最新人教版七年级下册数学无限循环小数可以化成分数
教学设计:无限循环小数化分数

设 ,由 可知: ,
∴ ,解方程,得: .于是,得 .
根据小明的做法,请进一步思考,回答下面的问题:
(1)如何把 化为分数形式?动手试一试.
(2)如何把 化为分数形式?动手试一试.
(3)如何把 化为分数形式?动手试一试.
活动二:小组合作探究
我们已经知道,对于一个无限纯循环小数(循环节是从小数点后第一位开始的,例如: , …),可以化为分数.那么对于一个无限混循环小数(循环节不是从小数点后第一位开始的,例如: , , …),我们能否总结出类似的方法呢?
(1)如何把 化为分数形式?动手试一试.
(2)如何把 化为分数形式?动手试一试.
(3)如何把 化为分数形式?动手试一试.
活动三:应用所学
把无限循环小数化成分数的方法

把无限循环小数化成分数的方法如何将无限循环小数化成分数无限循环小数是指小数部分存在一个或多个重复的数字组合,无限重复下去的小数。
例如,0.3333...就是一个无限循环小数,因为小数部分的3无限重复下去。
将无限循环小数化成分数是一种常见的数学运算,可以使得无限循环小数变成一个有限的数值。
下面将介绍几种方法来实现这个转换。
方法一:设x为无限循环小数,将x乘以一个适当的倍数,使得小数点后的循环部分移到整数部分,然后用等式表示这个乘法,解方程求解x的值。
例如,将0.3333...乘以10,得到3.3333...。
然后用等式表示这个乘法:10x = 3.3333...。
接着,将等式两边减去原来的等式,得到9x = 3。
解这个方程,得到x = 1/3。
方法二:设x为无限循环小数,将x的循环部分移到整数部分后,设为y。
然后用等式表示这个移位操作,得到x = y + 1/10^n,其中n为循环部分的长度。
接着,将等式两边乘以10^n,得到10^n*x = 10^n*y + 1。
再将等式两边减去原来的等式,得到(10^n - 1)x = 10^n*y。
解这个方程,得到x = y/(10^n - 1)。
例如,将0.3333...的循环部分移到整数部分后,得到3。
然后用等式表示这个移位操作:0.3333... = 3 + 1/10^1。
接着,将等式两边乘以10,得到10*0.3333... = 10*3 + 1。
再将等式两边减去原来的等式,得到9*0.3333... = 3。
解这个方程,得到0.3333... = 3/9 = 1/3。
方法三:设x为无限循环小数,将x的循环部分移到整数部分后,设为y。
然后用等式表示这个移位操作,得到x = y + 1/10^n,其中n为循环部分的长度。
接着,将等式两边乘以10^n,得到10^n*x = 10^n*y + 1。
再将等式两边减去原来的等式,得到(10^n - 1)x = 10^n*y。
无限循环小数化分数+课件2024-2025学年人教版七年级数学上册++

(2)运用你发现的规律直接得出答案
••
0.234 56
•
•
k.ab c de f
•
•
(3)设任意一个纯循环小数为: x k. ab c,d e f
m
n
请根据你的发现归纳纯循环小数的计算公式:
•
练习6:(1)
••
0.234 56
• (2)通过之前的混循环小数的计算,直接写出答案
•
•
0.ab c de f
x 234 999
••
2.18
••
解:设x 0.18
••
100x 18.18 99x 18
x 18 99
练习3:观察以上纯循环小数化成分数的 结果,完成下列各题
(1)观察纯循环小数化成分数的解题过程,总结规律(口答), 并直接得出答案
••
0.52 0
••
lo.v e
•
•
(2)设任意一个纯循环小数为: x m. a,b e
解题经验
循环小数进行四则运算: 先变成分数再计算
希望同学们学有所获~
•
•
• (4)设任意一个纯循环小数为:x 0.ab c,d e f
m
n
请根据你的发现归纳纯循环小数的计算公式:
智慧碰撞一下 ^_^
规律
分子
所有数字组成的数 不循环部分
分母
9的个数与循环节中的数字相同
0的个数与不循环的小数相同
公式
•
•
x k.ab c d e f
m
n
•
••
••
2 2.3 0.12 5.018
n
请根据你的发现归,纳纯循环小数的计算公式:
把小数化成分数的方法

