无限循环小数如何化为分数

合集下载

无限循环小数化为分数的方法

无限循环小数化为分数的方法

无限循环小数化为分数的方法无限循环小数化为分数的方法如下:一、等比数列法无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。

例如:0.333333……循环节为3则0.33333.....=3*10^(-1)+3*10^(-2)+……+3*10^(-n)+……前n项和为:0.3[1-(0.1)^(n)]/(1-0.1)当n趋向无穷时(0.1)^(n)=0因此0.3333……=0.3/0.9=1/3注意:m^n的意义为m的n次方。

再如:0.999999.......循环节为9则0.9999.....=9*10^(-1)+9*10^(-2)+……+9*10^(-n)+……前n项和为:{0.9*[1-(0.1)^n]}/(1-0.1)当n趋向无穷时(0.1)^n=0因此:0.99999.....=0.9/0.9=1二、解方程法无限循环小数化分数可分为两类情况,纯循环小数,混循环小数纯小数纯循环小数例:0.1111…… 1的循环,我们可以设此小数为x,可得:10x-x=1.1111……-0.1111……9x=1X=1/9例:0.999999.......=1设x=0.9999999......10x-x=9.999999.....-0.999999.....9x=9x=1关于这方面,还可以运用极限的知识加以证明,这里不在赘述。

例:将无限循环小数0.26(··)化成分数:解题:已知无限循环小数0.26(··),将已知无限循环小数0.26(··)的未知分数设为X,即0.26(··) =X——1式,令100X=100(0.26+0.0026(··)),100X=26+0.26(··)——2式,将(2式)中的无限循环小数0.26(··)更换为X得:100x=26+X,100X-X=26,99X= 26,X=26/99,∴X=0.26(··)=26/99,即:0.26(··)=26/99例:将无限循环小数0.123(··)化成分数:解题:已知无限循环小数0.123(··),将已知无限循环小数0.123(··)的未知分数设为X,即0.123(··)= X ——1式,令1000X=1000(0.123+0.000123(··)),1000X=123+0.123(··)——2式,将(2式)中的无限循环小数0.123(··)更换为X得:1000X=123+X,1000X-X=123, 999 X=123,X=123/999,X=41/333,∴X=0.123(··)=41/333,即:0.123(··)=41/333归纳为了公式化,我们可以这样表示:x·10∧b-x ,其中b是循环节的位数。

