《圆心角、弧、弦之间的关系》教学案例
圆心角、弧、弦、弦心距的关系-沪科版九年级数学下册教案

圆心角、弧、弦、弦心距的关系-沪科版九年级数学下
册教案
教学目标
1.理解圆心角、弧、弦、弦心距的概念。
2.掌握圆心角、弧、弦、弦心距之间的关系,能够应用于解决实际问题。
3.培养学生的逻辑思维能力和数学计算能力。
教学重点
1.圆心角、弧、弦、弦心距的概念。
2.掌握圆心角、弧、弦、弦心距之间的关系。
教学难点
能够应用圆心角、弧、弦、弦心距的关系解决实际问题。
教学过程
一、引入新知识
1.自学教材P72页内容。
2.学生自主发现圆心角、弧、弦、弦心距的关系。
3.教师指导学生加深理解。
二、探究圆心角、弧、弦、弦心距的关系
1.教师让学生自学教材P73页内容。
2.学生自主练习计算方法。
3.教师和学生共同探讨圆心角、弧、弦、弦心距之间的关系。
三、应用题
1.教师出示相关应用题,学生独立完成计算。
2.师生共同探讨解题方法的正确性。
3.教师讲解解题方法的标准化和规范化。
教学反思
通过引入新知识,让学生自主探究圆心角、弧、弦、弦心距之间的关系,并结合实际问题进行计算,培养了学生的逻辑思维能力和数学计算能力。
在教学过程中,我发现学生对于解题方法的理解还有疑惑,需要在后续的授课中进行强化和讲解。
在教学中,我还应该加强巩固学生的基本知识,为后续授课做好铺垫。
【K12学习】《弧弦圆心角之间的关系》教案设计

《弧弦圆心角之间的关系》教案设计教学目标:知识与能力:了解圆心角的概念。
掌握弧弦圆心角的定理和推论。
能灵活应用弧弦圆心角定理及推论解决问题。
过程与方法:复习旋转的知识,得到圆心角的概念,然后用圆心角和旋转探索圆心角定理,最后应用它解决一些问题。
在教学过程中,学生与同伴交流,提高学生的合作交流意识。
情感态度价值观:经历探索弧弦圆心角定理及其结论的过程,提高学生的数学能力。
重点:弧弦圆心角定理及推论的应用。
难点:定理及其推论的探索与应用。
教学环节:一、导语判断圆是中心对称图形吗?对称中心在哪里?二、探究圆心角的定义我们把顶点在圆心的角叫做圆心角。
判别下列各图中的角是不是圆心角,并说明理由。
弧、弦、圆心角定理将∠AoB=∠A′oB′,将∠A′oB′旋转到∠AoB的位置,它能否与∠AoB完全重合?如能重合,你会发现哪些等量关系?为什么?如果两个角在两个等圆中,能否得到相似的结论?综合上述所得,在同圆或等圆中,圆心角、弧、弦之间的关系定理。
分析定理,去掉“在同圆或等圆中”条件,行吗?定理拓展:在同圆或等圆中,如果两条弧相等,它们所对的圆心角,所对的弦也分别相等吗?在同圆或等圆中,如果两条弦相等,它们所对的圆心角,所对的弧也分别相等吗?综上所得,在同圆或等圆中,两个圆心角,两条弧,两条弦,其中有一组量相等,其余各组量也分别相等。
定理应用判断下列说法是否正确。
相等的圆心角所对的弧相等。
相等的弧所对的弦相等。
相等的弦所对的弧相等。
弦相等所对的圆心角相等。
等弧所对的圆心角相等。
《弧弦圆心角之间的关系》教学设计如图,AB、cD是⊙o的两条弦。
如果AB=cD,那么,。
如果弧AB=弧cD,那么,。
如果∠AoB=∠coD,那么,。
如果AB=cD,oE⊥AB于E,oF⊥cD于F,oE与oF相等吗?为什么?典例分析例1如图,在⊙o中,AB=Ac,∠AcB=60°,《弧弦圆心角之间的关系》教学设计求证∠AoB=∠Boc=∠Aoc。
弧、弦、圆心角教案

弧、弦、圆心角教案教学目标:1. 理解弧、弦、圆心角的定义及它们之间的关系。
2. 学会使用圆规和量角器画弧、弦和圆心角。
3. 能够运用弧、弦、圆心角解决实际问题。
教学重点:1. 弧、弦、圆心角的定义及它们之间的关系。
2. 画弧、弦和圆心角的方法。
教学难点:1. 弧、弦、圆心角在实际问题中的应用。
教学准备:1. 圆规、量角器、直尺、铅笔。
2. 教学PPT。
教学过程:一、导入(5分钟)1. 引导学生观察圆,提问:圆上有什么特殊的部分?2. 学生回答:弧、弦。
3. 教师讲解弧、弦的定义,并展示PPT中的图片和实例。
二、探究弧、弦、圆心角的关系(10分钟)三、画弧、弦和圆心角(10分钟)1. 教师示范如何使用圆规和量角器画弧、弦和圆心角。
2. 学生动手实践,画出给定半径的圆的弧、弦和圆心角。
3. 学生互相检查,教师巡回指导。
四、解决问题(10分钟)1. 出示实际问题,如:在一个半径为5cm的圆中,求弧长为10πcm的弧对应的圆心角大小。
2. 学生独立思考,解答问题。
3. 学生分享解题过程和答案,教师点评。
2. 出示拓展问题,如:在同一个圆中,如果两个圆心角的度数相等,它们对应的弧和弦是否相等?3. 学生思考拓展问题,下节课讨论。
教学反思:六、深化理解:圆心角、弧、弦的定量关系教学目标:1. 掌握圆心角、弧、弦的定量关系。
2. 能够运用定量关系解决相关问题。
教学重点:1. 圆心角、弧、弦的定量关系。
教学难点:1. 定量关系在实际问题中的应用。
教学准备:1. 圆规、量角器、直尺、铅笔。
2. 教学PPT。
教学过程:1. 复习上节课所学的弧、弦、圆心角的定义及它们之间的关系。
2. 引导学生探究圆心角、弧、弦的定量关系。
七、实际应用:解决圆相关问题教学目标:1. 能够运用圆心角、弧、弦的定量关系解决实际问题。
2. 提高解决实际问题的能力。
教学重点:1. 运用圆心角、弧、弦的定量关系解决实际问题。
教学难点:1. 实际问题中的数据处理和运用。
圆心角、弧、弦、弦心距之间的关系数学教案

圆心角、弧、弦、弦心距之间的关系数学教案标题:圆心角、弧、弦、弦心距之间的关系数学教案一、教学目标:1. 知识与技能:学生能理解并掌握圆心角、弧、弦、弦心距的定义,以及它们之间的关系。
2. 过程与方法:通过观察、操作、思考、交流等活动,让学生经历探索圆心角、弧、弦、弦心距之间关系的过程,培养学生的空间观念和推理能力。
