人教版数学七年级下册第六章无限循环小数可以化成分数

合集下载

教学设计:无限循环小数化分数

教学设计:无限循环小数化分数
本教学设计与以往其他教学设计相比,我认为整节课的关联性较强,更注重教师的启发以及学生的自主探究。以实现教学目标为前提:根据《数学课程标准》的要求,发展学生的思想素质和能力素质,培养学生创新意识和创造能力,力求体现以学生发展为本。以现代教育理论为依据:注重学生掌握知识和形成能力的发展过程,强调教学过程的有序性。以基本的教学原则为指导:坚持启发式教学,充分发挥学生学习的主观能动性,面向全体、因材施教,加强学法指导,使学生在学习中学会学习,学会认知,为他们的终身学习奠定基础。以现代信息技术为手段:适当地辅以电脑多媒体技术,揭示数学本质,使学生掌握分析和解决问题的步骤和方法;同时注意将现代信息技术和传统教学媒体有机结合,以实现教学最优化,从而提高教与学的质量。以小组探究活动为载体:通过活动一培养学生的数学文本阅读能力以及自学能力,通过活动一和活动二使学生感受区别,发散思维,并在交流中使学生敢于发表自己的观点。通过活动三学生应用所学,通过对问题的分析,培养学生思考问题和解决问题的能力。
设 ,由 可知: ,
∴ ,解方程,得: .于是,得 .
根据小明的做法,请进一步思考,回答下面的问题:
(1)如何把 化为分数形式?动手试一试.
(2)如何把 化为分数形式?动手试一试.
(3)如何把 化为分数形式?动手试一试.
活动二:小组合作探究
我们已经知道,对于一个无限纯循环小数(循环节是从小数点后第一位开始的,例如: , …),可以化为分数.那么对于一个无限混循环小数(循环节不是从小数点后第一位开始的,例如: , , …),我们能否总结出类似的方法呢?
(1)如何把 化为分数形式?动手试一试.
(2)如何把 化为分数形式?动手试一试.
(3)如何把 化为分数形式?动手试一试.
活动三:应用所学