把无限循环小数化成分数的方法

把无限循环小数化成分数的方法

把无限循环小数化成分数的方法如何将无限循环小数化成分数无限循环小数是指小数部分存在一个或多个重复的数字组合,无限重复下去的小数。

例如,0.3333...就是一个无限循环小数,因为小数部分的3无限重复下去。

将无限循环小数化成分数是一种常见的数学运算,可以使得无限循环小数变成一个有限的数值。

下面将介绍几种方法来实现这个转换。

方法一:设x为无限循环小数,将x乘以一个适当的倍数,使得小数点后的循环部分移到整数部分,然后用等式表示这个乘法,解方程求解x的值。

例如,将0.3333...乘以10,得到3.3333...。

然后用等式表示这个乘法:10x = 3.3333...。

接着,将等式两边减去原来的等式,得到9x = 3。

解这个方程,得到x = 1/3。

方法二:设x为无限循环小数,将x的循环部分移到整数部分后,设为y。

然后用等式表示这个移位操作,得到x = y + 1/10^n,其中n为循环部分的长度。

接着,将等式两边乘以10^n,得到10^n*x = 10^n*y + 1。

再将等式两边减去原来的等式,得到(10^n - 1)x = 10^n*y。

解这个方程,得到x = y/(10^n - 1)。

例如,将0.3333...的循环部分移到整数部分后,得到3。

然后用等式表示这个移位操作:0.3333... = 3 + 1/10^1。

接着,将等式两边乘以10,得到10*0.3333... = 10*3 + 1。

再将等式两边减去原来的等式,得到9*0.3333... = 3。

解这个方程,得到0.3333... = 3/9 = 1/3。

方法三:设x为无限循环小数,将x的循环部分移到整数部分后,设为y。

然后用等式表示这个移位操作,得到x = y + 1/10^n,其中n为循环部分的长度。

接着,将等式两边乘以10^n,得到10^n*x = 10^n*y + 1。

再将等式两边减去原来的等式,得到(10^n - 1)x = 10^n*y。

无 限 循 环 小 数 如 何 化 为 分 数

无 限 循 环 小 数 如 何 化 为 分 数

无限循环小数如何化为分数北京市第十九中学初一二班张晔扬目前的学习误区是:无限循环小数可以化为分数,是分数就是有理数,但小数不都是有理数不一定都能化为分数。

这次讨论的主题是:无限循环小数如何化为分数分数全都是有限小数或者无限循环小数。

因为分数全都是有理数!分数化成小数后都是有限小数或者无限循环小数,不可能出现无限不循环。

先来判断无限循环小数例如:0.562358294562358294562358294562358294562 35829456235829456235829456235829456235829 4562358294………………其中562358294就是循环部分!无限循环小数属于有理数,因为它都能用分式表示,如0.256256256........可以转化为256/999,它是无限循环小数,分母不能转化为10的N次方。

无限不循环小数属于无理数,它不能用分式表示。

一、纯循环小数化分数从小数点后面第一位就循环的小数叫做纯循环小数。

怎样把它化为分数呢?把纯循环小数化分数:纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。

9的个数与循环节的位数相同。

能约分的要约分。

二、混循环小数化分数不是从小数点后第一位就循环的小数叫混循环小数。

怎样把混循环小数化为分数呢?把混循环小数化分数。

先看小数部分0.353一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。

分母的头几位数是9,末几位是0。

9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。

三、循环小数的四则运算循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。

从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。

有限小数化成分数直接将小数点去掉,分母对应化成十百千万等。

再约分。

例如:0.333.....=3/9=1/30.214214214214214....=214/999简单说每一个循环节为分子,循环节有几位数分母就写几个90.3333......循环节为3 0.214.....循环节为2140.52525252....循环节为52,所以0.525252...=52/99 0.35....=35/99我觉得分数只能化成有限小数和无限循环小数任何有限小数何无限循环小数都是有理数。

小学数学复习之数学定义循环小数化分数概念

小学数学复习之数学定义循环小数化分数概念

小学数学复习之数学定义:循环小数化分数概念
小学数学复习之数学定义:循环小数化分数概念
无限循环小数是有理数,既然是有理数就可以化成分数。

循环小数分为混循环小数、纯循环小数两大类。

混循环小数可以*10^n,所以循环小数化为分数都可以最终通过纯循环小数来转化。

方法1.无限循环小数,先找其循环节,然后将其展开为一等比数列、求出前n项和、取极限、化简。

例如:0.333333……
循环节为3
则0.3=3*10^+3*10^+……+3^10+……
前n项和为:30.1^)/
当n趋向无穷时^=0
因此0.3333……=0.3/0.9=1/3
注意:m^n的意义为m的n次方。

方法2:设0.3333.
10x-x=3.3333
9x=3
3x=1
x=1/3
第二种:如,将3.305030503050.....化为分数。

解:设:这个数的小数部分为a,这个小数表示成3+a
10000a-a=3050
9999a=3050
a=3050/9999
算到这里后,能约分就约分,这样就能表示循环部分了。

再把整数部分乘分母加进去就是
/9999
=33047/9999
还有混循环小数转分数
如0.1555.....
循环节有一位,分母写个9,非循环节有一位,在9后添个0 分子为非循环节+循环节-非循环节+15-1=14
14/90
约分后为7/45。