3. 情感态度与价值观:激发学生对几何学的兴趣,体验数学之美,提高学习数学的积极性。
二、教学重难点:重点:理解和掌握圆心角、弧、弦、弦心距的概念,以及它们之间的关系。
难点:运用所学知识解决实际问题,提升空间观念和推理能力。
三、教学过程:(一)引入新课首先,教师可以引导学生回顾上节课学习的圆的基本性质,然后提出问题:“在同一个圆中,如果两个扇形的圆心角相等,那么这两个扇形的面积会有什么关系呢?”以此引发学生的好奇心和求知欲,导入新课。
(二)新课讲解1. 圆心角、弧、弦、弦心距的定义(1)圆心角:从圆心出发,引两条射线所形成的角叫做圆心角。
(2)弧:圆上两点间的部分叫做弧。
(3)弦:连接圆上任意两点的线段叫做弦。
(4)弦心距:圆心到弦的距离叫做弦心距。
2. 圆心角、弧、弦、弦心距之间的关系(1)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
(2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦心距中有一组量相等,那么它们所对应的其余各组量也分别相等。
(3)在同圆或等圆中,如果一条弧所对的圆心角等于它所对的圆周角的2倍,那么这条弧所对的弦就平分这条弧所对的圆心角。
(三)课堂练习设计一些基础题和拓展题,让学生进行自我检测,检查他们是否真正掌握了这些概念和关系。
(四)课堂小结邀请几位学生分享他们的学习心得,教师再做总结,并强调本节课的重点和难点。
(五)课后作业布置一些相关习题,让学生在课后继续巩固所学知识。
四、教学反思在教学过程中,要时刻关注学生的反应,及时调整教学策略,确保每一位学生都能跟上教学进度。
《弧、弦、圆心角》的教学实录

《弧、弦、圆心角》的教学实录关于《弧、弦、圆心角》的教学实录教学过程:活动1:一、等圆、同圆的理解1、学生动手操作:拿出准备好的圆形纸片,然后把它们重叠起来师:同学们,拿出我们准备的圆形纸片,然后把它们重叠起来你有什么发现?2、交流:师:把两个圆放在一起,就是把圆重叠在一起,它们的大小一样吗?生1:大小一样生2:形状一样生3:两个圆可以完全重合3、归纳:师:我们把能够完全重合的圆叫做等圆。
师:如何理解同圆?生:同圆指的是同一个圆。
师:好,正确二、引入师:今天这节课老师将和同学们一起探讨在同圆或等圆中弧、弦、圆心角之间的关系。
活动2:(一)复习问题:师:什么是弧、弦?[在黑板画圆、作出弧、弦,引导学生观察]生1:弧是指圆上任意两点间的部分生2:弦是指连接圆上任意两点所得线段师:很好,这两位同学回答正确(二)圆心角的认识1、观察图片(1)找角,观察角的特征师:图中有一个角,你看到了吗?请你说出这个角生:有一个角,是AOB(2)归纳总结得出圆心角的概念教师出示圆形纸片(画有一个圆心角)师:请同学们观察,找到这个角的顶点。
生1:这个角的顶点在圆心生2:角的两边在圆上生3:角的顶点在圆心,两边在圆上师:角的顶点在圆心归纳:师:我们把顶点在圆心的角叫做圆心角。
2、巩固学生对圆心角的理解问题:师:找出图中的圆心角,并说明理由生1:是圆心角,因为它的顶点在圆心并且两边与圆各有一个交点。
生2:不是圆心角,因为它的顶点不在圆心生3:不是圆心角,因为它的两边与圆没有交点活动3:弧、弦、圆心角关系的探究引述:认识了弧、弦、圆心角,接下来我们就可在以同一个圆或等圆中探究它们的关系了。
1、圆的旋转不变性理解问题:师:圆是轴对称图形?吗?对称轴是什么?圆是中心对称图形吗?对称中心是什么?生1:圆是轴对称图形,对称轴是圆直径所在的直线生2:圆是中心对称图形,对称中心是圆心生3:圆是轴对称图形又是中心对称图形师:如果将圆旋转任意一个角度,所得图形还能和原图形重合吗?学生动手操作生1:将圆旋转30度角,所得图形还能与原图形重合生2:将圆旋转60度角,所得图形还能与原图形重合生3:将圆旋转90度角,所得图形还能与原图形重合生4:将圆旋转任意一个角度,所得图形还能和原图形重合师:好归纳:师:圆绕圆心旋转任意一个角度都能与原图形重合。
九年级数学上册 圆心角、弧、弦、弦心距之间关系定理教案 新人教版

B _ A _ O _
根据老师的 指导,学生 作图, 观察, 并回答教师 提出的问 题。 探究在同 一个圆中 圆心角、 弧、弦之间 关系。
B _ A _ O _
' A_ _
AB = A ' B ' ,AB=A′B′
理由:∵半径 OA 与 O′A′重合, 且∠AOB=∠A′OB′ ∴半径 OB 与 OB′重合 ∵点 A 与点 A′重合,点 B 与点 B′重合 ∴ AB 与 A ' B ' 重合,弦 AB 与弦 A′B′重合 ∴ AB = A ' B ' ,AB=A′B′
1
教学内容及教师活动
探究在相
O
O'
O(O')
等的圆中 圆心角、 弧、弦之间
B A O O'
B' A'
B O(O') B' A A'
关系。
你能发现哪些等量关 系?说一说你的理由? 我能发现: AB = A ' B ' ,AB=A B . 因此,我们可以得到下面的定理: 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等. 同样,还可以得到: 在同圆或等圆中, 如果两条弧相等, 那么 它们所对的圆心角 相等,•所对的弦也相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角 相等,所 对的弧也相等. 例.如图,在⊙O 中,AB、CD 是两条弦,OE⊥AB,OF ⊥CD, 学 生小组 垂足分别为 E、F. 合作讨论, C _ (1)如果∠AOB=∠COD,那么 OE 与 猜想并给出 A _ OF 的大小有什么关系?为什么? 证 明。 F _ E _ (2)如果 OE=OF,那么 AB 与 CD 的 O _ D _ 大小有什么关系?AB 与 CD 的大小有 B _ 什么关系?•为什么?∠AOB 与∠COD 呢? 二、巩固练习:课后练习 三、归纳总结 本节课应掌握: 1.圆心角概念. 2.在同圆或等圆中,如 果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所 对应的其余各组量都部分相等,及其它们的应用。 四、作业
