高三复习:排列组合问题的解题方法
高中数学中的排列与组合解题技巧

高中数学中的排列与组合解题技巧在高中数学中,排列与组合是一个重要的概念和解题方法。
排列与组合涉及到数学中的计数和选择问题,掌握解题技巧对于理解和应用数学知识至关重要。
本文将介绍一些高中数学中排列与组合的解题技巧,帮助学生更好地理解和应用这一知识点。
一、排列的解题技巧排列是指从给定的元素中选取若干个元素按照一定顺序排列的结果。
在解决排列问题时,需要注意以下几个技巧:1. 使用排列的知识计算全排列:全排列是指将所有元素按照不同顺序排列的结果。
当需要计算给定元素全排列的数量时,可以使用排列的知识进行计算。
例如,在班级中选取任意3名同学参加演讲比赛,全排列的数量为P(全,3)。
2. 全排列中的重复元素处理:在计算全排列时,如果存在重复的元素,需要考虑重复元素的情况。
可以先计算全排列的总数,再除以重复元素的排列数量。
例如,在字母“MATH”中,字母“A”重复了2次,在计算全排列时,需要除以2!来消除重复的排列。
3. 限制条件下的排列计算:在一些题目中,可能会有某些元素需要满足一定的限制条件才能参与排列。
在解决这类问题时,需要先确定限制条件下可选的元素数量,再进行排列计算。
例如,从1-10中选取3个数字,要求所选数字之间的差值不小于2,可以先确定可选数字的范围,然后计算排列的数量。
二、组合的解题技巧组合是指从给定的元素中选取若干个元素无序地排列的结果。
在解决组合问题时,需要注意以下几个技巧:1. 使用组合的知识计算组合数量:组合的数量可以使用组合的公式进行计算。
例如,在10个人中选取3个人参加某项活动,可以使用组合的知识计算C(10, 3)。
2. 考虑组合的逆问题:在一些题目中,可能需要求解满足特定条件的组合数量。
此时可以考虑组合的逆问题,即求解不满足条件的组合数量,然后用总组合数量减去不满足条件的组合数量,得到满足条件的组合数量。
例如,在一组数字中,需要选出3个数字,使其和为15,可以先计算出不满足条件的组合数量,再用总组合数量减去不满足条件的组合数量。
排列组合常见21种解题方法

排列组合常见21种解题方法排列组合是高中数学中的重要知识点,也是考试中常见的题型。
在解决排列组合问题时,我们可以运用多种方法来求解,下面将介绍常见的21种解题方法。
1. 直接法,根据排列组合的定义,直接计算排列或组合的个数。
2. 公式法,利用排列组合的公式进行计算,如排列公式P(n,m)=n!/(n-m)!,组合公式C(n,m)=n!/(m!(n-m)!)。
3. 递推法,通过递推关系式求解排列组合问题,如利用排列数的递推关系P(n,m)=P(n-1,m)+P(n-1,m-1)。
4. 分类讨论法,将问题进行分类讨论,分别求解每种情况的排列组合个数,然后合并得出最终结果。
5. 组合数性质法,利用组合数的性质,如C(n,m)=C(n,n-m),C(n,m)=C(n-1,m)+C(n-1,m-1),简化计算过程。
6. 二项式定理法,利用二项式定理展开式子,求解排列组合问题。
7. 二项式系数法,利用二项式系数的性质,如n个不同元素的排列个数为n!,n个相同元素的排列个数为1,简化计算过程。
8. 容斥原理法,利用容斥原理求解排列组合问题,排除重复计算的部分。
9. 对称性法,利用排列组合的对称性质,简化计算过程。
10. 逆向思维法,从问题的逆向思考,求解排列组合问题。
11. 生成函数法,利用生成函数求解排列组合问题,将排列组合问题转化为多项式求解。
12. 构造法,通过构造合适的排列组合模型,求解问题。
13. 图论法,将排列组合问题转化为图论问题,利用图论算法求解。
14. 动态规划法,利用动态规划算法求解排列组合问题,降低时间复杂度。
15. 贪心算法法,利用贪心算法求解排列组合问题,简化计算过程。
16. 模拟法,通过模拟排列组合过程,求解问题。
17. 枚举法,将所有可能的排列组合情况列举出来,求解问题。
18. 穷举法,通过穷举所有可能的情况,求解问题。
19. 数学归纳法,利用数学归纳法证明排列组合的性质,求解问题。
(好)高中数学排列组合问题常用的解题方法

排列组合常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列.例1五人并排站成一排,如果甲、乙必须相邻且乙在甲的右边,那么例外的排法种数有种。