把无限循环小数化成分数的方法

把无限循环小数化成分数的方法

把无限循环小数化成分数的方法如何将无限循环小数化成分数无限循环小数是指小数部分存在一个或多个重复的数字组合,无限重复下去的小数。

例如,0.3333...就是一个无限循环小数,因为小数部分的3无限重复下去。

将无限循环小数化成分数是一种常见的数学运算,可以使得无限循环小数变成一个有限的数值。

下面将介绍几种方法来实现这个转换。

方法一:设x为无限循环小数,将x乘以一个适当的倍数,使得小数点后的循环部分移到整数部分,然后用等式表示这个乘法,解方程求解x的值。

例如,将0.3333...乘以10,得到3.3333...。

然后用等式表示这个乘法:10x = 3.3333...。

接着,将等式两边减去原来的等式,得到9x = 3。

解这个方程,得到x = 1/3。

方法二:设x为无限循环小数,将x的循环部分移到整数部分后,设为y。

然后用等式表示这个移位操作,得到x = y + 1/10^n,其中n为循环部分的长度。

接着,将等式两边乘以10^n,得到10^n*x = 10^n*y + 1。

再将等式两边减去原来的等式,得到(10^n - 1)x = 10^n*y。

解这个方程,得到x = y/(10^n - 1)。

例如,将0.3333...的循环部分移到整数部分后,得到3。

然后用等式表示这个移位操作:0.3333... = 3 + 1/10^1。

接着,将等式两边乘以10,得到10*0.3333... = 10*3 + 1。

再将等式两边减去原来的等式,得到9*0.3333... = 3。

解这个方程,得到0.3333... = 3/9 = 1/3。

方法三:设x为无限循环小数,将x的循环部分移到整数部分后,设为y。

然后用等式表示这个移位操作,得到x = y + 1/10^n,其中n为循环部分的长度。

接着,将等式两边乘以10^n,得到10^n*x = 10^n*y + 1。

再将等式两边减去原来的等式,得到(10^n - 1)x = 10^n*y。

人教版七年级数学下册第6章习题课件6.3.1 实数及其分类

人教版七年级数学下册第6章习题课件6.3.1  实数及其分类
第六章 实数
6.3 实数 第1课时 实数及其分类
提示:点击 进入习题
1 无理数 (1)开不尽 2D
3D 4B 5 见习题
6D 7A 8 见习题
答案显示
9 一一对应;实数;实数
10 D
提示:点击 进入习题
11 C 12 C 13 见习题 14 见习题 15 见习题
16 见习题 17 见习题
答案显示
12.(2019·包头) 实数 a,b 在数轴上的对应点的位置如图所示,
下列结论正确的是( C )
A.a>b C.-a>b
B.a>-b D.-a<b
13.面积为 7 的正方形的边长为 x. 请你回答下列问题: (1)x 的整数部分是多少? (2)把 x 的值精确到十分位是多少?精确到百分位呢? (3)x 是有理数吗? 解:设正方形的面积为 S,则 S=x2=7. 当 2<x<3 时,4<S<9; 当 2.6<x<2.7 时,6.76<S<7.29;
16.小明同学在学习了本章的内容后设计了如下问题: 定义:把形如 a+b m和 a-b m (a,b 为有理数且 b≠0,m 为正整数且开方开不尽)的两个实数称为共轭实数.
(1)请你写出一对共轭实数. 解:答案不唯一,如:3+2 2与 3-2 2等.
(2)3 2与-2 3是共轭实数吗?-2 3与 2 3是共轭实数吗? 解:因为 3 2与-2 3的被开方数不相同, 所以 3 2与-2 3不是共轭实数; 而-2 3与 2 3的被开方数都是 3,且 a=0,b=2 或 b=-2, 所以-2 3与 2 3是共轭实数.
所以 b=-2,a=3. 所以 ba=(-2)3=-8. 问题:设 x,y 都是有理数,且满足 x2-2y+ 5y=10+3 5, 求 x+y 的值. 解:原式可化为(x2-2y-10)+ 5(y-3)=0, 因为 x,y 都是有理数,所以 x2-2y-10,y-3 也是有理数. 因为 5是无理数,所以 y-3=0,x2-2y-10=0. 解得 y=3,x=±4,故 x+y=7 或-1.

《无限循环小数化分数》教学案例

《无限循环小数化分数》教学案例

《无限循环小数化分数》教学案例XXXXXX1.案例背景在人教版七年级数学上册《一元一次方程》章节中,教材安排了一节实验与探究内容——《无限循环小数化分数》。

该部分在教材中是作为选学内容,放在《解一元一次方程(1)——合并同类项和移项》之后,但此部分内容的研究却有益于学生思维的拓展和数学探索发现能力的培养,对于方程思想的进一步深化理解也不无裨益。

新课程标准要求数学课程要能使学生掌握必备的基础知识和基本技能;培养学生的抽象思维和推理能力;培养学生的创新意识和实践能力;促进学生在情感、态度与价值观等方面的发展。

故而在教学中我安排了部分时间,采取学生自学和老师讲解相结合的方式对此部分内容进行了教学。

2.教学片断在新内容开始前我先带着学生回顾了之前研究的关于有理数的部分知识,并作为新课的引入。

[师]:我们之前在研究有理数时曾经提到过所有的有理数都可以写成什么形式啊?[生]:都可以写成分数的形式。

[师]:很好。

那我问大家,我们之前研究过的,无限循环小数是不是有理数啊?可不可以化为分数形式啊?[生]:无限轮回小数是有理数,可以化为分数形式。

[师]:那我举个例子,比如说0.3,它的分数形式应该怎么表示呢?[师]:很好,这是大家很早就认识的一个分数了,对它也比较了解。

那任意一个无限循环小数又如何去表示成分数呢?(学生们开始沉思)这就需要大家自己参照我们的课本好好探究了。

在教学中,我安排学生自主阅读教材探究这样一个问题,学生们带着问题去读书,注意力集中,兴趣也提高了。

在看到学生基本上通读过教材内容之后,我对于教材提出了相应的问题,布·置了简单的两个练,学生也很快按照课本上的方法做出了回覆。

练:将0.11和0.1写成分数的形式。

在这两个练的命题上我有自己的处理安排,而学生也很快有了自己的问题:[生]:0.11原本就是0.1,为什么教师要写两个轮回节标记呢?[师]:这位同学的问题很好,也确实如此,写成两个循环节符号是没有必要的。

