学习兴趣和挑战意识。
8. 复习反馈•下节课开始前,老师对学生上节课所学的知识进行复习,并对学生的掌握情况进行反馈和指导。
通过本节课的学习,学生将能够更深入地理解循环小数的概念,掌握循环小数转换为分数的方法,提高数学计算能力和解决实际问题的能力。
无限循环小数化为分数教案

教案:《无限循环小数与分数的互化》风华初级中学 吴晓闽【教学目标】1、知道无限循环小数都可以化成分数形式,会将一个无限循环小数化成分数.2、在探究过程中体会猜想、验证的方法和方程、转化的思想,激发学生主动探究的意识.【教学重点】会将无限循环小数化成分数.【教学难点】探究将无限循环小数化成分数的方法.【教学过程】(一)问题引入将下列分数化成小数:110= ;23= ;56= . (复习有限小数,并介绍纯循环小数、混循环小数的相关概念)分数都可以化成小数,一般化小数的方法是分子除以分母,除得尽的是有限小数,除不尽的是无限循环小数;反之,有限小数和无限循环小数也可以化成分数.我们已经学会了把有限小数化成分数,那么,无限循环小数如何化成分数呢?(由此引出课题)(二)探究新知问题1:将0.1g化成分数. 提问:10.110=g 有可能吗?(预设学生回答:因为1011.0=,而0.10.1>g ,所以10.110>g ) 追问:那么0.1g 等于比0.1即110略大一点的哪个分数呢?(预设学生会猜测10.19=g ) 通过猜想、验证的方法我们发现0.1g 可以化成19,请顺着这种思路完成以下各题: 0.2=g ;0.3=g ;0.4=g ;0.5=g ; 0.6=g ;0.7=g ;0.8=g ;0.9=g. (对于0.91=g ,学生可能会感到意外,可引导学生从多个角度进行思考.)继续提问:将0.1g 化成分数,除了猜想、验证之外,还有其他解决办法吗?若学生没有思路,则采用问题组的方式进行引导:无限循环小数化为分数消去了循环节,用什么方法可以消去循环节(消去一个数或式子)?利用加减法构造生成另一个数,这个数需要满足什么条件(①含有相同的循环节,②加减后的结果是0.111…的倍数)?用什么方法构造满足条件的这个数?构造生成的数是0.111…的多少倍才能满足条件(即含有的循环节不变)呢?(预设学生可能会说10倍,追问一句,100倍可以吗?1000倍呢?)问题解决:解:设0.1x =g ,那么10 1.1x =g .而1.10.11-=g g ,即101x x -=.解得:19x =.所以,10.19=g .问题2:将0.01g g 化成分数.(预设大多数学生会采用猜想、验证的方法得到10.0199=g g ) 追问:那0.53g g呢?如果用列方程求解的方法你会解决这个问题吗?问题3:对于循环节是三位数字的纯循环小数,你会把它化成分数吗?请任举一例并转化. (问题比较开放,放手让学生探究)探究一:将纯循环小数化成分数有什么规律?10.19=g 530.5399=g g 4870.487999=g g 归纳:对于纯循环小数,循环节有几位,就在分母上添几个9,并将循环节添在分子上.同学们已经会把纯循环小数化为分数,下面继续研究怎样将其他类型的循环小数化为分数. 问题4:将2.7g化成分数.提问:想一想2.7g 与0.7g 有什么数量关系?(预设学生回答:2.720.7=+g g )追问:根据这种数量关系能否将2.7g 化成分数?(若有学生列方程解决也应给予充分肯定)在解决这个问题的过程中使用了转化思想,将2.7g 拆成整数2与纯循环小数0.7g 的和,从而把新的问题转化为可利用旧知解决的问题.问题5:请尝试用转化思想将0.65g 化为分数.(引导学生自主探究,充分肯定各种方法)问题6:请把以下两个混循环小数化成分数.(男、女生分组完成)(男)0.334g g ;(女)0.678g.探究二:将混循环小数化成分数有什么规律?656590.659090-==g 33433310.334990990-==g g 678676110.678900900-==g 归纳:对于混循环小数,循环节有几位,就在分母上先添几个9,小数部分不循环的小数有几位,就在9后面添几个0,分子用写成循环节的所有小数部分减去非循环节的小数部分.(三)课堂小结1、循环小数化分数对于纯循环小数,循环节有几位,就在分母上添几个9,并将循环节添在分子上.对于混循环小数,循环节有几位,就在分母上先添几个9,小数部分不循环的小数有几位,就在9后面添几个0,分子用写成循环节的所有小数部分减去非循环节的小数部分.2、思想方法:猜想、验证;方程、转化.(四)布置作业1、类比可化成有限小数的分数特点,思考怎样的分数可化为纯(或混)循环小数.2、整理今天课堂所学,制作一张数学小报.【教学反思】_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________。
无限循环小数化成分数的公式

无限循环小数化成分数的公式一、纯循环小数化分数公式及推导示例。
1. 公式。
- 对于纯循环小数,将一个循环节作为分子,分母是由若干个9组成,9的个数与循环节的位数相同。
- 例如:将纯循环小数0.ȧ = (a)/(9)(a为一位循环节);0.ȧḃ=frac{¯ab}{99}(¯ab表示两位数ab组成的数);0.ȧḃċ=frac{¯abc}{999}(¯abc表示三位数abc组成的数)等等。
2. 推导示例。
- 以0.3̇为例,设x = 0.3̇,则10x=3.3̇。
- 用10x - x,即10x - x=(3.3̇)-(0.3̇) = 3。
- 因为10x - x = 9x,所以9x = 3,解得x=(3)/(9)=(1)/(3)。
- 再以0.1̇2为例,设x = 0.1̇2,则100x = 12.1̇2。
- 100x - x=(12.1̇2)-(0.1̇2) = 12。
- 又因为100x - x = 99x,所以99x = 12,解得x=(12)/(99)=(4)/(33)。
二、混循环小数化分数公式及推导示例。
1. 公式。
- 对于混循环小数,分子是不循环部分与第一个循环节组成的数减去不循环部分组成的数,分母的前面是若干个9,9的个数与循环节的位数相同,后面是若干个0,0的个数与不循环部分的位数相同。
- 例如:将混循环小数0. a ḃ= frac{¯ab-a}{90}(a为不循环部分一位数,¯ab表示a和循环节b组成的数);0. a ḃċ=frac{¯abc-a}{990}(a为不循环部分一位数,¯abc 表示a和循环节bc组成的数);0. ab ċ=frac{¯abc-¯ab}{900}(ab为不循环部分两位数,¯abc表示ab和循环节c组成的数)等等。
2. 推导示例。
- 以0.23̇为例,设x = 0.23̇,则10x = 2.3̇,100x=23.3̇。