无限偱环小数化分数

无限偱环小数化分数

无限偱环小数化分数无限循环小数是一个有趣的数学概念,它指的是一个小数部分无限重复的循环。

例如,1/3的小数表示是0.3333...,其中3无限重复。

我们可以使用分数来表示这样的无限循环小数,这个过程被称为化分数。

化分数的方法是将无限循环部分与有限部分分开,并根据循环部分的位数来构造一个分式。

下面,我们将详细介绍如何将无限循环小数化分数。

我们来看一个例子:0.6666...。

这个小数的无限循环部分是6,它无限重复下去。

我们可以用x来表示这个小数,即x=0.6666...。

接下来,我们将在两边都乘以10,这样小数点就会向右移动一位:10x=6.6666...。

然后,我们再次将这两个方程相减:10x-x=6.6666...-0.6666...。

计算结果为9x=6,然后我们将x化简为分数形式,得到x=2/3。

所以,0.6666...等于2/3。

这个方法可以推广到其他无限循环小数的情况。

例如,0.272727...的无限循环部分是27,我们可以用x来表示这个小数,即x=0.272727...。

将x乘以100,我们得到100x=27.272727...。

然后,我们将这两个方程相减,得到99x=27,化简后x=27/99。

所以,0.272727...等于27/99。

化分数的方法不仅适用于无限循环小数,还适用于其他类型的无限小数。

例如,0.123456456456...是一个无限重复的小数,其中的无限循环部分是456。

我们可以用x来表示这个小数,即x=0.123456456456...。

将x乘以1000,我们得到1000x=123.456456456...。

然后,我们将这两个方程相减,得到999x=123,化简后x=123/999。

所以,0.123456456456...等于123/999。

除了使用乘法和减法来化分数,我们还可以使用几何级数的方法。

几何级数是一系列的数,每个数都是前一个数乘以一个常数。

例如,1+1/2+1/4+1/8+...就是一个几何级数,其中每个数都是前一个数乘以1/2。

各种循环小数化为真分数的方法归纳

各种循环小数化为真分数的方法归纳

各种循环小数化为真分数的方法归纳循环小数是一个有限的数列,其中某一位数字之后的数字不断重复出现。

将循环小数转化为真分数是一种常见的数学操作。

本文将归纳总结几种常见的循环小数化为真分数的方法。

方法一:分数的除法对于一个循环小数,我们可以利用分数的除法来将其转化为真分数。

具体步骤如下:1. 将循环小数的循环体部分表示为变量x。

2. 假设循环体有n位数字。

3. 根据循环体的位数,将x表示为一个分数,分子是循环体,分母是10的n次方减1。

4. 简化这个分数即可得到转化后的真分数。

例如,将循环小数0.3333...转化为真分数的步骤如下:1. 将循环体部分表示为变量x,即x=0.3333...。

2. 循环体有1位数字,所以分母为10^1-1=9。

3. 根据步骤2得到x=3/9。

4. 将分数3/9简化,得到1/3。

因此,循环小数0.3333...可以化为真分数1/3。

方法二:变量代换除了使用分数的除法,我们还可以通过变量代换的方法将循环小数转化为真分数。

具体步骤如下:1. 将循环小数的循环体部分表示为变量x。

2. 假设循环体有n位数字。

3. 利用变量代换,将循环小数表示为一个方程。

4. 解方程,得到转化后的真分数。

例如,将循环小数0.7272...转化为真分数的步骤如下:1. 将循环体部分表示为变量x,即x=0.7272...。

2. 循环体有2位数字,所以可以构造方程x=0.7272...。

3. 通过移动小数点,我们得到方程10x=7.2727...。

4. 将方程2减去方程3,得到9x=7,解方程得到x=7/9。

因此,循环小数0.7272...可以化为真分数7/9。

方法三:差值法差值法是将循环小数转化为真分数的另一种常见方法。

具体步骤如下:1. 将循环小数的循环体部分表示为变量x。

2. 假设循环体有n位数字。

3. 根据等差数列的性质,构造一个方程。

4. 解方程,得到转化后的真分数。

例如,将循环小数0.2̄3转化为真分数的步骤如下:1. 将循环体部分表示为变量x,即x=0.2̄3。

无限循环小数化分数的方法

无限循环小数化分数的方法无限循环小数,指十进制小数中数字序列一直循环出现的小数。

如0.3333……就是无限循环小数,它等于1/3。

接下来介绍几种常见的方法将无限循环小数化成分数。

1.长除法法将无限循环小数表示为分数x/y,其中x和y互质。

假设小数中以m开始不断循环出现,那么我们可以列出以下的等式:10^(n+d)x = m·(10^n-1)·10^d + m·(10^(n+2d)-10^(n+d))其中,d为小数循环节长度,n为大于d的任意正整数。

由于x是小数转化而来,因此有:x = m/(10^d - 1) + m/(10^(2d) - 1) + … + m/(10^(nd) - 1)然后将上式的右边化为分数,则有:x = m(1/10^d + 1/10^(2d) + … + 1/10^(nd))/(1-1/10^d)而y=10^n-1,则x/y=m/(10^d - 1) + m/(10^(2d) - 1) + … + m/(10^(nd) - 1)。