把小数化成分数的方法1、将小数化为分数的方法(1)精确分数法:这种方法适用于小数表示的数字有一定规律性的情况,可以将它们转换为准确的分数,要求小数采用“复原法”,而不是用数学表示法改写成眾数形式。
例如:3.15 = 315/100 ;0.216 = 43/200 。
(2)近似分数法:这种方法主要适用于无限循环小数等没有完全规律的数,根据它们的数学特性,可以把无限循环小数转换为简单分数等形式表示,从而得到近似值。
例如:0.24242424…… 可表示为 243/1000,0.71428571…… 可表示为5/7。
(3)带余数分数法:这种方法主要针对有些数可以分解为整数中断加有限小数的情况,此时可将该数看作一个带余数的分数,采用夹入法或等分法等,将它分解为带余数的分数。
例如:5.6 = 56/10,6.24 = 624/100。
(4)等价分数法:这种方法将小数改写为等价值的分数(如眾数形式),并求取所对应的最简等价分数形式,这需要根据数的等价特点,识别眾数形式中连分式的定义,并将它们化为最简等价分数形式。
例如:0.4 = 2/5;0.875 = 7/8。
2、小数转换成分数的注意事项(1)注意求出分数的最简形式,避免变得复杂。
(2)要明白无限循环小数(如0.999……)转换成分数无法得到准确结果,只能根据计算机进行简化得到一种近似值,但一般是无穷不循环的复数表示0.999……才能表示“一”。
(3)在转换的过程中,要计算清楚小数的进制位以及分母的大小。
例如,有时需要进制乘以10位以100位数将小数转换成整数,从而才能用分数表示。
3、总结在将小数转换成分数时,可根据每种情况采用不同的方法,如精确分数法、近似分数法、带余数分数法和等价分数法。
在数值计算中,一定要确定最简分数形式,同时要记住循环小数只能得到近似值,还要留意小数的进制位以及分母的大小。
只有正确掌握小数化成分数的方法,才能得到准确的答案。
《无限循环小数化分数》教学案例

《无限循环小数化分数》教学案例XXXXXX1.案例背景在人教版七年级数学上册《一元一次方程》章节中,教材安排了一节实验与探究内容——《无限循环小数化分数》。
该部分在教材中是作为选学内容,放在《解一元一次方程(1)——合并同类项和移项》之后,但此部分内容的研究却有益于学生思维的拓展和数学探索发现能力的培养,对于方程思想的进一步深化理解也不无裨益。
新课程标准要求数学课程要能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。
故而在教学中我安排了部分时间,采取学生自学和老师讲解相结合的方式对此部分内容进行了教学。
2.教学片断在新内容开始前我先带着学生回顾了之前研究的关于有理数的部分知识,并作为新课的引入。
[师]:我们之前在研究有理数时曾经提到过所有的有理数都可以写成什么形式啊?[生]:都可以写成分数的形式。
[师]:很好。
那我问大家,我们之前研究过的,无限循环小数是不是有理数啊?可不可以化为分数形式啊?[生]:无限轮回小数是有理数,可以化为分数形式。
[师]:那我举个例子,比如说0.3,它的分数形式应该怎么表示呢?[师]:很好,这是大家很早就认识的一个分数了,对它也比较了解。
那任意一个无限循环小数又如何去表示成分数呢?(学生们开始沉思)这就需要大家自己参照我们的课本好好探究了。
在教学中,我安排学生自主阅读教材探究这样一个问题,学生们带着问题去读书,注意力集中,兴趣也提高了。
在看到学生基本上通读过教材内容之后,我对于教材提出了相应的问题,布·置了简单的两个练,学生也很快按照课本上的方法做出了回覆。
练:将0.11和0.1写成分数的形式。
在这两个练的命题上我有自己的处理安排,而学生也很快有了自己的问题:[生]:0.11原本就是0.1,为什么教师要写两个轮回节标记呢?[师]:这位同学的问题很好,也确实如此,写成两个循环节符号是没有必要的。
数学小论文 循环小数化成分数的方法

