高三数学第一轮复习课件--排列组合

合集下载

高三数学精品课件:排列与组合

高三数学精品课件:排列与组合

[主干知识·自主梳理] 重温教材 自查自纠
小题诊断
法一:可分两种情况:第一种情况,只有 1 位女生入选,不 5同.的(2选01法8·高有考C全21C国24=卷1Ⅰ2(种)从);2 第位二女种生情,况4 位,男有生2中位选女3生人入参选加, 科不技同比的赛选法,有且 至C22少C14有=41(种位).女 生 入 选 , 则 不 同 的 选 法 共 有 _根__据1_6_分__类_种加.法(计用数数原字理填知写答 ,至案少) 有 1 位女生入选的不同的选 法有 16 种. 法二:从 6 人中任选 3 人,不同的选法有 C36=20(种),从 6 人中任选 3 人都是男生,不同的选法有 C34=4(种),所以至少 有 1 位女生入选的不同的选法有 20-4=16(种).
生组成的田径运动队中选出 4 人参加比赛,要求男、女生都有,
则男生甲与女生乙至少有 1 人入选的方法种数为( )
A.85
B.86
C.91
D.90
思路分析:可采用直接法求解,也可用间接法求解,注意题目
中“至少”的含义.
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
[主干知识·自主梳理] 重温教材 自查自纠
易混淆排列与组合问题,区分的关键是看选出的元素 是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.
[主干知识·自主梳理] [考点分类·深度剖析] [创新考点·素养形成] 课时作业 首页 上页 下页 尾页
考点二 组合应用题 (核心考点——合作探究)
解析:法一:(直接法)由题意,可分 3 类情况: 第 1 类,若男生甲入选,女生乙不入选,则方法种数为 C31C24+ C32C14+C33=31; 第 2 类,若男生甲不入选,女生乙入选,则方法种数为 C41C23+ C42C13+C34=34; 第 3 类,若男生甲入选,女生乙入选,则方法种数为 C23+C14C13 +C24=21. 所以男生甲与女生乙至少有 1 人入选的方法种数为 31+34+21 =86.

高三数学一轮复习 第十四章 第1讲 排列与组合课件 理 新人教A版

高三数学一轮复习 第十四章 第1讲 排列与组合课件 理 新人教A版
第十九页,共24页。
(6)直接法:有两种情况:甲、乙两人都不当选和甲、乙只有 一人当选,则 C35+C12C52=30.
间接法:甲乙至多有一人当选的对立事件为甲乙都当选,则 C37-C15=30.
对于有条件的组合问题,可能遇到含有某个(mǒu ɡè)(些) 元素与不含某个(mǒu ɡè)(些)元素问题;也可能遇到“至多”或“至少”等 组合问题的计算,此类问题要注意分类处理或间接计算,切记不
3.(2011 年广东惠州调研)从 4 名男生和 3 名女生中选出 4 人
参加(cānjiā)迎新座谈会,若这 4 人中必须既有男生又有女生,不同的选
法共有( D )
A.40 种
B.120 种
C.35 种
D.34 种
4.从 5 名男同学,3 名女同学中选 3 名参加(cānjiā)公益活动,则选
45
要因为“先取再后取”产生顺序造成计算错误.
第二十页,共24页。
【互动(hù dònɡ)探究】
3.某地政府召集 5 家企业的负责人开会,其中甲企业有 2 人
到来会自,3 家其余不同4(b家ù 企tón业ɡ)各企有业的1 可人能到情会况,的会种上数有为3( 人B发言) ,则这 3 人
A.14
B.16
C解.析20:由间接法得 C63-C41=20-4=16(种),故选 B.
第十五页,共24页。
排列组合中的一些基本方法:①特殊元素优先(yōuxiān)考 虑;②对于相邻问题,采用“捆绑”法;③对于不相邻问题采用 “插空”法.④对于定序问题,可以先不考虑顺序限制,排列后 再除以定序元素的全排列.
第十六页,共24页。
【互动探究】
2.(2010 年四川)由 1,2,3,4,5 组成没有(méi yǒu)重复数字且 1,2 都不 5 相邻(xiānɡ lín)的五位数的个数是A( )