2.解二元一次方程组法同样假设无限循环小数为x/y,其中循环节长度为d。

则有:10^d·x - x = m10^d·y - y = 1其中m为小数循环节序列。

将x和y相消,联立方程组得到:x = m/(10^d - 1)y = (10^d - 1)/y因此,将无限循环小数化成分数的方法就是将循环节序列作为m 代入上式即可。

3.其他方法如果无限循环小数的分母是5的倍数,则可以将它们都变为10的倍数,即将小数点后移一位。

这时,无限循环小数就可以化为分数。

例如:0.6 = 6/10 = 3/5。

如果无限循环小数的分母可以分解为2和5的倍数,则先将该小数化为相应的分母,再用长除法法将无限循环小数化为分数。

通过以上几种方法,我们可以将无限循环小数化成分数,使其更便于计算。

无限循环小数与分数的互化



1
2 1 2 39 2 1 3 2 6 3 44 3 44 39 3 13
205 73 1 132 132
1 (2)1.25 0. 3 1.25 1.25 0. 6 3

1 1.25 (0. 3 0. 6) 3 1 1 2 4 1.25 ( ) 1.25 3 3 3 3
无限循环小数和分数的互化
小数
有限 小数 无限 小数
无限循环 小数
无限不循 环小数
无限纯循 环小数 无限混循 环小数
一、纯循环小数化分数 从小数点后面第一位就循环的小数叫做纯循环小数。 例1 把纯循环小数化分数:
6 2 102 34 (1)0.6= (2)3.102= 3 999 3 333 9 3
再 见


二、混循环小数化分数 不是从小数点后第一位就循环的小数叫混循环小数。 例2 把混循环小数化分数。
一个混循环小数的小数部 分可化成分数,这个分数 的分子是第二个循环节以 前的小数部分组成的数与 小数部分中不循环部分组 成的数的差。分母的头几 位数是9,末几位是0。9的 个数与循环节中的位数相 同,0的个数与不循环部分 的位数相同。


2503 2 2501 9990 9990
2.0 3 6

36 0 4 2 2 990 110
三、循环小数的四则运算
循环小数化成分数后,循环小数的四则运算就可按分数四 则运算法则进行。从这种意义上来讲,循环小数的四则运算和有 限小数四则运算一样,也是分数的四则运算。
例3 计算下面各题
215 2 213 71 (1)0.215= 990 990 330
353 35 318 53 6 6 (2)6.353=6 900 900 150

循环小数化分数方法

循环小数化分数方法
循环小数化分数的方法可以按照以下规律进行:
1. 将循环小数的小数部分省略,只保留整数部分,即循环小数的近似值。

例如,对于循环小数 0.3258258258...,可以将其近似值为 3.25。

2. 根据循环小数的循环部分长度,确定需要截取的整数部分的长度。

例如,对于循环小数 0.3258258258...,循环部分长度为 8,因此需要截取 8 个整数部分。

3. 将截取的整数部分按顺序相加,得到循环小数化为分数的结果。

例如,0.3258258258...化为分数的结果为:3/8。

循环小数化分数的方法可以通过以上规律进行,但需要注意一定要将循环小数的小数部分省略,只保留整数部分,否则可能会导致分数的不正确性。

各种循环小数化成分数的方法归纳

各种循环小数化成分数的方法归纳循环小数是指小数部分有一个或多个数字按照一定的规律不断重复出现。

将循环小数化成分数是数学学习中的一种基础技巧,本文将介绍常见的几种方法。

一、直接化成分数对于一位循环小数,例如0.3(3),可以直接看出它等于1/3。

同样地,二位循环小数0.67(67)可以直接化成2/3。

对于这种直观易辨认的循环小数,只需简单观察即可得出分数表示。

二、巧妙运算对于较复杂的循环小数,可以利用数学运算巧妙化成分数。

例如循环小数0.1818...,设它的值为x,则10x等于1.8181...。

接下来通过减法运算消去小数部分的循环部分,即10x-x=1.8181...-0.1818...,化简得到9x=1.6363...,进一步化简为x=0.1818.../9=2/11。