无限循环小数化成分数的规律

无限循环小数化成分数的规律

无限循环小数化成分数的规律嘿,朋友们!今天咱来唠唠无限循环小数化成分数的规律,这可有意思啦!你说这无限循环小数,就像是个调皮的小精灵,一直在那循环个不停。

那怎么把它变成规规矩矩的分数呢?别急,且听我慢慢道来。

咱就拿常见的0.333……来说吧,这就是个典型的无限循环小数。

那它怎么变成分数呢?嘿,这就有个小窍门啦!设这个数为 x,那就是x=0.333……,然后呢,把这个等式两边同时乘以 10,就变成了10x=3.333……。

这时候你发现没,10x 比 x 多了个 3 呀!那用 10x 减去x,不就把那一直循环的部分给减掉了嘛!也就是 10x-x=3,算一下,9x=3,那 x 不就等于 1/3 嘛!你看,神奇不神奇?再比如说0.142857142857……这个无限循环小数,它的循环节是142857 这么一长串呢!那咱也不怕呀,还是用同样的方法。

设它为 y,1000000y-y 不就把循环节给去掉啦,然后就能算出 y 是多少啦。

这就好像我们解开一个神秘的谜题一样,每一步都充满了惊喜和乐趣。

你说这数学是不是很奇妙呀?它就像一个隐藏着无数宝藏的宝库,等着我们去探索呢!无限循环小数化成分数,不就是数学世界里的一扇奇妙之门嘛!通过这扇门,我们能看到更加精彩的数学风景。

就好像我们走在一条小路上,突然发现了一个通往美丽花园的入口,那里面有着各种奇花异草,让我们流连忘返。

大家想想,如果我们掌握了这个规律,那以后再遇到无限循环小数,不就可以轻松地把它变成分数啦!这多有成就感呀!而且,这还能帮助我们更好地理解数学的奥秘,让我们在数学的海洋里畅游得更自在。

所以呀,大家可别小瞧了这个规律,它可是我们探索数学世界的重要工具呢!让我们一起好好利用它,去发现更多数学的美妙之处吧!。

人教版数学七年级下册-无限循环小数可以化成分数

人教版数学七年级下册-无限循环小数可以化成分数

无限循环小数可以化成分数我们知道小数分为两大类:一类是有限小数,一类是无限小数.而无限小数又分为两类:无限循环小数和无限不循环小数.有限小数都可以表示成十分之几、百分之几、千分之几……,很容易化为分数.无限不循环小数即无理数,它是不能转化成分数的.但无限循环小数却可以化成分数,下面请看:探索(1):把0.323232……(即0.3·2·)化成分数.分析:设x=3·2·=0.32+0.0032+0.000032+……①上面的方程两边都乘以100得100x=32+0.32+0.0032+0.000032+……②②-①得100x-x=3299x=32x= 32 99所以0323232……= 32 99用同样方法,我们再探索把0.5·,0.3·02·化为分数.可知0.5·= 59,0.3·02·=302999.我们把循环节从小数点后第一位开始循环的小数叫做纯循环小数,通过上面的探索可以发现,纯循环小数的循环节最少位数是几,化成分数的分母就有几个9组成,分子恰好是一个循环节的数字.探索(2):把0.4777……和0.325656……化成分数分析:把小数乘以10得0.4777……×10=4.777……①再把小数乘以100得0.4777……×100=47.77……②②-①得0.4777……×100-0.4777……×10=47- 40.4777……×90=430.4777……= 43 90所以 0.4777……=4390再分析第二个数0.325656……化成分数.把小数乘以100得0.325656……×100=32.5656…… ①把小数×10000得0.325656……×10000=3256.56…… ②②-①得0.325656……×(10000-100)=3256-320.325656……×9900=3224∴0.325656……=32249900同样的方法,我们可化0.172·5·=17089900 ,0. 32·9·=326990 . 我们把循环节不从小数点后第一位开始循环的小数叫做混循环小数.混循环小数化分数的规律是:循环节的最少位数是n ,分母中就有n 个9,第一个循环节前有几位小数,分母中的9后面就有几个0,分子是从小数点后第一位直到第一个循环节末尾的数字组成的数,减去一个循环节数字的差,例如0.172·5·化成分数的分子是1725-17=1708,0. 32·9·化成分数的分子是329-3=326.。