排列组合课件-高三数学一轮复习

排列组合课件-高三数学一轮复习

源于探索外太空的渴望,航天事业在 21世纪获得了长足的发展.太空中的环境为某些科学实验提供了有利条件, 宇航员常常在太空旅行中进行科学实验.在某次太空旅行中,宇航员们负 责的科学实验要经过5道程序,其中A,B两道程序既不能放在最前,也 不能放在最后,则该实验不同程序的顺序安排共有
√ A.18种 B.36种 C.72种 D.108种
先排甲、乙,有 A24种排法,再排丙,有 A14种排法,其余 5 人有 A55种排 法,故不同的排法共有 A24A14A55=5 760(种).
题型二 组合问题
从6名男生和4名女生中选出4人去参加一项创新大赛,则下列说法正确的 有 A.如果4人全部为男生,那么有30种不同的选法 B.如果4人中男生、女生各有2人,那么有30种不同的选法
如果男生中的甲和女生中的乙必须在内,在剩下的 8 人中再选 2 人即 可,有 C28=28(种),故 C 正确;
在 10 人中任选 4 人,有 C410=210(种),甲、乙都不在其中的选法有 C48 =70(种), 故 男 生 中 的 甲 和 女 生 中 的 乙 至 少 要 有 1 人 在 内 的 选 法 有 210 - 70 = 140(种),故D正确.
第一步,先从 4 名学生中任取两人组成一组,与剩下 2 人分成三组, 有 C24=6(种)不同的方法;第二步,将分成的三组安排到甲、乙、丙三 地,则有 A33=6(种)不同的方法.故共有 6×6=36(种)不同的安排方案.
题型一 排列问题
中国国家滑雪队将开展自由式滑雪项目中的空中技巧、雪上技巧、障碍
将9名大学生志愿者安排在星期五、星期六及星期日3天参加社区公益活 动,每天分别安排3人,每人参加一次,则不同的安排方案共有_1__6_8_0_ 种.(用数字作答)

11.2排列组合-2021届高三数学(新高考)一轮复习课件(共36张PPT)

11.2排列组合-2021届高三数学(新高考)一轮复习课件(共36张PPT)

题型二 组合问题[自主练透] 1.[2020·山东新高考预测卷]北京园艺博览会期间,安排 6 位志愿 者到 4 个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两 个展区各安排两个人,其中小李和小王不在一起,不同的安排方案共 有( ) A.168 种 B.156 种 C.172 种 D.180 种
类题通法 “至少”或“至多”含有几个元素的组合题型:解这类题目必须 十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏 解.用直接法或间接法都可以求解,通常用直接法分类复杂时,用间 接法求解.
题型三 排列与组合的综合问题[师生共研] [例 1] (1)若由 3 人组成的微信群中有 4 个不同的红包,每个红包 只能被抢一次,且每个人至少抢到 1 个红包,则红包被抢光的方式共 有( ) A.12 种 B.18 种 C.24 种 D.36 种
丙机在甲机之前和丙机在甲机之后的数目相同,则此时有12×C12A44=24 种不同的着舰方法.则一共有 24+24=48 种不同的着舰方法,故选
C.
类题通法 解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进 行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问 题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他 元素(或位置).
6.[2018·全国Ⅰ卷]从 2 位女生,4 位男生中选 3 人参加科技比赛, 且至少有 1 位女生入选,则不同的选法共有________种.(用数字填写 答案)
答案:16 解析: 解法一 按参加的女生人数分两类,共有 C12C42+C22C41=16(种). 解法二 C63-C43=20-4=16(种).
A.240 种 B.188 种 C.156 种 D.120 种
答案:D 解析:当 E,F 排在前三位时,共有 A22A22A33=24 种安排方案;当 E,F 排在后三位时,共有 C31A23A22A22=72 种安排方案;当 E、F 排在 三、四位时,共有 C12A13A22A22=24 种安排方案,所以不同安排方案共 有 24+72+24=120 种,故选 D.