这样,循环小数0.1818...可化成分数2/11。

三、利用等式有些循环小数可以利用等式来化成分数。

例如0.32(9),将其设为x,则100x等于32.9999...,可以写成100x=32+0.9999...。

观察到0.9999...等于1,因此得到100x=32+1,进一步得到x=33/100,即循环小数0.32(9)可以化成分数33/100。

四、定理法在数论中,有一个著名的定理,称为瑟瑟斯特布劳恩定理(Sylvester's theorem)。

该定理表明,在十进制表示下,所有形如0.9999...的循环小数等于1/9。

同理,所有形如0.1111...的循环小数等于1/9。

以此类推,所有形如0.4444...的循环小数等于4/9,所有形如0.6666...的循环小数等于6/9。

通过运用定理,我们可以很方便地将这类循环小数化成分数。

五、连分数法连分数是一种特殊的分数表示形式,它将分数表示为一个整数和一个连分数的形式。

循环小数也可以通过连分数法表示成分数。

例如将循环小数0.248484...表示成连分数,可以得到0.248484...=0+[1/(2+[1/(4+...))]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无限循环小数如何化为分数由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几……的数。

转化需要先“去掉”无限循环小数的“无限小数部分”。

一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了。

方法一:(代数法)类型1:纯循环小数如何化为分数例题:如何把0.33……和0.4747…… 化成分数例1:0.33……×10=3.33……0.33……×10-0.33……=3.33……-0.33……(10-1) ×0.33……=3即9×0.33……=3那么0.33……=3/9=1/3例2:0.4747……×100=47.4747……0.4747……×100-0.4747……=47.4747……-0.4747……(100-1)×0.4747……=47即99×0.4747……=47那么0.4747……=47/9由此可见, 纯循环小数化为分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。

练习:(1)0.3……=3/(10-1)=1/3(2)0.31 31……=31/(100-1)=31/99。

(3)0.312 312……=类型2:混循环小数如何化为分数例题:把0.4777……和0.325656……化成分数例3:0.4777……×10=4.777……①0.4777……×100=47.77……②用②-①即得:0.4777……×90=47-4所以:0.4777……=43/90例4:0.325656……×100=32.5656……①0.325656……×10000=3256.56……②用②-①即得:0.325656……×9900=3256.5656……-32.5656……0.325656……×9900=3256-32所以:0.325656……=3224/9900练习:(1)0.366……=(2)1.25858……=(3)6.23898989……=可见,无限循环小数是有理数,是有理数就可以化成分数。

方法二:(方程法)用一元一次方程求解1.把0.232323... 化成分数。

设X=0.232323...因为0.232323... == 0.23 + 0.002323...所以 X = 0.23 + 0.01X解得:X = 23/992.把0.1234123412341234...化成分数。

解:设X=0.1234123412341234...因为0.1234123412341234... == 0.1234 + 0.000012341234...所以X = 0.1234 + 0.0001X解得:X = 1234/99993.把0.56787878...化成分数,因为0.56787878...= 0.56 + 0.01 * 0.787878...所以设X=0.787878...则X=0.78 + 0.01X所以X = 78/99所以原小数0.56787878...=0.56+ 0.01X = 0.56 + 0.078/99 = 2811/4950其它无限循环小数,请仿照上述例题去作方法三:任意一个无限循环小数都可以看成一个有限小数加上一个等比数列的极限和比如说0.233333333...就可以看成0.2加上一个首项为0.03,公比为0.1的等比数列。

那么问题就很简单了0.233333333...=0.2+0.03/(1-0.1)=1/5+1/30=7/30。

也就是说任意一个有限循环小数化成分数有如下方法:首先找出选环节,如上面的例子就是3,然后计算选环节的单位长度,如上题就是1,如0.232323...就是2,0.123123123...就是3,这里记为q,然后写出不是循环节的部分,如上题就是0.2,这里记为a,再写出第一个循环节,如上题就是0.03,如0.01789789789...就是0.00789,这里记为b,分数的形式就是a+b/(1-1/(10^q)),这里的a,b,q都是有限小数,可方便化为分数。

在高中学完了数列、极限以后,就会知道下面的方法:一,纯循环小数化分数:循环节的数字除以循环节的位数个9组成的整数。

例如:0.3333……=3/9=1/3;0.285714285714……=285714/999999=2/7.二,混循环小数:(例如:0.24333333……)不循环部分和循环节构成的的数减去不循环部分的差,再除以循环节位数个9添上不循环部分的位数个0。