《圆心角、弧、弦、弦心距、间关系》教案3
《圆心角、弧、弦、弦心距、间关系》教案(三)教学目标1.知识与技能:能说出圆心角、圆周角的概念;明确圆心角、圆周角的关系,直径所对圆周角的特征,并能灵活应用解决有关问题。
2.过程与方法:通过操作、探究,发现圆心角与弦的对等关系,圆心角与圆周角的关系,体验探索过程。
3.情感态度价值观:体会从“特殊到一般”的数学思想方法,及在解决问题中体会与他人合作交流的重要性,养成合作学习的习惯。
教学重点重点:圆心角和圆心角的性质,圆心角和圆周角的关系教学难点难点:探究圆心角和圆心角相关性质的过程教学过程第一课时一、创设情境,引入新课通过上一节的学习我们知道圆既是轴对称图形又是中心对称图形,那么我利用圆的旋转不变性,将⊙O绕圆心O旋转任意角度α后,出现一个角∠AOB,请同学们观察一下,这个角有什么特点?如图(如有条件可电脑闪动显示图形.)在学生观察的基础上,由学生说出这个角的特点:顶点在圆心上.在此基础上,教师给出圆心角的定义,并板书.顶点在圆心的角叫做圆心角.再进一步观察,AB是∠AOB所对的弧,连结AB弦AB既是圆心角∠AOB也是 AB所对的弦.这节课我们就来研究圆心角与它所对的弧、弦之间的关系.二、一起探究1.请同学们自己画一个圆心角∠AOB,再在同一圆中画出与∠AOB相等的另一个圆心角∠COD,再作出它们所对的弦A B,CD。
(1)请大家大胆猜想,∠AOB=∠COD,其余两组量AB与CD,弦AB与CD大小关系如何?学生很容易猜出:AB=CD .教师进一步提问:同学们刚才的发现仅仅是感性认识,猜想是否正确,必须进行证明,怎样证明呢?学生最容易想到的是证全等的方法可以得出AB=CD ,那么怎样证明弧相等呢? 学生思考并回忆弧与弦的关系:在同圆或等圆中,相等的弧所对的弦相等;相等的弦所对的优弧和劣弧分别相等。
(2)如果AB=CD ,那么∠AOB 等于∠COD 吗?学生积极思考,同样利用三角形全等可推理证明∠AOB =∠COD 。
(九年级数学教案)圆心角、弧、弦、弦心距之间的关系(一)
圆心角、弧、弦、弦心距之间的关系(一)九年级数学教案教学目标:1、本节课使学生理解圆的旋转不变性;2、掌握圆心角、弧、弦、弦心距之间关系定理,并能应用这些关系定理证明一些问题.3、通过本节课的教学进一步培养学生观察、比较、归纳、概括问题的能力.教学重点:圆心角、弧、弦、弦心距之间关系定理.教学难点:“圆心角、弧、弦、弦心距之间的关系定理”中的“在同圆或等圆”的前提条件的理解.教学过程:一、新课引入:同学们请观察老师手中的圆形图片.ab为⊙o的直径.①我把⊙o沿着ab折叠,两旁部分互相重合,我们知道这个圆是一个轴对移图形.②若把⊙o 沿着圆心o旋转180°时;两旁部分互相重合,这时我们可以发现圆又是一个中心对称图形.由学生总结圆不仅是轴对称图形,圆也是中心对称图形.若一个圆沿着它的圆心旋转任意一个角度,都能够与原来图形互相重合,这就是我们本节课要讲的内容:圆的一条特殊性质,即圆的旋转不变性.从圆的旋转不变性出发,推出圆心角、弧、弦、弦心距之间的关系,这是本节课我们所要学习的圆的又一条性质.二、新课讲解:首先出示圆形图片,引导学生观察:九年级数学教案事实上,由于在“同圆或等圆中”这个前提下,将题设和结论中任何一项交换都是正确的.于是得到了这个定理的推论,为了巩固所学习的定理,黑板上出示例1:例1 如图7-23,点o是∠epf的平分线上的一点,以o为圆心的圆和角的两边分别交于点a、b和c、d.求证:ab=cd.这道题的证明思路,教师引导学生分析:要证明两弦ab=cd,根据本节课所学的定理及推论,只要能证出圆心角、弧、弦心距三个量之中的一个相等即可.由于已知po是∠epf的平分线,利用角平分线的性质可知点o到ab、cd的距离相等,即弦心距相等,于是可证明ab=cd.学生回答证明过程,教师板书:证明:作om⊥ab,on⊥cd,m,n为垂足.接着教师请同学们观察幻灯片,教师一边演示,一边讲解:如果将例1的∠epf的顶点p看成是沿着po这条直线运动,(1)当顶点在⊙o上时;(2)当顶点p在⊙o内部时,是否能得到例1的结论?请同学们课后思考完成.。
圆心角、弧、弦、弦心距之间的关系(通用9篇)
圆心角、弧、弦、弦心距之间的关系(通用9篇)圆心角、弧、弦、弦心距之间的关系篇1教学目标:1、使学生理解并掌握1°的弧的概念;2、使学生能够熟练地运用本小节的知识进行有关的计算.3、继续培养学生观察、比较、概括的能力;4、培养学生准确地简述自己观点的能力和计算能力.教学重点:圆心角、弧、弦、弦心距的之间相等关系定理.教学难点:理解1°的概念.教学过程:一、新课引入:同学们,上节课我们学习了圆心角、弧、弦、弦心距之间的关系定理.在同圆或等圆中,相等的圆心角所对的弧相等.如果把顶点在圆心的周角等分成360份,得到每一份圆心角是1°,那么1°的圆心角与它们对的弧的度数之间有怎样的关系呢?教师板书:“9.4圆心角、弧、弦、弦心距之间的关系(二)”,本节课我们专门来研究圆心角的度数和它所对的弧的度数之间的关系.根据学生的已有知识水平点题,教师有意识创设问题情境,一方面激发学生的情趣,另一方面把学生的注意力引到所要讲的教学内容上来.二、新课讲解:为了使学生真正掌握圆心角、弧、弦、弦心距之间的关系的定理,一开课教师提问以下问题:1.什么叫圆心角?什么叫弦心距?2.圆绕着圆心旋转多少度角,才能够与原来的图形重合.3.如果两个圆心角相等,那么它们对的弧相等的前提条件是什么?