分析:把甲、乙视为一人,并且乙不变在甲的右边,则本题相当于4人4的全排列,A424种。
二、相离问题插空法元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定相离的几个元素插入上述几个元素间的空位和两端.例2七个人并排站成一行,如果甲乙两个必须不相邻,那么例外排法的种数是。
52分析:除甲乙外,其余5个排列数为A5种,再用甲乙去插6个空位有A652种,例外的排法种数是A5A63600种。
三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法.例3 A、B、C、D、E五个人并排站成一排,如果B必须站A的右边(A、B 可不相邻),那么例外的排法种数有。
分析:B在A的右边与B在A的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即15A560种。
2四、标号排位问题分步法把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有。
分析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法。
五、有序分配问题逐分法有序分配问题是指把元素按要求分成若干组,可用逐步下量分组法。
例5有甲、乙、丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选出4人承担这三项任务,例外的选法总数有。
分析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,例外的选法共211有C10C8C72520种。
例谈解答排列组合问题的三种方法

考点透视常见的排列组合问题有分组问题、排队问题、分配问题、计数问题等.解答排列组合问题,需重点讨论完成一件事情所需要的步数、方法数,通常需灵活运用分类计数原理和分步计数原理来求解.那么对于不同的事情,如何计算步数、方法数呢?下面介绍三种方法.一、优先法若题目中的元素有特殊要求,则需采用优先法求解.首先分析题目中有特殊要求的元素的排列方式,再分析题目中其他没有特殊要求的元素的排列方式,最后利用分步计数原理进行求解.例1.小明有A 、B 、C 、D 、E 、F 、G 7个不同的小球,现将这7个小球放进标号分别为1、2、3、4、5、6、7的盒子里,每个盒子只装1个小球.若A 小球必须放进4号盒子里,有多少种不同的放法?剖析:本题中的特殊元素为A 小球,则需采用优先法,优先考虑A 小球的位置,再考虑剩下的6个小球以及盒子的放置顺序.解:先将A 小球放进4号盒子里,有1种放法;再将剩下的6个小球任意放进6个盒子里,有A 66=720种放法;所以一共有A 66A 11=720种不同的放法.二、捆绑法有些题目中要求几个元素必须相邻排列,此时可以运用捆绑法求解.先将必须相邻排列的元素捆绑起来看成“一个整体”,当做1个元素,与其他元素一起排列;然后考虑这个“整体”内部元素的排列顺序;最后根据分步计数原理求解.例2.小明有A 、B 、C 、D 、E 、F 、G 7个不同的小球,现将这7个小球放进标号分别为1、2、3、4、5、6、7的盒子里,每个盒子只装1个小球.若放A 、B 、C 小球的3个盒子的标号相邻,则一共有多少种不同的放法?剖析:根据题意可知,要使放A 、B 、C 小球的3个盒子的标号相邻,需将放有A 、B 、C 3个球的盒子捆绑起来,视为一个“整体”,采用捆绑法求解.解:将放有A 、B 、C 3个球的盒子捆绑起来,视为一个“整体”,与其他4个盒子一起排列,有A 55=120种放法;将A 、B 、C 3个小球放进标号相邻的盒子,有A 33=6种放法;因此一共有A 55A 33=720种不同的放法.三、插空法有些题目要求某些元素不能相邻排列,对于这类问题,需运用插空法求解.先将没有要求的元素排列;再将要求不能相邻排列的元素插入已排列好的元素间的空隙中;最后利用分步计数原理求解即可.例3.小明有A 、B 、C 、D 、E 、F 、G 7个不同的小球,现将这7个小球放进标号分别为1、2、3、4、5、6、7的盒子里,并按照盒子的顺序摆成一排,每个盒子只装1个小球.要求放A 、B 、C 3个小球的盒子的标号不相邻,且也不放在第一个位置,则一共有多少种不同的放法?