例如:0.24333333…………=(243-24)/900=73/3000.9545454…………=(954-9)/990=945/990=21/221位循环0.X X X X …… = X/92位循环0.XY XY XY…… = XY/993位循环0.XYZ XYZ …… = XYZ/999……N 位循环0.a1a2a3…an a1a2a3…an……=a1a2a3…an/9999…9(n个9)推理依据:0.X X X X ……= 0.X + 0.0X + 0.00X + 0.000X + ……= X *(0.1 + 0.01 + 0.001 + 0.0001 + ……)= X * 0.1/(1-0.1) [无限等比数列和Sn=a1/(1-q) 首项/(1-公比)]= X * 1/90.XY XY XY ……= 0.XY + 0.00XY + 0.0000XY + ……= XY *(0.01 + 0.0001 + 0.000001 + ……)= XY * 0.01/(1-0.01)= XY * 1/990.XYZ XYZ XYZ……= 0.XYZ + 0.000XYZ + 0.000000XYZ + ……= XYZ *(0.001 + 0.000001 + 0.000000001 + ……)= XYZ * 0.001/(1-0.001)= XYZ * 1/9990.a1a2a3…an a1a2a3…an……= 0.a1a2a3…an+0.000…0a1a2a3…an(n个0) + ……= a1a2a3…an * 0.00…01(n-1个0)/(1-0.00…01)= a1a2a3…an * 1/9999…9(n个9)用幂的形式也可。

0.00…01(n-1个0) 表示为 1/10^nx = 0.333333....10x = 3.33333....10x - x = 3x = 1/3纯循环小数,循环节有几个数字,分母就有几个9,分子是循环节的数字混循环小数,循环节有几个数字,分母就有几个9,循环节前到小数点间有几位数字,分母9后面就有几个0,分子是混循环数字减去循环节前数字的差或者用极限解,还有就是楼上的楼上的方法我们可以将无限小数按照小数部分是否循环分成两类:即无限循环小数和无限不循环小数。

无限不循环小数不能化成分数,而无限循环小数是可以化成分数的。

那么,无限循环小数又是如何化分数的呢?由于它的小数部分位数是无限的,显然不可能写成十分之几、百分之几、千分之几……的数。

其实,循环小数化分数难就难在无限的小数位数。

所以我就从这里入手,想办法去掉无限循环小数的循环的部分。

策略就是用扩大倍数的方法,把无限循环小数扩大十倍、百倍或千倍……使扩大后的无限循环小数与原无限循环小数循环的部分完全相同,然后这两个数相减,这样就把循化的部分去掉了,我们的目的就达到了,我们来看两个例子:例1 把0.4747……和0.33……化成分数。

解法1:0.4747……×100=47.4747……0.4747……×100-0.4747……=47.4747……-0.4747……(100-1)×0.4747……=47即99×0.4747……=47那么0.4747……=47/99解法2:0.33……×10=3.33……0.33……×10-0.33……=3.33…-0.33……(10-1) ×0.33……=3即9×0.33……=3那么0.33……=3/9=1/3由此可见, 纯循环小数化分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。

⑵把0.4777……和0.325656……化成分数。

想1:0.4777……×10=4.777……①0.4777……×100=47.77……②用②-①即得:0.4777……×90=47-4所以, 0.4777……=43/90想2:0.325656……×100=32.5656……①0.325656……×10000=3256.56……②用②-①即得:0.325656……×9900=3256.5656……-32.5656……0.325656……×9900=3256-32所以, 0.325656……=3224/9900由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差,分母的头几位数是9,末几位是0。

9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。

从上面例题可知,一个纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母的各位数都是9,9的个数与循环节的个数相同.最后能约分再约分。

把无限循环小数化为分数给定一个无限循环小数,我们是否能把它化为分数呢?其实方法也很简单,其关键在于利用「无限循环」这一点。

例如,给定小数0.272727...,如何把它化为分数呢?我们可以先把它写成1 x 0.272727... = 0.272727 (1)由于这个小数包含两个循环数字,我们把它乘以100:100 x 0.272727... = 27.2727 (2)接着用(2)减(1),利用无限循环的特点,把小数点后的数字全部去掉,得99 x 0.272727... = 27 (3)接着把(3)化简,得0.272727... = 3/11当循环数字并非包括小数点后所有数字时,我们便需要多一点工夫。

例如要把小数0.11345345...化为分数,可以这样做:100 x 0.11345345... = 11.345345...100000 x 0.11345345... = 11345.345...99900 x 0.11345345... = 113340.11345345... = 11334/99900 = 1889/16650利用上述方法,我们还可以获得某些意想不到的结果。

相关文档
最新文档