小学奥数之各种循环小数化成分数的方法归纳
各种循环小数化成分数的方法归纳

各种循环小数化成分数的方法归纳、纯循环小数化分数从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢? 看下面例题。
例1把纯循环小数化分数:(1) 0.6 (2)3 102解’ C1) 0.6 X 10 = 6.666 ... ①0.6=0 666"•…②由①一②得06X9 = 6*62所 KIO .6=|=|(2) 話先看小数部分oD« •0 102 x 1000 = 102 102102 .... ①■ •0.102^0.102102 ..... ②由①一②得0 102 X 999 = 102从以上例题可以看出,纯循环小数的小数部分可以化成分数, 这个分数的分 子是一个循环节表示的数,分母各位上的数都是 9。
9的个数与循环节的位数相 同。
能约分的要约分。
所以0102 = 102 _ 34 999 = 3333 102999 3330 216 =216 999 8 37999333二、混循环小数化分数 不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为 分数呢?看下面的例题。
例2把混循环小数化分数。
(1) 0.215; (2)6 353解.(1) 0.215 X 1000^215.1515 ......... ①0.215X 10=2 1515 ..... ②由①一②得0215X990 = 215-2 215-2 0 215-—— = 990213 _ 71990 330(2)先看小数部分 0.3530.353 X 1000 = 353 333 .... ①0.353 X 100 = 35.333 ... ②由①一②得0.353 X 900 = 353 - 35* 353-35 318 530.353 = —————— 务——-*900 900 150^318 Q6 = 6 —900 150 由以上例题可以看出,一个混循环小数的小数部分可以化成分数, 这个分数 的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成 的数的差。
各种循环小数转换为分数的方法归纳

各种循环小数转换为分数的方法归纳本文将介绍几种常见的方法来将循环小数转换为分数。
循环小数是一种无限循环的小数,可以表示为一个整数部分加上一个无限循环的小数部分。
将循环小数转换为分数可以使其表示更加简洁有效。
1. 数学法对于循环小数的小数部分,假设其循环节长度为n,则可以将其表示为一个含有n个9的分数。
例如,对于循环节为1的循环小数0.3(1),可以表示为3/9;对于循环节为2的循环小数0.45(2),可以表示为45/99。
2. 代数法对于循环小数的小数部分,假设其循环节长度为n,则可以将其表示为一个分数的形式。
首先将循环小数乘以一个适当的倍数,使得循环节部分移到小数点后面。
然后使用代数方法解方程,将循环节部分与非循环节部分相减,得到一个分数。
例如,对于循环节为1的循环小数0.3(1),可以设其为x,有10x = 3.1,解方程可得x = 3/9;对于循环节为2的循环小数0.45(2),可以设其为x,有100x = 45.22,解方程可得x = 45/99。
3. 迭代法对于循环小数的小数部分,可以使用迭代法将其转换为分数。
首先将循环小数的循环节部分除以一个适当的倍数,使其成为一个整数。
然后将该整数与非循环节部分相加,再与循环节部分相除,得到一个分数。
例如,对于循环节为1的循环小数0.3(1),可以将循环节部分1除以9,得到1/9,然后将其与非循环节部分0.3相加,得到0.3(1)+1/9 = 0.3333...,再将其与循环节部分1/9相除,得到3/9 = 1/3;对于循环节为2的循环小数0.45(2),可以将循环节部分2除以99,得到2/99,然后将其与非循环节部分0.45相加,得到0.45(2)+2/99 = 0.4545...,再将其与循环节部分2/99相除,得到45/99。
以上是几种常见的将循环小数转换为分数的方法。
根据具体情况和个人偏好,选择适合的方法进行转换可以使计算更加简便和准确。
各种循环小数化成分数的方法归纳

各种循环小数化成分数
的方法归纳
集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-
各种循环小数化成分数的方法归纳
一、纯循环小数化分数
从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢?看下面例题。
例1把纯循环小数化分数:
从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。
9的个数与循环节的位数相同。
能约分的要约分。
二、混循环小数化分数
不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分数呢?看下面的例题。
例2把混循环小数化分数。
(2)先看小数部分0.353
由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
分母的头几位数是9,末几位是0。
9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。
三、循环小数的四则运算
循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。
从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。
例3计算下面各题:
解:先把循环小数化成分数后再计算。
例4计算下面各题。
分析与解:(1)把循环小数化成分数,再按分数计算。
(2)可根据乘法分配律把1.25提出,再计算。
(3)把循环小数化成分数,根据乘法分配律和等差数列求和公式计算。
各种循环小数化成分数的方法归纳