人教版七年级下册第六章实数知识点

人教版七年级下册第六章实数知识点

人教版七年级下册第六章实数知识点
实数是数学中非常重要的一个概念,其涉及到数学中的各个领域。

在七年级下册的第六章中,我们主要学习了实数的相关知识。

1. 实数的概念
实数是指所有可以表示成有限小数、无限循环小数或无限不循环小数的数。

简单来说,实数包括整数、分数、小数、无理数等。

2. 实数的分类
根据实数的性质,可以将实数分为有理数和无理数两类。

有理数是可以表示成分数形式的实数,包括整数、分数和循环小数。

无理数是不能表示成分数形式的实数,例如根号2、π等。

3. 实数的运算
实数的运算包括加、减、乘、除四种基本运算。

对于任意两个实数a和b,它们的和、差、积、商分别为:
a+b,a-b,ab,a÷b(b≠0)
此外还有实数的乘方运算,即a的n次方(n为正整数),表示a 连乘n次的结果。

4. 实数的比较
实数之间可以进行大小比较。

对于任意两个实数a和b,若a>b,则a称为大于b,b称为小于a。

若a=b,则a与b相等。

若a<b,则a称为小于b,b称为大于a。

5. 实数的表示
实数可以用数轴上的点表示。

数轴是一条直线,上面的每个点都
与一个实数一一对应。

数轴上的原点表示0,向右表示正数,向左表示负数。

以上就是七年级下册第六章实数的相关知识点。

实数是数学中非常基础的概念,掌握好实数的相关知识对于后续的学习非常重要。

2020人教版七年级数学下学期第6章实数单元综合评价试卷含解析

2020人教版七年级数学下学期第6章实数单元综合评价试卷含解析

2020人教版七年级数学下学期第6章实数单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共12小题)1.7的平方根是()A.±B.C.D.142.16的算术平方根是()A.8 B.﹣8 C.4 D.±43.正方体的体积为7,则正方体的棱长为()A.B.C.D.734.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.95.下列四个数中,是负数的是()A.|﹣3| B.﹣(﹣3)C.(﹣3)2D.﹣6.在实数,,π,0.1010010001中,是无理数的是()A.B.C.πD.0.10100100017.当式子的值取最小值时,a的取值为()A.0 B.C.﹣1 D.18.|1﹣|的值为()A.1﹣B.1+C.﹣1 D.+19.下列说法中①正数和负数互为相反数;②有限小数都是有理数;③无限小数都是无理数;④绝对值最小的数是0;其中说法正确的个数有()A.1个B.2个C.3个D.4个10.点A的位置如图,点A所表示的数可能是()A.﹣2.6 B.C.D.1.411.计算+的结果是()A.﹣4 B.0 C.4 D.812.阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1 B.﹣1 C.i D.﹣i二.填空题(共6小题)13.某个数的一个平方根是﹣5,则这个数是.14.已知一个正数x的两个平方根分别是和m,则m=,x=.15.写出一个满足<a<的整数a的值为.16.比较大小:3.17.已知+=0,那么(a+b)2007的值为.18.实数a、b在数轴上的位置如图所示,则化简2|a+b|﹣|a﹣b|的结果为.三.解答题(共6小题)19.课堂上,老师让同学们从下列数中找一个无理数:﹣,,|﹣|,0,2π,﹣0.6,﹣其中,甲说“﹣”,乙说“”,丙说“2π”.(1)甲、乙、丙三个人中,说错的是.(2)请将老师所给的数字按要求填入下面相应的区域内:20.在数轴上表示下列各数,再用“<”号把它们连接起来.|﹣4|,0,﹣1.5,21.解方程(1)(x﹣2)2=9(2)8(x+1)3=27.22.