循环小数化成分数的方法圩丰中心小学六(1)施中秋把循环小数化成分数的方法,可以用移动循环节的过程来推导,也可以用无限递缩等比数列的求和公式计算得到。
下面我们运用猜想验证的方法来推导。
(一)化纯循环小数为分数大家都知道:一个有限小数可以化成分母是10、100、1000 ……的分数。
那么,一个纯循环小数可以化成分母是怎样的分数呢?我们先从简单的循环节是一位数字的纯循环小数开始。
如:@①、@②……化成分数时,它们的分母可以写成几呢?想一想:可能是10吗?不可能。
因为1/10=0.1〈@①,3/10=0.3〉@②;可能是8吗?不可能。
因为1/ 8=0.125〉@①,3/8=0.375〉@②;那么,可能是几呢?因为1/10〈@①〈1/8,3/10〈@②〈3/8,所以分母可能是9。
下面我们来验证一下自己的猜想:1/9=1÷9=0.111……=@①;3/9=1/3=1÷3=0.333……=@②。
计算结果说明我们的猜想是对的。
那么,所有循环节是一位数字的纯循环小数都可以写成分母是9的分数吗?让我们根据自己的猜想,把@③、@④化成分数后再验证一下。
@③=4/9 验证:4/9=4÷9=0.444…… @④=6/9=2/3 验证:2/3=2÷3=0.666…… 经过上面的猜想和验证,我们可以得出这样的结论:循环节是一位数字的纯循环小数化成分数时,用一个循环节组成的数作分子,用9 作分母;然后,能约分的再约分。
循环节是两位数字的纯循环小数怎样化成分数呢?如:@⑤、@⑥……化成分数时,它们的分母又可以写成多少呢?想一想:可能是100吗?不可能。
因为12/100=0.12〈@⑤,13/100=0.13〈@⑥。
可能是98吗?不可能。
因为12/98≈0.1224〉@⑤,13/98≈0.1327〉@⑥;可能是多少呢?因为12/100〈@⑤〈12/98,13/100〈@⑥〈13/98,所以分母可能是99。
人教版数学七年级下册-无限循环小数可以化成分数

无限循环小数可以化成分数我们知道小数分为两大类:一类是有限小数,一类是无限小数.而无限小数又分为两类:无限循环小数和无限不循环小数.有限小数都可以表示成十分之几、百分之几、千分之几……,很容易化为分数.无限不循环小数即无理数,它是不能转化成分数的.但无限循环小数却可以化成分数,下面请看:探索(1):把0.323232……(即0.3·2·)化成分数.分析:设x=3·2·=0.32+0.0032+0.000032+……①上面的方程两边都乘以100得100x=32+0.32+0.0032+0.000032+……②②-①得100x-x=3299x=32x= 32 99所以0323232……= 32 99用同样方法,我们再探索把0.5·,0.3·02·化为分数.可知0.5·= 59,0.3·02·=302999.我们把循环节从小数点后第一位开始循环的小数叫做纯循环小数,通过上面的探索可以发现,纯循环小数的循环节最少位数是几,化成分数的分母就有几个9组成,分子恰好是一个循环节的数字.探索(2):把0.4777……和0.325656……化成分数分析:把小数乘以10得0.4777……×10=4.777……①再把小数乘以100得0.4777……×100=47.77……②②-①得0.4777……×100-0.4777……×10=47- 40.4777……×90=430.4777……= 43 90所以 0.4777……=4390再分析第二个数0.325656……化成分数.把小数乘以100得0.325656……×100=32.5656…… ①把小数×10000得0.325656……×10000=3256.56…… ②②-①得0.325656……×(10000-100)=3256-320.325656……×9900=3224∴0.325656……=32249900同样的方法,我们可化0.172·5·=17089900 ,0. 32·9·=326990 . 我们把循环节不从小数点后第一位开始循环的小数叫做混循环小数.混循环小数化分数的规律是:循环节的最少位数是n ,分母中就有n 个9,第一个循环节前有几位小数,分母中的9后面就有几个0,分子是从小数点后第一位直到第一个循环节末尾的数字组成的数,减去一个循环节数字的差,例如0.172·5·化成分数的分子是1725-17=1708,0. 32·9·化成分数的分子是329-3=326.。
如何把有限小数或无限循环小数化为分数 Microsoft Word 97 - 2003 文档