0.216 = 216 999 8 374.123 = 4 123 999各种循环小数化成分数的方法归纳一、纯循环小数化分数从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢看下 面例题。
例1把纯循环小数化分数:(1) 0.6 (2)3.102解二(1)0.6 X 10=6.666 ....... ①0.6=0.666 ......... ②由①一②得0?>v9 = 6所以0•二卜(2)先看小数部分o.io?0.102X1000= 102.102102 ......... ①0.102 = 0.102102 ....... ②由①一②得 0.10 2 X 999 = 102 所以 O.W2= II 24333从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分 子 是一个循环节表示的数,分母各位上的数都是9。
9的个数与循环节的位数相同。
能约分的要约分。
3.102 = 3 102 999二、混循环小数化分数不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分 数呢看下面的例题。
例2把混循环小数化分数。
C1) 0.215; (2) &3 对解二(1) 0.215 X 1000 = 215.1515 ............. ①0.215X10 = 2.1515 ....... ②由①一 W0.215 X 990 = 215-20启二八二匹二21990 990330(2)先看小数部分 由①一 @110353 X900 = 353-35山以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数 的 分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的 差。
分母的头儿位数是9,末儿位是0。
9的个数与循环节中的位数相同,0的个数与 不循环部分的位数相同。
如 ①把0.276化成分数。
②把7.4;化成分数0.疵二土二竺二呂 900 900 所以 6.353 = 6 353・35 900 150 318 900 53 1500.27 6 二 276・27 83 900 ”300解;7.42 = 7A90 45三、循环小数的四则运算循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。
各种循环小数化成分数的方法归纳

各种循环小数化成分数的方法归纳
一、纯循环小数化分数
从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢?看下面例题。
例1把纯循环小数化分数:
从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。
9的个数与循环节的位数相同。
能约分的要约分。
二、混循环小数化分数
不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分数呢?看下面的例题。
例2 把混循环小数化分数。
(2)先看小数部分0.353
由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
分母的头几位数是9,末几位是0。
9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。
三、循环小数的四则运算
循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。
从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。
例3 计算下面各题:
解:先把循环小数化成分数后再计算。
例4 计算下面各题。
分析与解:(1)把循环小数化成分数,再按分数计算。
(2)可根据乘法分配律把1.25提出,再计算。
(3)把循环小数化成分数,根据乘法分配律和等差数列求和公式计算。
各种循环小数化成分数的方法归纳

各种循环小数化成分数的方法归纳在数学的世界里,小数是一个重要的概念,而循环小数则是小数中的一种特殊情况。
将循环小数化成分数,不仅是数学学习中的一个重要知识点,也能帮助我们更深入地理解数的本质。
下面,就让我们一起来归纳一下各种循环小数化成分数的方法。
首先,我们要明确什么是循环小数。
循环小数是指一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现。
例如,0333 、21424242 等。
一、纯循环小数化成分数纯循环小数是指从小数点后第一位开始循环的小数。
对于纯循环小数,我们可以用以下方法化成分数:将一个循环节的数字组成的数作为分子,分母则是由与循环节位数相同个数的 9 组成。
例如,0333 ,循环节是 3,只有一位,所以化成分数就是 3/9 = 1/3;再比如 0121212 ,循环节是 12,有两位,化成分数就是 12/99 = 4/33 。
二、混循环小数化成分数混循环小数是指不是从小数点后第一位开始循环的小数。
混循环小数化成分数的方法稍微复杂一些。
我们可以用以下步骤来进行:第一步,将小数部分不循环的数字与第一个循环节连接起来组成一个新的数,作为分子。
第二步,分母是由 9 和 0 组成,9 的个数等于循环节的位数,0 的个数等于小数部分不循环的位数。
例如,02333 ,小数部分不循环的数字是 2,循环节是 3,第一步,分子就是 23 2 = 21;第二步,分母是 90,所以化成分数就是 21/90 =7/30 。
再比如 03212121 ,小数部分不循环的数字是 3,循环节是 21,第一步,分子就是 321 3 = 318;第二步,分母是 990,所以化成分数就是 318/990 = 53/165 。
三、多个循环节的循环小数化成分数有时候我们会遇到有多个循环节的循环小数。
对于这种情况,我们可以把每个循环节分别按照前面的方法化成分数,然后相加。
例如,0123123123 + 0454545 ,先将 0123123123 化成分数为123/999 ,0454545 化成分数为 45/99 ,然后相加:123/999 + 45/99 =123/999 + 45×11/99×11 = 123/999 + 495/999 = 618/999 = 206/333 。
循环小数化分数公式