已知a﹣1的算术平方根是3,b是的整数部分,求a﹣b的值.23.我们都知道无限不循环小数是无理数,而无限循环小数是可以化成分数的,例如0.333……(3为循环节)是可以化成分数的,方法如下:令a=0.333……①则10a=3.333……②②﹣①得:10a﹣a=3,即9a=3,解得a=请你阅读上面材料完成下列问题:(1)0.化成分数是.(2)0.化成分数是.(3)请你将3.3化成分数(写出过程)24.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求:①x、y的值;②x﹣y的相反数.参考答案与试题解析一.选择题(共12小题)1.7的平方根是()A.±B.C.D.14 【分析】根据平方根的定义即可求解.【解答】解:7的平方根是:±.故选:A.2.16的算术平方根是()A.8 B.﹣8 C.4 D.±4 【分析】根据算术平方根的定义求解可得.【解答】解:∵(±4)2=16,∴16的算术平方根是4,故选:C.3.正方体的体积为7,则正方体的棱长为()A.B.C.D.73【分析】由立方根的定义可得正方体的棱长为.【解答】解:正方体的体积为7,则正方体的棱长为,故选:B.4.利用教材中的计算器依次按键下:则计算器显示的结果与下列各数中最接近的一个是()A.2.5 B.2.6 C.2.8 D.2.9 【分析】利用计算器得到的近似值即可作出判断.【解答】解:∵≈2.646,∴与最接近的是2.6,故选:B.5.下列四个数中,是负数的是()A.|﹣3| B.﹣(﹣3)C.(﹣3)2D.﹣【分析】根据小于0的是负数即可求解.【解答】解:|﹣3|=3,﹣(﹣3)=3,(﹣3)2=9,∴四个数中,负数是﹣.故选:D.6.在实数,,π,0.1010010001中,是无理数的是()A.B.C.πD.0.1010010001【分析】由于无理数就是无限不循环小数,利用无理数的概念即可判定选择项.【解答】解:A.是分数,属于有理数;B.,是整数,属于有理数;C.π是无理数;D.0.1010010001是有限小数,属于有理数.故选:C.7.当式子的值取最小值时,a的取值为()A.0 B.C.﹣1 D.1【分析】根据2a+1≥0,求出当式子的值取最小值时,a的取值为多少即可.【解答】解:∵2a+1≥0,∴当式子的值取最小值时,2a+1=0,∴a的取值为﹣.故选:B.8.|1﹣|的值为()A.1﹣B.1+C.﹣1 D.+1【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.绝对值的性质,负数的绝对值是其相反数.【解答】解:|1﹣|的值为﹣1.故选:C.9.下列说法中①正数和负数互为相反数;②有限小数都是有理数;③无限小数都是无理数;④绝对值最小的数是0;其中说法正确的个数有()A.1个B.2个C.3个D.4个【分析】根据无理数与有理数的概念即可求出答案.【解答】解:①正负号相反的两个数互为相反数,故①错误;②有限的小数都是有理数,故②正确;③无限不循环小数称为无理数,故③错误;④绝对值最小的数是0,故④正确;故选:B.10.点A的位置如图,点A所表示的数可能是()A.﹣2.6 B.C.D.1.4【分析】先根据数轴判断出点A表示的数的范围,再结合各选项逐一判断可得.【解答】解:由数轴知,点A表示的数大于﹣2,且小于﹣1,∵,∴点A所表示的数可能是.故选:B.11.计算+的结果是()A.﹣4 B.0 C.4 D.8【分析】原式利用平方根、立方根定义计算即可求出值.【解答】解:原式=+=﹣4+4=0,故选:B.12.阅读理解:我们知道,引进了无理数后,有理数集就扩展到实数集:同样,如果引进“虚数”实数集就扩展到“复数集”现在我们定义:“虚数单位”,其运算规则是:i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,则i2019=()A.1 B.