接下来教师在事先准备好的圆上,一边画图示范,一边讲解:“我把顶点在圆心的周角分成360等份”,提问:“得到每一份的圆心角是多少度?”引导学生观察思考,“顶点为圆心的周角360等份对应的整个圆也被分成360等分的弧,这每一份弧又是多少度呢?”学生回答,教师板书:(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(三)重点、难点的学习与目标完成过程学生在教师的启发下得到了1°的弧的概念,为了进一步强化学生对1°的弧的概念的理解,巩固提问:1.度数是2°的圆心角所对的弧的度数是多少?为什么?2.3°的圆心角对着多少度的弧,3°的弧对着多少度的圆心角?3.n°的圆心角对着多少度的弧?n°的弧对着多少度的圆心角?通过学生回答,学生评价,再让学生观察和类比,可让学生自己说出圆心角的度数和它所对的弧的度数相等.如果学生说的很准确,教师不要重复,只把它完整地写在黑板上就可以了.对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.接下来进行例题教学.径为2cm,求ab的长.分析:由于弦ab所对的劣弧为圆的,所以的度数为120°,由于圆心角的度数等于它们对的弧的度数,所以∠aob的度数应等于的度数,即∠aob=120°.作oc⊥ab于c可构造出直角三角aoc,然后用垂径定理和勾股定理,或用垂径定理和解直角三角形,就可求出ac的长,最后ab=2ac又求出弦长.分析后由学生回答教师板书:解:由题意可知的度数为120°,∴∠aob=120°.作oc⊥ab,垂足为c,则∠aoc=60°,又∵ac=bc,在rt△aoc中,ac=oasin60°=2×sin60°对于这道题的解决方法,教师应该给学生充分思考时间,教师要在分析解决这个例题中,向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.例3 如图7-26,已知ab和cd是⊙o的两条直径,弦ce∥ab,=40°,求∠boc的度数.分析:欲求∠boc的度数,只要设法求出∠oce的度数,由已知=40°,可以想到ec的度数等于它们对的圆心角的度数,所以连结oe,构造圆心角∠coe,然后又由等腰三角形coe中,求出∠c的度数,最后根据ce∥ab,得到∠boc的度数.具体解题,略.对于以上两个例题,教师要善于调动学生积极主动地参与到教学活动中,引导用一题多解来考虑这个问题,分析思路教师尽可能不代替,让学生去分析并写出解题过程,此时教师只需强调解题要规范,书写要准确即可.由例3的计算题,改变成一个证明题.已知:如图7-27,ab和cd是两条直径,弦ce∥ab,求证: = .教师给出这道题的目的,是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后教师概括总结各自方法.练习.教材p.90中1、2.教师指导学生在书上完成.三、课堂小结:本节课学到的知识点:1、1°的弧的定义.2、圆心角的度数和它们对的弧的度数相等.本节所学到的方法:1、证明圆心角、弧、弦、弦心距相等的问题,只要满足“在同圆或等圆中”的一组量相等,就可得到所要求的结论;2、求弧的度数往往想它所对的圆心角度数;3、解决弦、弧有关问题,常用的辅助线是作半径、弦心距等,构造直角三角形去解决.四、布置作业:教材p.100中5.教材p102中b组2题.圆心角、弧、弦、弦心距之间的关系篇2第一课时(一)教学目标:(1)理解圆的旋转不变性,掌握圆心角、弧、弦、弦心距之间关系定理推论及应用;(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.教学重点、难点:重点:圆心角、弧、弦、弦心距之间关系定理的推论.难点:从感性到理性的认识,发现、归纳能力的培养.教学活动设计教学内容设计(一)圆的对称性和旋转不变性学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.引出圆心角和弦心距的概念:圆心角定义:顶点在圆心的角叫圆心角.弦心距定义:从圆心到弦的距离叫做弦心距.(二)应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.(三)剖析定理得出推论问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流)举出反例:如图,∠AOB=∠COD,但AB CD, .(强化对定理的理解,培养学生的思维批判性.)问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)(四)应用、巩固和反思例1、如图,点O是∠EPF的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,求证:AB=CD.解(略,教材87页)例题拓展:当P点在圆上或圆内是否还有AB=CD呢?(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)练习:(教材88页练习)1、已知:如图,AB、CD是⊙O的两条弦,OE、OF为AB、CD 的弦心距,根据本节定理及推论填空: .(1)如果AB=CD,那么______,______,______;(2)如果OE=OG,那么______,______,______;(3)如果 = ,那么______,______,______;(4)如果∠AOB=∠COD,那么______,______,______.(目的:巩固基础知识)2、(教材88页练习3题,略.定理的简单应用)(五)小结:学生自己归纳,老师指导.知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.能力和方法:①增加了证明角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.