循环小数化分数公式
1. 纯循环小数化分数。
- 公式:将纯循环小数化为分数时,分子是一个循环节组成的数;分母的各位数字都是9,9的个数与循环节的位数相同。
- 例如:把0.3̇化为分数。
- 这里循环节是3,按照公式,分子就是3,因为循环节是1位数字,分母就是9。
所以0.3̇=(3)/(9)=(1)/(3)。
- 再如0.2̇5。
- 循环节是25,分子就是25,循环节是2位数字,分母就是99,所以
0.2̇5=(25)/(99)。
2. 混循环小数化分数。
- 公式:分子是小数点后面第一个循环节前面的数字组成的数与不循环部分数字组成的数之差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的位数相同,0的个数跟不循环部分的位数相同。
- 例如:把0.23̇化为分数。
- 不循环部分是2,循环节是3。
分子为(23 - 2)=21,分母中9的个数与循环节位数相同(1个9),0的个数与不循环部分位数相同(1个0),所以分母是90。
则0.23̇=(21)/(90)=(7)/(30)。
- 又如0.123̇4。
- 不循环部分是12,循环节是34。
分子为(1234 - 12)=1222,分母中9的个数与循环节位数相同(2个9),0的个数与不循环部分位数相同(2个0),所以分母是9900,则0.123̇4=(1222)/(9900)=(611)/(4950)。
小学奥数之各种循环小数化成分数的方法归纳

各种循环小数化成分数的方法归纳
一、纯循环小数化分数
从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢?看下面例题。
例1把纯循环小数化分数:
从以上例题可以看出,纯循环小数的小数局部可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。
9的个数与循环节的位数一样。
能约分的要约分。
二、混循环小数化分数
不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分数呢?看下面的例题。
例2 把混循环小数化分数。
由以上例题可以看出,一个混循环小数的小数局部可以化成分数,这个分数的分子是第二个循环节以前的小数局部组成的数与小数局部中不循环局部组成
的数的差。
分母的头几位数是9,末几位是0。
9的个数与循环节中的位数一样,0的个数与不循环局部的位数一样。
三、循环小数的四那么运算
循环小数化成分数后,循环小数的四那么运算就可以按分数四那么运算法那么进展。
从这种意义上来讲,循环小数的四那么运算和有限小数四那么运算一样,也是分数的四那么运算。
例3 计算下面各题:
解:先把循环小数化成分数后再计算。
例4 计算下面各题。
分析与解:〔1〕把循环小数化成分数,再按分数计算。
〔2〕可根据乘法分配律把1.25提出,再计算。
〔3〕把循环小数化成分数,根据乘法分配律和等差数列求和公式计算。
【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种循环小数化成分数的方法归纳
一、纯循环小数化分数
从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢?看下面例题。
例1把纯循环小数化分数:
从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。
9的个数与循环节的位数相同。
能约分的要约分。
二、混循环小数化分数
不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分数呢?看下面的例题。
例2 把混循环小数化分数。
(2)先看小数部分0.353
由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成
的数的差。
分母的头几位数是9,末几位是0。
9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。
三、循环小数的四则运算
循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。
从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。
例3 计算下面各题:
解:先把循环小数化成分数后再计算。
例4 计算下面各题。
分析与解:(1)把循环小数化成分数,再按分数计算。
(2)可根据乘法分配律把1.25提出,再计算。
(3)把循环小数化成分数,根据乘法分配律和等差数列求和公式计算。