《高三排列组合复习》课件

《高三排列组合复习》课件
3... times m}$
应用
计算在n个不同元素中取出m个 元素进行组合的不同方式的数目

示例
在5个不同元素中取出3个元素进 行组合的不同方式的数目为 $C_{5}^{3} = frac{5 times 4
times 3}{1 times 2 times 3} = 10$。
排列组合的逆序数计算
逆序数的定义
排列与组合的差异
排列考虑顺序,组合不考虑顺 序;
排列数的计算需要考虑取出的 元素顺序,而组合数的计算则 不需要考虑取出的元素顺序;
在实际应用中,排列和组合各 有其适用场景,需要根据具体 问题选择使用。
02
排列组合基本公式的应用
排列数公式的应用
排列数公式
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
06
复习总结与展望
本章重点回顾
排列组合的基本概念
排列组合的解题思路
排列和组合的定义、排列数和组合数 的计算公式等。
如何根据问题类型选择合适的解题方 法,如分步乘法计数原理、分类加法 计数原理等。
排列组合的常见问题类型
如分组、分配、排列、组合等问题。
学习心得体会
通过本次复习,我更加深入地理解了 排列组合的基本概念和计算方法,对 于常见问题类型也有了更清晰的认识 。
定序问题
总结词
解决定序问题需要使用定序法,根据题意确定元素的顺序。
详细描述
在排列组合问题中,有时需要特别注意元素的顺序。例如,有5个不同的书和4 个不同的笔,要求书和笔的顺序为“书-笔-书-笔-书”,则只要使用分组法,将元素分成若干组进行排列。
详细描述
求函数 y = x^2 - 4x + 4 在区间 [0,4] 的最值点

2020年高考一轮复习数学(理)教学课件第十章 计数原理与概率、随机变量及其分布第二节 排列与组合

2020年高考一轮复习数学(理)教学课件第十章  计数原理与概率、随机变量及其分布第二节  排列与组合

=6(种)
分法,再将3组对应3个学校,有A33=6(种)情况,则共有6×6
=36(种)不同的保送方案.
考法(三) 不等分问题
[例3] 若将6名教师分到3所中学任教,一所1名,一所2
名,一所3名,则有___3_6_0___种不同的分法.
[解析] 将6名教师分组,分三步完成:
第1步,在6名教师中任取1名作为一组,有C16种取法;
本营陪同,要么参与搜寻近处投掷点的食物;③所有参与
搜寻任务的小孩须被均分成两组,一组去远处,一组去近
处.那么不同的搜寻方案有
( B)
A.10种
B.40种
C.70种
D.80种
解析:若Grace不参与任务,则需要从剩下的5位小孩中任意
挑出1位陪同,有C
1 5
种挑法,再从剩下的4位小孩中挑出2位
搜寻远处,有C
解析:由题意知两两彼此给对方写一条毕业留言相当于从40
人中任选两人的排列数,所以全班共写了A240=40×39=
1 560(条)毕业留言.
5.已知C1m5 -C1m6 =107Cm7 ,则m=____2____.
解析:由已知得,m的取值范围为
m|0≤m≤5,m∈Z

,原等
式可化为
毕业生平均分到3所学校,共有C26CA2433C22·A33=90(种)分派方法.
考法(二) 部分均分问题
[例2] 有4名优秀学生A,B,C,D全部被保送到甲、
乙、丙3所学校,每所学校至少去一名,则不同的保送方案
共有___3_6____种.
[解析]
先把4名学生分为2,1,1共3组,有
C24C12C11 A22
=48(个),故选C.
3.将7个人(其中包括甲、乙、丙、丁4人)排成一排,若甲不