剖析:由题意可知,要使放A 、B 、C 3个小球的盒子的标号不相邻,则需采用插空法,先将放D 、E 、F 、G 4个小球的盒子排列好,再将放A 、B 、C 3个小球的盒子放在其他盒子间的缝隙中.解:先将放D 、E 、F 、G 4个小球的盒子的顺序排列,有A 44=24种方法;这4个盒子之间有3个空隙,加上最后的位置,有4个位置,再将装有A 、B 、C 3个小球的盒子任意放置在这4个位置中,有C 34=4种放法;所以一共有A 44C 34=96种不同的放法.优先法、捆绑法、插空法都是解答排列组合问题的常用方法,但每种方法的适用情形不同,优先法适用于求解有特殊要求的元素问题;捆绑法适用于求解元素相邻问题;插空法适用于求解元素不相邻问题.同学们在解题时,要仔细审题,先明确题目对元素的要求,确定是否有特殊元素,元素是否相邻,然后再选择与之相应的方法进行求解.(作者单位:湖北省十堰市竹山县第一中学)李家森42Copyright ©博看网. All Rights Reserved.。
高考数学如何解决复杂的排列组合题目

高考数学如何解决复杂的排列组合题目高考数学中,排列组合是一个常见的考点,也是考生们容易感到头疼的一部分。
在解决复杂的排列组合题目时,需要一定的方法和技巧。
本文将介绍一些解决复杂排列组合题目的方法和步骤。
一、理解排列和组合的概念在解决复杂排列组合问题之前,我们首先要明确排列和组合的概念。
排列是指从n个不同的元素中取出m个元素进行排列,其中元素的顺序是重要的。
组合是指从n个不同的元素中取出m个元素进行组合,其中元素的顺序是不重要的。
二、解决排列问题的方法对于复杂的排列问题,我们可以采用以下步骤和方法进行解决:1. 确定问题的条件:首先,我们需要明确题目中给出的条件,例如题目中可能会提到某些元素的顺序、限制条件等。
2. 确定问题的类型:根据题目给出的条件,确定排列问题的类型。
一般来说,排列问题可以分为有重复元素和无重复元素两种情况。
3. 使用排列公式计算:根据问题的类型,使用相应的排列公式进行计算。
对于有重复元素的排列问题,可以使用n个元素中有重复元素的排列公式;对于无重复元素的排列问题,可以使用经典的排列公式进行计算。
4. 注意特殊情况:在解决排列问题时,需要注意特殊情况的处理,例如元素有限制、元素的重复使用等。
三、解决组合问题的方法对于复杂的组合问题,我们可以采用以下步骤和方法进行解决:1. 确定问题的条件:与解决排列问题类似,首先需要明确题目中给出的条件,例如题目中可能会提到某些元素的顺序、限制条件等。
2. 确定问题的类型:根据题目给出的条件,确定组合问题的类型。
一般来说,组合问题可以分为有重复元素和无重复元素两种情况。
3. 使用组合公式计算:根据问题的类型,使用相应的组合公式进行计算。
对于有重复元素的组合问题,可以使用n个元素中有重复元素的组合公式;对于无重复元素的组合问题,可以使用经典的组合公式进行计算。
4. 注意特殊情况:在解决组合问题时,同样需要注意特殊情况的处理,例如元素有限制、元素的重复使用等。
高考数学中如何应对复杂的排列组合问题

高考数学中如何应对复杂的排列组合问题在高考数学中,排列组合问题是一类相对较难的题型。
学生在面对这类题目时,常常感到迷茫和困惑。
然而,只要掌握了一定的解题方法和技巧,就能够轻松地解决这些复杂的排列组合问题。
本文将为大家介绍几种应对复杂的排列组合问题的方法。
方法一:分步思考法在解决复杂的排列组合问题时,我们可以采用分步思考的方法,将问题逐步拆解成多个简单的子问题,然后逐个解决这些子问题。
具体步骤如下:1. 分析问题:仔细阅读题目,明确题目要求,明确需要求解的值或条件。
2. 列出已知条件:将题目中已经给出的条件列出来,这将有助于我们对问题的全面理解。
3. 寻找递推关系式:考虑问题的规模,观察已知条件,尝试找出问题的递推关系式。
4. 计算每个子问题的答案:按照递推关系式,计算每个子问题的答案,并逐步推导出最终的解。
5. 检查答案:将最终的解带入题目要求,检查答案是否符合题目要求。
通过以上步骤,我们可以将复杂的排列组合问题拆解成多个简单的子问题,逐一解决,最终得到正确的解答。
方法二:利用组合数公式对于一些特殊的排列组合问题,我们可以利用组合数公式来简化计算。