(六)作业:教材P99中1(1)、2、3.第二课时(二)教学目标:(1)理解1° 弧的概念,能熟练地应用本节知识进行有关计算;(2)进一步培养学生自学能力,应用能力和计算能力;(3)通过例题向学生渗透数形结合能力.教学重点、难点:重点:圆心角、弧、弦、弦心距之间的相等关系的应用.难点:理解1° 弧的概念.教学活动设计:(一)阅读理解学生独立阅读P89中,1°的弧的概念,使学生从感性的认识到理性的认识.理解:(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(3)圆心角的度数和它们对的弧的度数相等.(二)概念巩固1、判断题:(1)等弧的度数相等();(2)圆心角相等所对应的弧相等();(3)两条弧的长度相等,则这两条弧所对应的圆心角相等()2、解得题:(1)度数是5°的圆心角所对的弧的度数是多少?为什么?(2)5°的圆心角对着多少度的弧?5°的弧对着多少度的圆心角?(3)n°的圆心角对着多少度的弧? n°的弧对着多少度的圆心角?(三)疑难解得对于①弧相等;②弧的长度相等;③弧的度数相等;④圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.特别是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.(四)应用、归纳、反思例1、如图,在⊙O中,弦AB所对的劣弧为圆的,圆的半径为2cm,求AB的长.学生自主分析,写出解题过程,交流指导.解:(参看教材P89)注意:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要特别关注和指导.反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.例2、如图,已知AB和CD是⊙O的两条直径,弦CE∥AB,=40°,求∠BOD的度数.题目从“分析——解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.(解答参考教材P90)题目拓展:1、已知:如上图,已知AB和CD是⊙O的两条直径,弦CE∥AB,求证:= .2、已知:如上图,已知AB和CD是⊙O的两条直径,弦=,求证:CE∥AB.目的:是培养学生发散思维能力,由学生自己分析证明思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.(五)小节(略)(六)作业:教材P100中4、5题.探究活动我们已经研究过:已知点O是∠BPD的平分线上一点,以O为圆心的圆和角的两边所在的直线分别交于点A、B和C、D,则AB=CD ;现在,若⊙O与∠EPF的两边所在的直线分别交于点A、B和C、D,请你结合图形,添加一个适当的条件,使OP为∠BPD的平分线.解(略)①AB=CD;② = .(等等)圆心角、弧、弦、弦心距之间的关系篇3第一课时圆心角、弧、弦、弦心距之间的关系(一)教学目标:(1)理解圆的旋转不变性,把握圆心角、弧、弦、弦心距之间关系定理推论及应用;(2)培养学生实验、观察、发现新问题,探究和解决问题的能力;(3)通过教学内容向学生渗透事物之间可相互转化的辩证唯物主义教育,渗透圆的内在美(圆心角、弧、弦、弦心距之间关系),激发学生的求知欲.教学重点、难点:重点:圆心角、弧、弦、弦心距之间关系定理的推论.难点:从感性到理性的熟悉,发现、归纳能力的培养.教学活动设计教学内容设计(一)圆的对称性和旋转不变性学生动手画圆,对折、观察得出:圆是轴对称图形和中心对称图形;圆的旋转不变性.引出圆心角和弦心距的概念:圆心角定义:顶点在圆心的角叫圆心角.弦心距定义:从圆心到弦的距离叫做弦心距.(二)圆心角、弧、弦、弦心距之间的关系应用电脑动画(实验)观察,在同圆等圆中,圆心角变化时,圆心角所对应的弧、弦、弦心距之间的关系,得出定理的内容.这样既培养学生观察、比较、分析和归纳知识的能力,又可以充分调动学生的学习的积极性.定理:在同圆等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等.(三)剖析定理得出推论问题1:定理中去掉“在同圆或等圆中”这个前提,否则也不一定有所对的弧、弦、弦心距相等这样的结论.(学生分小组讨论、交流) 举出反例:如图,∠aob=∠cod,但ab cd, .(强化对定理的理解,培养学生的思维批判性.)问题2、在同圆等圆中,若圆心角所对的弧相等,将又怎样呢?(学生分小组讨论、交流,老师与学生交流对话),归纳出推论.推论:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(推论包含了定理,它是定理的拓展)(四)应用、巩固和反思例1、如图,点o是∠epf的平分线上一点,以o为圆心的圆和角的两边所在的直线分别交于点a、b和c、d,求证:ab=cd.解(略,教材87页)例题拓展:当p点在圆上或圆内是否还有ab=cd呢?(让学生自主思考,并使图形运动起来,让学生在运动中学习和研究几何问题)练习:(教材88页练习)1、已知:如图,ab、cd是⊙o的两条弦,oe、of为ab、cd的弦心距,根据本节定理及推论填空: .(1)假如ab=cd,那么______,______,______;(2)假如oe=og,那么______,______,______;(3)假如 = ,那么______,______,______;(4)假如∠aob=∠cod,那么______,______,______.(目的:巩固基础知识)2、(教材88页练习3题,略.定理的简单应用)(五)小结:学生自己归纳,老师指导.知识:①圆的对称性和旋转不变性;②圆心角、弧、弦、弦心距之间关系,它反映出在圆中相等量的灵活转换.