高考数学一轮总复习课件:排列与组合

高考数学一轮总复习课件:排列与组合

其余 6 人有 A66种方法,故共有 5×A66=3 600(种).
方法二:排头与排尾为特殊位置.排头与排尾从非甲的 6 个 人中选 2 个排列,有 A26种方法,中间 5 个位置由余下 4 人和甲进 行全排列,有 A55种方法,共有 A26×A55=3 600(种).
(4)(捆绑法)将女生看成一个整体,与 3 名男生在一起进行全 排列,有 A44种方法,再将 4 名女生进行全排列,也有 A44种方法, 故共有 A44×A44=576(种).
再除以定序元素的全排列 正难则反,等价转化的方法
思考题 1 (1)(2019·上海春季高考题)某校组队参加辩 论赛,从 6 名学生中选出 4 人分别担任一、二、三、四辩,若其 中学生甲必须参赛且不担任四辩,则不同的安排方法种数为 ___1_8_0___(结果用数值表示).
【解析】 先安排甲,有 3 种情况,再从剩下的 5 名学生中选 3 人排列,有 A35种情况,
∴共有 3A35=180 种方法.
(2)在航天员进行的一项太空实验中,要先后实施 6 个程序,
其中程序 A 只能出现在第一或最后一步,程序 B 和 C 在实施时
必须相邻,则实验顺序的编排方法共有( C )
A.34 种
B.48 种
C.96 种
D.144 种
【解析】 程序 A 有 A12=2(种),将程序 B 和 C 看作一个整体 与除 A 外的元素排列,有 A22A44=48(种),所以由分步乘法计数原理, 实验顺序的编排方法共有 2×48=96(种).故选 C.
(5)分三步进行: 第一步:选 1 男 1 女分别担任两个职务为 C17C15种; 第二步:选 2 男 1 女补足 5 人有 C26C14种; 第三步:为这 3 人安排工作有 A33种. 由分步乘法计数原理共有 C17C15C26C14A33=12 600 种选法. 【答案】 (1)120 (2)252 (3)672 (4)596 (5)12 600

高考数学一轮复习 10-2 排列与组合课件 理 新人教A版

高考数学一轮复习 10-2 排列与组合课件 理 新人教A版

(4)插空法.先排好男生,然后将女生插入其中的四个空位,共有
A33A44=144(种).
(5) 插 空 法 . 先 排 女 生 , 然 后 在 空 位 中 插 入 男 生 , 共 有
A
4 4
A
3 5

1
440(种).
(6)定序排列.第一步,设固定甲、乙、丙从左至右顺序的排列总数
为 N;第二步,对甲、乙、丙进行全排列,则为 7 个人的全排列,因此
答案:B
排列应用题(师生共研)
例1 有3名男生,4名女生,在下列不同要求下,求不同的排列方 法总数:
(1)全体排成一行,其中甲只能在中间或者两边位置; (2)全体排成一行,其中甲不在最左边,乙不在最右边; (3)全体排成一行,其中男生必须排在一起; (4)全体排成一行,男、女各不相邻; (5)全体排成一行,男生不能排在一起; (6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变; (7)排成前后两排,前排3人,后排4人; (8)全体排成一行,甲、乙两人中间必须有3人.
解析 (1)利用元素分析法(特殊元素优先安排),甲为特殊元素,故 先安排甲,左、右、中共三个位置可供甲选择,有 A13种,其余 6 人全排 列,有 A66种.
由分步乘法计数原理得 A13A66=2 160(种). (2)位置分析法(特殊位置优先安排),先排最左边,除去甲外,有 A16种, 余下的 6 个位置全排有 A66种,但应剔除乙在最右边的排法数 A15A55种. 则符合条件的排法共有 A16A66-A51A55=3 720(种). (3)捆绑法.将男生看成一个整体,进行全排列,再与其他元素进行 全排列,共有 A33A55=720(种).
定序问题 对于定序问题,可先不考虑顺序限制,排列后,再除以
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回
误解分析
问题1:是排列还是组合? 假期中全班40名同学都分别给同学写一封信,则共 有多少封信? 开学时,同班同学见面分别握一次手, 共握手多少次?
误解 都是C240
正解 前者讲次序,是排列问题,答案为A240,后者 不讲次序,是组合问题,答案为C240.
问题2:在100件产品中有次品3件,正品97件,从 中抽取4件,问至少抽得一件次品的方法数是多少?
市“资源”、“生态”、“环保”三个夏令营,要 求每个
夏令营活动至少有选出的一人参加,且每人只参加 一个夏令营活动,则不同的参加方案的种数是_1_8_0_.
5.不大于1 000的正整数中,不含数字3的正整数的
个数是( B )
(A)72
(B)648
(C)729
(D)728
【解题回顾】解法1先分类再分步,解法2分步结合 排除法.可见对同一问题有时既可按元素性质分类思 考,也可从事件过程分步思考.
返回
能力·思维·方法
1.有4名男生、5名女生,全体排成一行,问下列情 形各有多少种不同的排法? (1)甲不在中间也不在两端; (2)甲、乙两人必须排在两端; (3)男、女生分别排在一起; (4)男女相间; (5)甲、乙、丙三人从左到右顺序保持一定.
【解题回顾】本题集排列多种类型于一题,充分体 现了元素分析法(优先考虑特殊元素),位置分析法 (优先考虑特殊位置)、直接法、间接法(排除法)、 捆绑法、等机会法、插空法等常见的解题思路.
2.由0,1,2,3,4,5这六个数字,
(1)能组成多少个无重复数字的四位数?
(2)能组成多少个无重复数字的四位偶数?
(3)组成无重复数字的四位数中比4032大的数有多少 个?
【解题回顾】①注意题中隐含条件零不能在首位; ②由零不能在首位的隐含条件导致(3)必须分类求解.
3. 从4名男生,3名女生中选出3名代表. (1)不同的选法共有多少种? (2)至少有一名女生的不同选法共有多少种? (3)代表中男、女生都要有的不同选法共有多少种?
第1课时 排列与组合(一)
要点·疑点·考点 课 前 热 身 能力·思维·方法 延伸·拓展 误解分析
要点·疑点·考点
1.
Anm