组合数公式可以表示为:C(n,m) = n! / (m!(n-m)!),其中n为待选取的元素个数,m为待选取的元素个数。
例如,题目要求从10个数字中选取4个数字进行排列组合,则可以利用组合数公式计算:C(10,4) = 10! / (4!(10-4)!) = 210。
方法三:借助图表法对于一些较复杂的排列组合问题,我们可以借助图表法来进行理解和计算。
具体步骤如下:1. 绘制分析图表:根据题目要求,绘制出相应的图表,明确每个元素的位置和关系。
2. 填充元素:根据已知条件,将已知的元素填充进图表中。
3. 推导未知元素:根据图表中已有的元素和递推关系,推导出未知的元素。
4. 检查答案:将最终得到的解带入题目要求,检查答案是否符合题目要求。
借助图表法,我们可以将排列组合问题直观地呈现出来,更好地理解和解决问题。
排列组合问题常用的解题方法含答案

高中数学排列组合问题常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组<当作一个元素>参与排列.例1:五人并排站成一排.如果甲、乙必须相邻且乙在甲的右边.那么不同的排法种数有种。
二、相离问题插空法元素相离<即不相邻>问题.可先把无位置要求的几个元素全排列.再把规定相离的几个元素插入上述几个元素间的空位和两端.例2:七个人并排站成一行.如果甲乙两个必须不相邻.那么不同排法的种数是。
三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序.可用缩小倍数的方法.例3:A、B、C、D、E五个人并排站成一排.如果 B必须站A的右边<A、B可不相邻>.那么不同的排法种数有。
四、标号排位问题分步法把元素排到指定号码的位置上.可先把某个元素按规定排入.第二步再排另一个元素.如此继续下去.依次即可完成.例4:将数字1、2、3、4填入标号为1、2、3、4的四个方格里.每格填一个数.则每个方格的标号与所填数字均不相同的填法有。
五、有序分配问题逐分法有序分配问题是指把元素按要求分成若干组.可用逐步下量分组法。
例5:有甲、乙、丙三项任务.甲需2人承担.乙丙各需1人承担.从10人中选出4人承担这三项任务.不同的选法总数有。
六、多元问题分类法元素多.取出的情况也有多种.可按结果要求.分成不相容的几类情况分别计算.最后总计。
例6:由数字 0.1.2.3.4.5组成且没有重复数字的六位数.其中个位数字小于十位数字的共有个。
例7:从1.2.3.…100这100个数中.任取两个数.使它们的乘积能被7整除.这两个数的取法<不计顺序>共有多少种?例8:从1.2.…100这100个数中.任取两个数.使其和能被4整除的取法<不计顺序>有多少种?七、交叉问题集合法某些排列组合问题几部分之间有交集.可用集合中求元素个数公式⋃=+-⋂。
n A B n A n B n A B()()()()例9:从6名运动员中选出4个参加4×100m接力赛.如果甲不跑第一棒.乙不跑第四棒.共有多少种不同参赛方法?八、定位问题优先法某个<或几个>元素要排在指定位置.可先排这个<几个>元素.再排其他元素。
排列组合题型及解题方法

排列组合题型及解题方法
排列组合是数学中的一个重要概念,用于计算对象的不同排列或组合的数量。
在解决排列组合问题时,可以使用以下几种常见的方法:
1. 计数法:根据问题的条件,逐步计算出排列或组合的数量。
例如,如果要求从n个不同的元素中选取r个元素进行排列,可以使用计数法计算出排列的数量为n(n-1)(n-2)...(n-r+1)。
2. 公式法:排列组合问题有一些常用的公式,可以直接使用这些公式计算出排列或组合的数量。
例如,排列的数量可以使用阶乘计算,组合的数量可以使用组合公式计算。
3. 递归法:对于一些复杂的排列组合问题,可以使用递归的方法进行求解。
递归法的基本思想是将问题分解为更小的子问题,并通过递归调用解决子问题。
4. 动态规划法:对于一些具有重叠子问题的排列组合问题,可以使用动态规划的方法进行求解。
动态规划法的基本思想是将问题划分为多个阶段,并通过保存中间结果来避免重复计算。
在实际应用中,排列组合问题常常与概率、统计、组合优化等领域相关。
解决排列组合问题需要灵活运用数学知识和方法,同时也需要具