能力和方法:①增加了证实角相等、线段相等以及弧相等的新方法;②实验、观察、发现新问题,探究和解决问题的能力.(六)作业:教材p99中1(1)、2、3.第二课时圆心角、弧、弦、弦心距之间的关系(二)教学目标:(1)理解1° 弧的概念,能熟练地应用本节知识进行有关计算;(2)进一步培养学生自学能力,应用能力和计算能力;(3)通过例题向学生渗透数形结合能力.教学重点、难点:重点:圆心角、弧、弦、弦心距之间的相等关系的应用.难点:理解1° 弧的概念.教学活动设计:(一)阅读理解学生独立阅读p89中,1°的弧的概念,使学生从感性的熟悉到理性的熟悉.理解:(1)把顶点在圆心的周角等分成360份时,每一份的圆心角是1°的角.(2)因为在同圆中相等的圆心角所对的弧相等,所以整个圆也被等分成360份,这时,把每一份这样得到的弧叫做1°的弧.(3)圆心角的度数和它们对的弧的度数相等.(二)概念巩固1、判定题:(1)等弧的度数相等( );(2)圆心角相等所对应的弧相等( );(3)两条弧的长度相等,则这两条弧所对应的圆心角相等( )2、解得题:(1)度数是5°的圆心角所对的弧的度数是多少?为什么?(2)5°的圆心角对着多少度的弧? 5°的弧对着多少度的圆心角?(3)n°的圆心角对着多少度的弧? n°的弧对着多少度的圆心角?(三)疑难解得对于①弧相等;②弧的长度相等;③弧的度数相等;④圆心角的度数和它们对的弧的度数相等.学生在学习中有疑难的老师要及时解得.非凡是对于“圆心角的度数和它们对的弧的度数相等”,一定让学生弄清楚这里说的相等指的是“角与弧的度数”相等,而不是“角与弧”相等,因为角与弧是两个不同的概念,不能比较和度量.(四)应用、归纳、反思例1、如图,在⊙o中,弦ab所对的劣弧为圆的 ,圆的半径为2cm,求ab的长.学生自主分析,写出解题过程,交流指导.解:(参看教材p89)注重:学生往往重视计算结果,而忽略推理和解题步骤的严密性,教师要非凡关注和指导.反思:向学生渗透数形结合的重要的数学思想.所谓数形结合思想就是数与形互相转化,图形带有直观性,数则有精确性,两者有机地结合起来才能较好地完成这个例题.例2、如图,已知ab和cd是⊙o的两条直径,弦ce∥ab, =40°,求∠bod的度数.题目从“分析——解得”让学生积极主动进行,此时教师只需强调解题要规范,书写要准确即可.(解答参考教材p90)题目拓展:1、已知:如上图,已知ab和cd是⊙o的两条直径,弦ce∥ab,求证: = .2、已知:如上图,已知ab和cd是⊙o的两条直径,弦 = ,求证:ce∥ab.目的:是培养学生发散思维能力,由学生自己分析证实思路,引导学生思考出不同的方法,最后交流、概括、归纳方法.(五)小节(略)(六)作业:教材p100中4、5题.探究活动我们已经研究过:已知点o是∠bpd的平分线上一点,以o为圆心的圆和角的两边所在的直线分别交于点a、b和c、d,则ab=cd ;现在,若⊙o与∠epf的两边所在的直线分别交于点a、b和c、d,请你结合图形,添加一个适当的条件,使op为∠bpd的平分线.解(略)①ab=cd;② = .(等等)圆心角、弧、弦、弦心距之间的关系篇4教学目标1.使学生理解圆的旋转不变性,理解圆心角、弦心距的概念;2.使学生掌握圆心角、弧、弦、弦心距之间的相等关系定理及推论,并初步学会运用这些关系解决有关问题;3.培养学生观察、分析、归纳的能力,向学生渗透旋转变换的思想及由特殊到一般的认识规律.教学重点和难点圆心角、弧、弦、弦心距之间的相等关系是重点;从圆的旋转不变性出发,推出圆心角、弧、弦、弦心距之间的相等关系是难点.教学过程设计一、创设情景,引入新课圆是轴对称图形.圆的这一性质,帮助我们解决了圆的许多问题.今天我们再来一起研究一下圆还有哪些特性.1.动态演示,发现规律投影出示图7-47,并动态显示:平行四边形绕对角线交点O旋转180°后.问:(1)结果怎样?学生答:和原来的平行四边形重合.(2)这样的图形叫做什么图形?学生答:中心对称图形.投影出示图7-48,并动态显示:⊙O绕圆心O旋转180°.由学生观察后,归纳出:圆是以圆心为对称中心的中心对称图形.投影继续演示如图7-49,让直径AB两个端点A,B绕圆心旋转30°,45°,90°,让学生观察发现什么结论?得出:不论绕圆心旋转多少度,都能够和原来的图形重合.进一步演示,让圆绕着圆心旋转任意角度α,你发现什么?学生答:仍然与原来的图形重合.于是由学生归纳总结,得出圆所特有的性质:圆的旋转不变性.即圆绕圆心旋转任意一个角度α,都能够与原来的图形重合.2.圆心角,弦心距的概念.我们在研究圆的旋转不变性时,⊙O绕圆心O旋转任意角度α后,出现一个角∠AOB,请同学们观察一下,这个角有什么特点?如图7-50.(如有条件可电脑闪动显示图形.)在学生观察的基础上,由学生说出这个角的特点:顶点在圆心上.在此基础上,教师给出圆心角的定义,并板书.顶点在圆心的角叫做圆心角.再进一步观察,AB是∠AOB所对的弧,连结AB,弦AB既是圆心角∠AOB也是AB所对的弦.请同学们回忆,在学习垂径定理时,常作的一条辅助线是什么?学生答:过圆心O作弦AB的垂线.在学生回答的基础上,教师指出:点O到AB的垂直线段OM的长度,即圆心到弦的距离叫做弦心距.如图7-51.(教师板书定义)最后指出:这节课我们就来研究圆心角之间,以及它们所对的弧、弦、弦的弦心距之间的关系.(引出课题)二、大胆猜想,发现定理在图7-52中,再画一圆心角∠A′OB′,如果∠AOB=∠A′OB′,(变化显示两角相等)再作出它们所对的弦AB,A′B′和弦的弦心距OM,OM′,请大家大胆猜想,其余三组量与,弦AB与A′B′,弦心距OM 与OM′的大小关系如何?学生很容易猜出: =,AB=A′B′,OM=OM′.教师进一步提问:同学们刚才的发现仅仅是感性认识,猜想是否正确,必须进行证明,怎样证明呢?学生最容易想到的是证全等的方法,但得不到=,怎样证明弧相等呢?