如何把有限小数或无限循环小数化为分数贵州省沿河县钟南九年一贯制学校 张全珍2018年1月1日在湘教版七年级数学上册上有这样一句话,整数和分数统称为有理数。
其中把能化为分数的小数(有限小数和无限循环小数)作为分数。
那么,如何将有限小数和无限循环小数化为分数呢。
一、把有限小数化为分数第一步,如果只有一位小数,就先化为十分之几,如果只有两位小数,就先化为百分之几。
…… 如:1033.0=,1008787.0=.……第二步,化成最简分数。
如果能约分的要约成最简分数。
如521044.0==,50431008686.0==……二、把无限循环小数化成分数我们先举下面的例子。
一、循环节从第一位小数开始的循环小数1、循环节为第一位小数的循环小数 我们知道分数31写为小数即3.0∙,反之,无限循环小数3.0∙写成分数即31,一般地,任何一个无限循环小数都可以写成分数的形式.现在以7.0∙为例进行讨论:设x =∙7.0,由777.0.07=∙…得x 10=7.777…,由于7.777…=7+0.777…,因此x x +=710,解方程得7=x .于是得97.07=∙ .注意如果能约分的要化成最简分数。
2、循环节为两个的循环小数例把无限循环小数73.0∙∙化成分数 设x =∙∙73.0,由73737.30.073=∙∙…得x 100=37.373737…,由于37.373737…=37+0.373737…,因此x x +=37100,解方程得9937=x .于是得9937.073=∙∙ . 注意如果能约分的要化成最简分数。
3、循环节为三个以上的,以此类推。
二、循环节从第二位小数开始的循环小数1、循环节只有1位的现在以7.00∙为例进行讨论:先算得97.07=∙.再由907107977.0.0.0077=-=-=∙∙ 现在以7.20∙为例进行讨论:先算得97.07=∙.再得得907.007=∙ 再由18590251029072.0.00.2077==+=+=∙∙. 现在以7.90∙为例进行讨论:先算得97.07=∙.再得得907.007=∙ 再由454490881099079.0.00.9077==+=+=∙∙. 注意如果能约分的要化成最简分数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无限循环小数可以化成分数
我们知道小数分为两大类:一类是有限小数,一类是无限小数.而无限小数又分为两类:无限循环小数和无限不循环小数.有限小数都可以表示成十分之几、百分之几、千分之几……,很容易化为分数.无限不循环小数即无理数,它是不能转化成分数的.但无限循环小数却可以化成分数,下面请看:
探索(1):把0.323232……(即0.3·2·)化成分数.
分析:设x=3·2·=0.32+0.0032+0.000032+……①
上面的方程两边都乘以100得
100x=32+0.32+0.0032+0.000032+……②
②-①得
100x-x=32
99x=32
x= 32 99
所以0323232……= 32 99
用同样方法,我们再探索把0.5·,0.3·02·化为分数.可知0.5·= 5
9,0.3
·
02·=
302
999.
我们把循环节从小数点后第一位开始循环的小数叫做纯循环小数,通过上面的探索可以发现,纯循环小数的循环节最少位数是几,化成分数的分母就有几个9组成,分子恰好是一个循环节的数字.
探索(2):把0.4777……和0.325656……化成分数
分析:把小数乘以10得
0.4777……×10=4.777……①
再把小数乘以100得
0.4777……×100=47.77……②
②-①得
0.4777……×100-0.4777……×10=47- 4
0.4777……×90=43
0.4777……= 43 90
所以 0.4777……=4390
再分析第二个数0.325656……化成分数.
把小数乘以100得
0.325656……×100=32.5656…… ①
把小数×10000得
0.325656……×10000=3256.56…… ②
②-①得
0.325656……×(10000-100)=3256-32
0.325656……×9900=3224
∴0.325656……=32249900
同样的方法,我们可化0.172·5·
=17089900 ,0. 32·9·=326990 . 我们把循环节不从小数点后第一位开始循环的小数叫做混循环小数.混循环小数化分数的规律是:循环节的最少位数是n ,分母中就有n 个9,第一个循环节前有几位小数,分母中的9后面就有几个0,分子是从小数点后第一位直到第一个循环节末尾的数字组成的数,减去一个循环节数字的差,例如0.172·5·化成分数的分子是1725-17=1708,0. 32·9·化成分数的分子是329-3=326.。