备一定的逻辑思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合问题的解题方法一、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑.例1、在由数字0、1、2、3、4、5所组成的没有重复数字的四位数中,不能被5整除的数共有( )个. 解1:(元素优先法)根据所求四位数对0和5两个元素的特殊要求将其分为四类:①含0不含5,共有1324C A =48(个);②含5不含0,共有1334C A =72(个);③含0也含5,共有112224C C A =48(个);④不合0也不含5,共有44A =24(个).所以,符合条件的四位数共有48+72+48+24=192(个).解2:(位置优先法)根据所求四位数对首末两位置的特殊要求可分三步:第一步:排个位,有14C 种方法;第二步;排首位,有14C 种方法;第三步:排中间两位,有24A 种方法.所以符合条件的四位数共有14C 14C 24A =192(个).二、相邻问题“捆绑法”:对于元素相邻的排列问题,可先将相邻元素“捆绑”起来看作一个元素(整体),先与其它元素排列,然后相邻元素之间再进行排列.例2、6个人排成一排,甲、乙二人必须相邻的排法有多少种?解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A 55种,甲、乙二人的排列有A 22种,共有A 22·A 55=240种. 三、不相邻问题“插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可.例3、用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个.解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”,共有2223222234576A A A A A 种.四、有序问题“无序法”:对于元素顺序一定的排列问题,可先考虑没有顺序元素的排列,然后除以有顺序的几个元素的全排列即可.例4、3男3女排成一排,若3名男生身高不相等,则按从高到低的一种顺序站的站法有多少种?解:6个人的全排列有A 66种,3名男生不考虑身高的顺序的站法有A 33种,而由高到低又可从左到右,或从右到左(这是两种不同的站法),故共有不同站法2A 66÷A 33=240种. 五、分排问题“直排法”:n 个元素分成m (m <n )排,即为n 个元素的全排列.例5、将6个人排成前后两排,每排3人,有多少种排法.解:6个人中选3个人排在前排有A C 3336种,剩下3人排在后排有A 33种,故共有A C 3336A 33=A 66=720种.六、分组与分配问题的解法例6、6本不同的书,按以下要求各有多少种分法?⑴平均分成三组;⑵分成1本,2本、3本三组;⑶平均分给甲、乙、丙三人;⑷分给甲、乙、丙三人,一人拿1本,一人拿2本、一人拿3本;⑸甲得一本,乙得二本,丙得三本.解:⑴此为平均分组问题,共有153222426=!C C C 分法;⑵此为非平均分组问题,共有60332516=CC C 分法;⑶先分组,再排序,共有9033222426=•!!CC C 种分法;⑷先分组,再排序,36033332516=A C C C 分法;⑸共有60332516=C C C 分法.【注】此例中的每一个小题都提出了一种类型问题,搞清类型的归属对今后解题大有裨益,其中:⑴均匀分组问题;⑵非均匀分组问题;⑶均匀不定向分配问题;⑷非均匀不定向分配问题;⑸非均匀定向分配问题.七、综合问题的解法:对排列组合的综合问题,由于限制条件较多而使问题较为复杂.解此类问题时,应注意解题的基本策略与方法,抓住问题的本质,采用恰当方法求解.1、分类分步法:解排列组合的综合问题,应遵循“按元素的性质进行分类,按事情的发展过程进行分步”的原则,做到分类标准明确,分步层次清楚,不重不漏.例7、6个人排成一排,甲不在排头,乙不在排尾的排法有多少种?解:按元素甲分类:①甲在排尾,此时乙无任何限制条件地和其余4个元素排在一起,有A 55种排法;②甲不在排尾,而甲又不在排头,则甲有A 14种排法,乙不在排尾也有A 14种排法,其它4人有A 44种排法,共有A 55+A 14A 14A44=504种.2、排除法:对含有否定词的问题,也可从总体中把不符合条件的排法除去,此时应注意不能多除,也不能少除.