让学生思考并启发学生回忆等弧的定义是什么?学生:在同圆或等圆中,能够完全重合的弧叫等弧.请同学们想一想,你用什么方法让和重合呢?学生:旋转.下面我们就来尝试利用旋转变换的思想证明 =.把∠AOB连同旋转,使OA与OA′重合,电脑开始显示旋转过程.教师边演示边提问.我们发现射线OB与射线OB′也会重合,为什么?学生:因为∠AOB=∠A′OB′,所以射线OB与射线OB′重合.要证明与重合,关键在于点A与点A′,点B与点B′是否分别重合.这两对点分别重合吗?学生:重合.你能说明理由吗?学生:因为OA=OA′,OB=OB′,所以点A与点A′重合,点B与点B′重合.当两段孤的两个端点重合后,我们可以得到哪些量重合呢?学生:与重合,弦AB与A′B′重合,OM与OM′重合.为什么OM也与OM′重合呢?学生:根据垂线的唯一性.于是有结论: =,AB=A′B′,OM=OM′.以上证明运用了圆的旋转不变性.得到结论后,教师板书证明过程,并引导学生用简洁的文字叙述这个真命题.教师板书定理.定理:在同圆____中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.教师引导学生补全定理内容.投影显示如图7-53,⊙O与⊙O′为等圆,∠AOB=∠A′O′B′,OM与O′M′分别为AB与A′B′的弦心距,请学生回答与 .AB与A′B′,OM与O′M′还相等吗?为什么?在学生回答的基础上,教师指出:以上三组量仍然相等,因为两个等圆可以叠合成同圆.(投影显示叠合过程)这样通过叠合,把等圆转化成了同圆,教师把定理补充完整.然后,请同学们思考定理的条件和结论分别是什么?并回答:定理是在同圆或等圆这个大前提下,已知圆心角相等,得出其余三组量相等.请同学们思考,在这个大前提下,把圆心角相等与三个结论中的任何一个交换位置,可以得到三个新命题,这三个命题是真命题吗?如何证明?在学生讨论的基础上,简单地说明证明方法.最后,教师把这四个真命题概括起来,得到定理的推论.请学生归纳,教师板书.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.三、巩固应用、变式练习例1 判断题,下列说法正确吗?为什么?(1)如图7-54:因为∠AOB=∠A′OB′,所以AB=.(2)在⊙O和⊙O′中,如果弦AB=A′B′,那么 =.分析:(1)、(2)都是不对的.在图7-54中,因为和不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.可让学生举反例说明.例2 如图7-55,点P在⊙O上,点O在∠EPF的角平分线上,∠EPF的两边交⊙O于点A和B.求证:PA=PB.让学生先思考,再叙述思路,教师板书示范.证明:作OM⊥PA,ON⊥PB,垂足为M,N.把P点当做运动的点,将例2演变如下:变式1(投影打出)已知:如图7-56,点O在∠EPF的平分线上,⊙O和∠EPF的两边分别交于点A,B和C,D.求证:AB=CD.师生共同分析之后,由学生口述证明过程.变式2(投影打出)已知:如图7-57,⊙O的弦AB,CD相交于点P,∠APO=∠CPO,求证:AB=CD.由学生口述证题思路.说明:这组例题均是利用弦心距相等来证明弦相等的问题,当然,也可利用其它方法来证,只不过前者较为简便.练习1 已知:如图7-58,AD=BC.求证:AB=CD.师生共同分析后,学生练习,一学生上黑板板演.变式练习.已知:如图7-58, =,求证:AB=CD.四、师生共同小结教师提问:(1)这节课学习了哪些具体内容?(2)本节的定理和推论是用什么方法证明的?(3)应注意哪些问题?在学生回答的基础上,教师总结.(1)这节课主要学习了两部分内容:一是证明了圆是中心对称图形.得到圆的特性——圆的旋转不变性;二是学习了在同圆或等圆中,圆。
人教版数学九年级上册第24章圆24.1.3弧、弦、圆心角优秀教学案例
在课堂练习环节,我将设计一系列具有层次性的题目,让学生在解答问题的过程中巩固所学知识,并通过小组合作交流,培养学生的团队协作能力和解决问题的能力。最后,我将进行课堂总结,强调本节课的重点和难点,为学生后续的学习打下坚实的基础。
3.学生通过自主学习、合作学习和探究学习,培养自学能力、合作能力和创新意识。
4.学生通过运用弧、弦、圆心角的知识解决实际问题,提高应用能力和实践能力。
(三)情感态度与价值观
1.学生能够积极参与课堂学习,对数学产生兴趣,树立自信心。
2.学生能够体验到数学学习的乐趣,养成积极思考、善于动手的良好学习习惯。
2.问题情境:设计一些与圆的弧、弦、圆心角相关的问题,如“自行车轮的周长是多少?”、“如何测量圆的直径?”等,激发学生的思考和探究欲望。
3.操作情境:利用多媒体课件和教具,展示圆的弧、弦、圆心角的动态变化,让学生直观地感受和理解它们之间的关系。
4.实践情境:让学生亲自动手进行实验和操作,如测量和绘制圆的弧、弦、圆心角,增强学生的实践能力和体验。
(五)作业小结
3.举例说明弧、弦、圆心角在实际问题中的应用:通过实际问题的引入,讲解如何运用弧、弦、圆心角的知识解决问题,引导学生运用和巩固。
(三)学生小组讨论
1.设计小组讨论任务,让学生分组讨论和探究弧、弦、圆心角的关系和应用。
2.引导学生通过观察、操作和思考,发现弧、弦、圆心角之间的联系,培养学生的合作意识和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、教案背景
1、面向学生: □中学
2、学科:数学
2、课时:1
3、学生课前准备:
①自学课本P110, ②圆形半透明胶片、刻度尺、圆规、练习本。
一、教学课题
掌握圆心角的概念,掌握在同圆或等圆中,圆心角、弧、弦中有一个量的两个相等就可以推出其它
两个量的相对应的两个量就相等,及其它们在解题中的应用。
1.合书做例 2.