﹣1 C.i D.﹣i【分析】根据已知得出变化规律进而求出答案.【解答】解:∵i l=i,i2=﹣1,i3=﹣i,i4=1,i5=i,i6=﹣1,i7=﹣i,∴每4个数据一循环,∵2019÷4=504…3,∴i2019=i3=﹣i.故选:D.二.填空题(共6小题)13.某个数的一个平方根是﹣5,则这个数是25 .【分析】根据平方根的定义即可求出答案.【解答】解:这个数为(﹣5)2=25,故答案为:2514.已知一个正数x的两个平方根分别是和m,则m=﹣,x= 5 .【分析】根据正数平方根的性质,求出m,再利用平方计算出x的值.【解答】解:因为一个正数的两个平方根互为相反数,所以+m=0,解得,m=﹣.因为2=5,所以x=5.故答案为:﹣,5.15.写出一个满足<a<的整数a的值为答案不唯一,如:2 .【分析】根据算术平方根的概念得到1<<2,4<<5,根据题意解答.【解答】解:∵1<<2,4<<5,a为整数,∴2≤a<5,∴满足<a<的整数a的值可以为2,故答案为:2(答案不唯一).16.比较大小:<3.【分析】求出3═,再根据实数的大小比较法则比较即可.【解答】解:∵3=>,∴<3,故答案为:<.17.已知+=0,那么(a+b)2007的值为﹣1 .【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,a﹣2=0,b+3=0,解得a=2,b=﹣3,所以,(a+b)2007=(2﹣3)2007=﹣1.故答案为:﹣1.18.实数a、b在数轴上的位置如图所示,则化简2|a+b|﹣|a﹣b|的结果为﹣3a﹣b.【分析】在数轴上,右边的数总大于左边的数.原点右边的表示正数,原点左边的表示负数.【解答】解:由图可知:﹣3<b<﹣2<0<a<1,∴a+b<0,a﹣b>0,可得:2|a+b|﹣|a﹣b|=﹣2a﹣2b﹣a+b=﹣3a﹣b,故答案为:﹣3a﹣b.三.解答题(共6小题)19.课堂上,老师让同学们从下列数中找一个无理数:﹣,,|﹣|,0,2π,﹣0.6,﹣其中,甲说“﹣”,乙说“”,丙说“2π”.(1)甲、乙、丙三个人中,说错的是甲.(2)请将老师所给的数字按要求填入下面相应的区域内:【分析】(1)根据无理数的定义解答即可;(2)根据有理数的分类解答即可.【解答】解:(1)因为“﹣”是负分数,属于有理数;“”是无理数,“2π”是无理数.所以甲、乙、丙三个人中,说错的是甲.故答案为:甲(2)整数有:0、;负分数有:、﹣0.6.故答案为:0、;、﹣0.6.20.在数轴上表示下列各数,再用“<”号把它们连接起来.|﹣4|,0,﹣1.5,【分析】首先在数轴上确定各数的位置,再根据在数轴上表示的两个实数,右边的总比左边的大用“<”号把它们连接起来.【解答】解:如图:,﹣1.5<0<<|﹣4|.21.解方程(1)(x﹣2)2=9(2)8(x+1)3=27.【分析】(1)根据平方根的定义,即可解答;(2)根据立方根的定义,即可解答.【解答】解:(1)(x﹣2)2=9,x﹣2=±3,x=5或﹣1;(2)8(x+1)3=27,(x+1)3=,x+1=,x=.22.已知a﹣1的算术平方根是3,b是的整数部分,求a﹣b的值.【分析】由已知可得a﹣1=9,b=3,进而求出a、b值代入即可.【解答】解:∵a﹣1的算术平方根是3,∴a﹣1=9,∴a=10,∵b是的整数部分,∴b=3,∴a﹣b=10﹣3=7.23.我们都知道无限不循环小数是无理数,而无限循环小数是可以化成分数的,例如0.333……(3为循环节)是可以化成分数的,方法如下:令a=0.333……①则10a=3.333……②②﹣①得:10a﹣a=3,即9a=3,解得a=请你阅读上面材料完成下列问题:(1)0.化成分数是.(2)0.化成分数是.(3)请你将3.3化成分数(写出过程)【分析】(1)根据阅读材料设0.