例如:在例8中,6个人的全排列有A 66种,甲在排头的排法有A 55种,乙在排尾的排法有A 55种,甲在排头且乙在排尾的排法有A 44种,故共有A 66-A 55-A 55+A 44=504种. 3、集合思想例8、用0、1、2、3、4、5、6七个数字组成没有重复数字的五位数,若数字3不在百位,数字5不在个位,共有多少个这样的五位数?解:设M={从七个数中任取五个数的排法},A={0在首位的排法},B={3在百位上的排法},C={5在个位上的排法},如图,则满足条件的五位数共有:card (M )-card (A )-card (B )-card (C )+card (A ∩B )+card (B ∩C )+card (C ∩A )-card (A ∩B ∩C )=16083324354657=-+-A A A A 个. 4、图示(表)法:对于某些综合问题,如暂无思路求解,可考虑回归课本,用树图、框图或图表法求解.例9、同室四人各写一张贺年卡,先集中起来,然后每人拿一张别人写的贺年卡,则四张贺年卡的不同分配方法有多少种?解:(树图法)如图,共有9种不同的选法. 例10、3男3女排成一排,下列情形各有多少种排法.⑴男女相间.⑵甲乙之间恰隔二人.解:⑴男女相间的站法有两类:男女男女男女,女男女男女男,共有2A 33·A 33=72种; ⑵甲乙之间恰隔二人有三类:甲××乙××,×甲××乙×,××甲××乙,因甲乙可交换位置,故共有3×A 22×44A =144种. 例11、9人组成的蓝球队中,有7人会打卫,3人会打锋,现选5人,按3卫2锋组队出场,有多少种不同的组队方法?解:9个人中7人会卫3人会锋,故有1人既会卫也会锋,则只会卫的有6人,只会锋的有2人,见下表:故共有A A 2236+A A C 223326+A C A 221236=900种方法. 5、至多、至少问题间接法:对于含有 “至多”、“至少”的组合问题,分类讨论十分麻烦,若用间接法处理,可使问题简化.例12、①某校要从6个班级中选出10人组成一个篮球队,要求每班至少选1人参加,则这10个名额的不同分配方法有多少种?②从4台甲型和5台乙型电视机中任意取出3台,其中至少含甲型与乙型电视机各一台的不同选法有 种?解:①(隔板法)因为名额之间无区别,所以可把它们视作排成一排的10相同的球,要把这10个球分开成6段(每段至少有一个球),这样,第一种分隔方法都对应一种名额的分配方法,这10个球之间(不含两端)共有9个空位,现要在这9个空位中放进5块隔板,共有C 59=126种放法,故共有126种分配方法. ②(排除法)在被取出的3台中,不含甲型或不含乙型的取法分别为34C 与35C 种,故符合题意的取法有39C -34C -35C =70种.6、角色转换法:对元素可重复的排列组合问题,若将元素与位置互换,则可化为相异元素的问题求解.例13、有2个A ,3个B ,4个C 共9个字母排成一排,有多少种排法?解:将字母作为元素,则这是九个元素排在九个位置上的“不尽相异元素的全排列”问题.若将九个位置作为元素,则问题转化为“相异元素不许重复的组合问题”,即共有1260443729 CC C 种不同的排法.7、分组与分配问题的解法例14、6本不同的书,按以下要求各有多少种分法?⑴平均分成三组;⑵分成1本,2本、3本三组;⑶平均分给甲、乙、丙三人;⑷分给甲、乙、丙三人,一人拿1本,一人拿2本、一人拿3本;⑸甲得一本,乙得二本,丙得三本.解:⑴此为平均分组问题,共有153222426=!C C C 分法;⑵此为非平均分组问题,共有60332516=C C C 分法;⑶先分组,再排序,共有9033222426=•!!C C C 种分法;⑷先分组,再排序,36033332516=A C C C 分法;⑸共有60332516=C C C 分法. 【注】此例中的每一个小题都提出了一种类型问题,搞清类型的归属对今后解题大有裨益,其中:⑴均匀分组问题;⑵非均匀分组问题;⑶均匀不定向分配问题;⑷非均匀不定向分配问题;⑸非均匀定向分配问题.8、方程思想例15、球台上有4个黄球,6个红球,击黄球入袋记2分,击红球入袋记1分。