如图,AB 与 DE 是⊙O 的直径,C 是⊙O 上一点,AC∥DE。求证:
︵︵
(1)AD =CE
(2)BE=EC
2.如图,在⊙O 中,AB、CD 是两条弦,OE⊥AB,OF⊥CD,垂足分别为 EF. (1)如果∠AOB=∠COD,那么 OE 与 OF 的大小有什么关系?为什么?
D.不能确定
︵︵
3.如图 1,⊙O 中,如果AB =2AC ,那么
(
)
A.AB=2AC B.AB=AC C.AB<2AC D.AB>2AC
(
)
A
C O B
C E
A
O
B
D
(1)
(2)
4.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________.
5.如图 2,AB 和 DE 是⊙O 的直径,弦 AC∥DE,若弦 BE=3,则弦 CE=____者关系定理的视频,学生通
过现场观看和自己动手制作,印象深刻,使重点得以突出,难点得到了突破。
一、教学方法
1、通过叠合的数学方法,探究圆心角、弧、弦、弦心距之间的关系;
2、通过化归思想、数形结合思想运用关系定理证明线段相等、弧相等、角相等;
2、教材P111 实验与探究中,通过旋转∠AOB,试写出你发现的哪些等量关系?为什么?
3、 在圆心角、弧、弦之间的关系定理中,为什么要说“同圆或等圆”?能不能去掉?
4、 c59eef8c7b4fb.html
在同圆或等圆中,相等的圆心角所对的弧
,所对的弦
。
在同圆或等圆中,相等的弧所对的
相等,•所对的
也相等.
在同圆或等圆中,相等的弦所对的
相等,
相等.
三、精讲点拨:
圆心角、弧、弦之间的关系定理课件 /view/c595c0146c175f0e7cd13718.html
一 、教材分析
本节课是在上一节通过圆的轴对称性质探究出垂径定理的基础上,再次通过圆的旋转不变性研究圆
心角、弧、弦之间的关系,形成对圆的性质的全面认识,因此它不仅是前面所学知识的延续,也是本章
中证明同圆或等圆中弧等、弦等、弦心距等以及线段相等的重要依据。特别是圆的各种性质被广泛地应
用于生产生活中,因此本节课不仅能很好的培养学生观察、发现、分析、解决问题的能力,还有利于启
3、运用关系定理、垂径定理、勾股定理解决有关问题。
二、教学过程
(一)温故知新
1、(学生活动)请同学们完成下题.
已知△OAB,如图所示,作出绕 O 点旋转 30°、45°、60°的图形.
二、自学.htm 1、 举例说明什么是圆心角?并判断下列哪些角是圆心角。( )
相等,•所对的
也相等.
在同圆或等圆中,相等的弦所对的
相等,
︵︵
(3)如图,在⊙O 中,AB =AC ,∠B=70°.求∠C 度数.
相等.
︵︵︵
(4)如图,AB 是直径,BC =CD =DE ,∠BOC=40°,求∠AOE 的度数
(第(3)题)
(第(4)题)
六、总结反思:
弧、弦、圆心角作业纸
设计:刘凌云
1.如果两个圆心角相等,那么 ( )
A.这两个圆心角所对的弦相等;
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等;
D.以上说法都不对
2.在同圆中,圆心角∠AOB=2∠COD,则两条弧 AB 与 CD 关系是
︵︵ ︵︵ ︵︵
A.(1)AB =2CD B.AB >2CD C AB <2CD
迪学生的探索灵感,增强创新意识。所以,本节课无论是在数学知识的学习上,还是应用数学知识、建
立数学模型能力的培养上,都起着十分重要的作用。而且,本节课的学习将对今后的学习和培养学生能
力有重要的作用。
【教学重点与难点】
重点:理解圆的旋转不变性,掌握圆心角、弧、弦之间的三个关系定理,并能应用这些定理理解相关问
︵︵
2、如图,在⊙O 中,弦 AB 与弦 CD 相交于 E 点,ACB =DBC (1)弦 AC 与弦 BD 相等吗?证明你的结论。 (2)线段 AE 与线段 DE 相等吗?证明你的结论。
五、当堂检测:
(1)圆是中心对称图形,
是它的对称中心。
(2)在同圆或等圆中,相等的圆心角所对的弧
,所对的弦
。
在同圆或等圆中,相等的弧所对的
、弧、弦之间的关系定理的探索。
关
系》的相关教学材料,找了很多教案作参考,了解到教学的重点和难点,确定课堂教学形式和现场放给学生观看,加深
︵︵
︵︵
6、如图,AB 与CD 都是⊙O 的弧,若AB =CD ,则下列结论中错误的是( )
︵︵
︵︵
A AB 与CD 所对的弦相等 B AB 与CD 所对的圆心角相等
C AD=BC D AC=BD
7.【拓展创新】如图 1 和图 2,MN 是⊙O 的直径,弦 AB、CD•相交于 MN•上的一点 P,•∠APM=∠CPM. (1)由以上条件,你认为 AB 和 CD 大小关系是什么,请说明理由. (2)若交点 P 在⊙O 的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.
︵︵
(2)如果 OE=OF,那么AB 与CD 的大小有什么关系?AB 与 CD 的大小有什么关系?•为什么? ∠AOB 与∠COD 呢?
A
C
F
E
O
DB四、有效训练:【搜索】/view/c595c0146c175f0e7cd13718.html 1、如图,AB 是⊙O 的直径,AC 与 AD 是⊙O 的弦,AC=AD。求证:∠CAB=∠DAB
AM C P
FE
O
D
B
N
A
E
B
N
M
P DF C
(图 1)
(图 2)
二、 教学反思
本节课的教学始终坚持把对圆心角、弧、弦之间的关系探究作为本课的重点,通过直观的操作产生 猜想,通过操作找到逻辑证明的思路,最后由直观到抽象,由特殊到一般概括出结论的本质。这其实也 是认识客观事物的一般规律,是学生进行发现和创新的基础。 本教学设计在实施过程中间较为紧迫,相应的练习安排较少,可能会影响学生对新定理应用的训练。