=x,方程两边都乘10,转化为7+x=10x,求出其解即可;(2)根据阅读材料设0.=x,方程两边都乘100,转化为23+x=100x,求出其解即可;(3)根据阅读材料化混循环小数为:×33.,再由材料转化为整数与另一无限循环小数的和,依次化简可得结论.【解答】解:(1)设0.=x,即x=0.777…,将方程两边都×10,得10x=7.777…,即10x=7+0.777…,又因为x=0.777…,所以10x=7+x,7所以9x=1,即x=,所以0.=.故答案为:;(2)设0.=x,100x=23.100x=23+xx=,∴0.=,故答案为:;(3)解:3.3=(33+0.)=+×=.24.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求:①x、y的值;②x﹣y的相反数.【分析】(1)先估算出,的范围,求出a、b的值,再代入求出即可;(2)先估算出的范围,求出x、y的值,再代入求出即可.【解答】解:(1)根据题意得:a=﹣2,b=3,则a+b﹣=1;(2)①∵x为整数,10+=x+y,且0<y<1,∴x=11,y=﹣1;②x﹣y的相反数为﹣(x﹣y)=﹣x+y=﹣12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无限循环小数可以化成分数
我们知道小数分为两大类:一类是有限小数,一类是无限小数.而无限小数又分为两类:无限循环小数和无限不循环小数.有限小数都可以表示成十分之几、百分之几、千分之几……,很容易化为分数.无限不循环小数即无理数,它是不能转化成分数的.但无限循环小数却可以化成分数,下面请看:
探索(1):把0.323232……(即0.3·2·)化成分数.
分析:设x=3·2·=0.32+0.0032+0.000032+……①
上面的方程两边都乘以100得
100x=32+0.32+0.0032+0.000032+……②
②-①得
100x-x=32
99x=32
x= 32 99
所以0323232……= 32 99
用同样方法,我们再探索把0.5·,0.3·02·化为分数.可知0.5·= 5
9,0.3
·
02·=
302
999.
我们把循环节从小数点后第一位开始循环的小数叫做纯循环小数,通过上面的探索可以发现,纯循环小数的循环节最少位数是几,化成分数的分母就有几个9组成,分子恰好是一个循环节的数字.
探索(2):把0.4777……和0.325656……化成分数
分析:把小数乘以10得
0.4777……×10=4.777……①
再把小数乘以100得
0.4777……×100=47.77……②
②-①得
0.4777……×100-0.4777……×10=47- 4
0.4777……×90=43
0.4777……= 43 90
所以 0.4777……=4390
再分析第二个数0.325656……化成分数.
把小数乘以100得
0.325656……×100=32.5656…… ①
把小数×10000得
0.325656……×10000=3256.56…… ②
②-①得
0.325656……×(10000-100)=3256-32
0.325656……×9900=3224
∴0.325656……=32249900
同样的方法,我们可化0.172·5·
=17089900 ,0. 32·9·=326990 . 我们把循环节不从小数点后第一位开始循环的小数叫做混循环小数.混循环小数化分数的规律是:循环节的最少位数是n ,分母中就有n 个9,第一个循环节前有几位小数,分母中的9后面就有几个0,分子是从小数点后第一位直到第一个循环节末尾的数字组成的数,减去一个循环节数字的差,例如0.172·5·
化成分数的分子是1725-17=1708,0. 32·9·化成分数的分子是329-3=326.。

相关文档
最新文档