欲将此十球中的4球击入袋中,且总分不低于5分,则击球方法有 种?解:设击入黄球x 个,红球y 个,则有4x y +=,且25x y +≥(x ,y N ∈),解得14x ≤≤,∴13x y =⎧⎨=⎩或22x y =⎧⎨=⎩或31x y =⎧⎨=⎩或40x y =⎧⎨=⎩,对应每组解的击球方法数分别为1346C C ,2246C C ,3146C C ,4046C C ,∴不同的击球方法数为1346C C +2246C C +3146C C +4046C C =195种.对排列组合的综合问题,常用方法是“先选之,再排之”.在分清分类与分步的标准与方式的基础上,遵循两个原则:一是按元素的性质进行分类,二是按事情发生的过程进行分步.在具体应用中,要注意“类”与“类”间的独立性与并列性和“步”与“步”间的连续性.这要求我们要有周密的逻辑思维能力、准确的计数能力和灵活正确运用基础知识的能力.例16、7个人到7个地方去旅游,甲不去A 地,乙不去B 地,丙不去C 地,丁不去D 地,共有多少种旅游方案?解:(排除法)7个人去7个地方共有77A 种可能.①若甲、乙、丙、丁都去各自不能去的地方旅游,其余的人去剩下的地方有336A =种;②若甲、乙、丙、丁中有3人去各自不能去的地方旅游,有34C 种,4人中剩下的一人有13C 种,其余的人去剩下的地方有33A 种,共有34C 13C 33A =72种;③若甲、乙、丙、丁中有2人去各自不能去的地方旅游,有24C 种,余下的5人去5个不同的地方有55A 种,但其中又包括了有条件的4人中的两人(不妨设为甲乙)同时去各自不能去的地方有33A 种和这两人中有一人去各自不能去的地方有13332A A 种,故共有24C ·(55A -33A -13332A A )=468种;④若甲、乙、丙、丁中有1人去各自不能去的地方旅游,有14C 种,而余下的6个人的旅游方案仍与③的想法一致,共有1216343531363435333433[()(2)]1704C C C A A A A A A A A ------=种.故满足条件的不同旅游方案共有77A -(6+72+468+1704)=2790种.例17、三个学校分别有1名、2名、3名学生获奖,这6名学生排成一排合影,则同校的任何两名学生都不能相邻的排法有 种.解:由题意可分两类:①先在6个位置上排第一个学校的三名学生,两两不相邻(如图),3名学生每两名隔一个空位有2种排法,剩下的三个空位中再选2个排第二个学校的2名同学,最后一名同学自动确定位子,此时有232323272C A A =种排法;②第一个学校的3名同学中有两名中间隔两个位子的有两种排法(如图),剩下的3个位子中,挨着的两个不能同时选,所以从另外两个中选,最后一名同学自动确定位子,此时有132322248C A A =种排法.故满足题设条件的排法共有120种排法.试题集粹:1、从数字0、1、3、5、7中取出不同的三个作系数组成一元二次方程02=++c bx ax ,其中有实根的方程共有 个.2、将6名运动员分成4组,由5名教练员分成4组分别辅导,不同的分配方法有 种.3、身高互不相同的6个人排成2横行3纵列,在第一行的每个人都比他同列的身后的人个子矮,则所有不同排法共有 种.4、乒乓球队的10名队员中有3名主力队员,派5名参加比赛.3名主力队员要安排在第一、三、五位置,其余7名队员中选2名安排在第二、四位置,则不同的出场安排有 种.5、用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答) .6、某小组12位同学毕业前夕要留影,要求排成前5后7两排,组长站在前排正中间,两位女生甲、乙站前排且不相邻,则共有排法种数有 种.7、5个人有相应的5个指纹档案,每个指纹档案上都记录有相应人的指纹痕迹,并有检测指示灯和检测时的手指按扭.5个人中某人把手指按在键扭上,若是他的档案,则指示灯出现绿色,否则出现红色.现在这5人把手指按在5个指纹档案的按扭上去检测,规定一个人只能在一个档案上去检测,且两个人不能在同一档案上去检测,此时指示灯全部出现红色的情况共有 种.8、如图,某城市开发旅游资源,现开发出A 、B 、C 、D 、E 、F 六个旅游景点.该城市某旅行社根据游览景点次序不同而制定团体旅游方案,因为A 景点离火车站最近,根据团体来的时间,决定最先或最后旅游.对于同一交通线路上的B 、C ,可按先远后近或先近后远的方式方式游览,其余不作要求.则可制定不同的旅游方案 种.参考答案:⑴18;⑵15600;⑶90;⑷252;⑸40;⑹2903040;⑺44;⑻96.。