n
n! -m
!
,ห้องสมุดไป่ตู้nn

n!
2.
C
r n

n
n!
- r!
,C r!
n n
Cn0
1
返回
课前热身
1.
A1122 A1111 A1100

C 98 100
误解 从3件次品中抽取1件,再从余下来的2件次品 和97件正品(共99件)中任意抽取3件,即C13·C399.
正解 上述解法是一种正确的“操作”,但得到的是 错误的答案,因为抽法违背了分类、分步原则,因 而不符合计数原理,从而不能使用由计数原理推得 的组合数公式.正确的答案是:
C13C397+C23C297+C33C197. 这是将方法数分成3类:抽取1件、2件、3件次 品;然后每一类分两步:先抽次品,再抽正品得到 的.
6.央电视台“正大综艺”节目的现场观众来自四个单 位,分别在图中4个区域内坐定.有4种不同颜色的 服装,每个单位的观众必须穿同种颜色的服装, 且相邻两个区域的颜色不同, 不相邻区域颜色相
同与否则不受限制,那么不同的着装方法共有多 少种?
【解题回顾】当某种元素的不同限制条件对其他 元素产生不同的影响时,应以此元素的不同限制 条件作为分类的标准进行讨论.
【解题回顾】选举问题是一种典型的组合问题,常
见的附加条件是分类选元.在解(2)、(3)时易犯的错 误是重复选,如解(2)为C13C26=45种,解(3)为C13 C14C15=60种.
4. 有11名外语翻译人员,其中5名英语翻译员,4名 日语翻译员,另两名英、日语都精通, 从中找出8 人,使他们组成两个翻译小组,其中4人翻译英 文,另4人翻译日文,这两个小组能同时工作,问 这样的分配名单共可开出几张?
【解题回顾】首先注意分类方法,体会分类方法在 解组合问题中的作用.本题也可以先安排翻译英文 人员,后安排翻译日文人员进行分类求解,共有
C45C46+C35C12C45+C25C22C44=185种.
返回
延伸·拓展
5. 从1到200的自然数中,求各个数位上都不含有 数字8的数的个数.
【解题回顾】注意此题没有要求各位上的数字不 重复.
11A22
136
C 38-n 3n

C
3n 21n
466
2.下图为一电路图,从A到B共有 ___8__条不同的线 路可通电.
3.语、数、外三科教师都布置了作业,在同一时刻4
名学生都做作业的可能情形有( B )
(A)43种
(B)34种
(C)A34种
(D)C34种
4.现从某校5名学生干部中选出4个人分别参加宿迁
相关文档
最新文档