高三排列组合复习(精选)

合集下载

高三数学排列组合复习共28页文档

高三数学排列组合复习共28页文档
55、 为 中 华 之 崛起而 读书。 ——、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡 。——陆 游 52、 生 命 不 等 于是呼 吸,生 命是活 动。——卢 梭
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。

完整)高中数学排列组合专题复习

完整)高中数学排列组合专题复习

完整)高中数学排列组合专题复习本文介绍了解决排列组合问题的方法和策略。

首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

文章提供了分类计数原理和分步计数原理两种常用的解题方法,并指出了它们的区别。

在解决排列组合综合性问题时,需要确定分多少步及多少类,以及每一步或每一类是排列问题还是组合问题,元素总数是多少及取出多少个元素。

文章还介绍了一些常用的解题策略,如特殊元素和特殊位置优先策略。

最后,文章以一个例子展示了如何使用分步计数原理解决一个排列组合问题。

位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。

如果以元素分析为主,需要先安排特殊元素,再处理其他元素;如果以位置分析为主,需要先满足特殊位置的要求,再处理其他位置。

如果有多个约束条件,往往需要同时考虑这些条件。

练题:有7种不同的花种要排成一列的花盆里,要求两种葵花不种在中间,也不种在两端的花盆里。

问有多少种不同的排法?相邻元素捆绑策略是解决要求某几个元素必须排在一起的问题的方法。

可以将需要相邻的元素合并为一个元素,再与其他元素一起进行排列,同时要注意合并元素内部也必须排列。

练题:某人射击8枪,命中4枪,其中有恰好3枪连在一起的情况有20种不同的排列方式。

不相邻问题插空策略是先把没有位置要求的元素进行排队,再把不相邻元素插入中间和两侧的方法。

练题:某班新年联欢会原定的5个节目已排成节目单,后来又增加了两个新节目。

如果将这两个新节目插入原节目单中,且这两个新节目不相邻,那么不同插法的种数为30.定序问题倍缩空位插入策略是对于某几个元素顺序一定的排列问题,先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数。

另一种方法是设想有空位,让其他元素先坐下,再让这几个元素坐下。

练题:7个人排队,其中甲乙丙三人的顺序一定,共有多少不同的排法?可以使用倍缩法、空位法或插入法来解决。

高三——排列组合专题汇编(含答案+解析)

高三——排列组合专题汇编(含答案+解析)

1.五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有 ( )A .120种B .96种C .78种D .72种解析:①若甲在排位,剩下四人可自由排,有44A =24种排法;②若甲在第二、三、四位上,则有54131333=A A A 种排法;共78种。

2.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A .8B .24C .48D .120解析:483412=A A 。

3.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .328C .360D .648解析:当尾数是2、4、6、8时,个位有四种选法,因百位不能为0,所以百位有8种,共有8*8*4=256;当尾数为0时,百位有9种选法。

十位有8种结果,共有9*8*1=72;共有256+72=328.4.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种解析:①所有两人各选修2门的总数362424=C C ;②两人所选两门都相同的有624=C 种;③都不同的种数为624=C ;所以恰好有一门相同的选法有36-6-6=24种。

5.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。

若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种 B.180种 C.300种 D.345种解析:恰有1名女同学的选法分两类:甲组选一男一女,乙组两男的选法有225261315=C C C 种;乙组选一男一女,甲组两男的选法有120121625=C C C 种,共有345种。

6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为A.18B.24C.30D.36解析:法一)总的方法数是363324=A C ,甲乙被分到同一个班级的方法数是633=A ,故甲乙不分到同一个班级的方法数是36-6=30.法二)如丙丁分到同一个班级,则为33A ;如甲丙分到同一个班级,则丁只能独自一个班级,方法数是33A ;如乙丙分到同一个班级,则丁也只能独自一个班级,方法数是33A ;同理,若丁分到甲或乙所在班级,方法数是332A 。

高三一轮复习排列组合课件

高三一轮复习排列组合课件

在实际应用中,排列常用于 安排活动顺序,组合常用于 选择不同项目。
02 排列组合常见题型解析
相邻问题
总结词
相邻问题主要考察元素顺序的排列,解题时需要特别关注元 素的顺序。
详细描述
相邻问题通常涉及到将一组元素按照一定顺序排列,如数字 、字母或图案等。解决这类问题时,需要先确定相邻元素的 顺序,然后根据排列组合的原理计算出所有可能的排列方式 。
高阶练习题2:题目内容 描述
高阶练习题3:题目内容 描述
高阶练习题4:题目内容 描述
1.谢谢聆 听
详细描述
对于一些复杂的问题,可以将它们分解成若干个小的组合或排列问题,然后分别求解。例如,在排列 问题中,可以将问题分解成若干个小的排列问题,然后分别求解,最后将结果综合起来即可。
捆绑与插空
总结词
将某些元素捆绑在一起作为一个整体来考虑,或者在某些元素之间插入其他元素来改变 它们的排列顺序。
详细描述
插空问题
总结词
插空问题主要考察在固定元素之间插入其他元素,解题时需要特别关注插入位置 的选择。
详细描述
插空问题通常涉及到在一组固定元素之间插入其他元素,如数字、字母或图案等 。解决这类问题时,需要先确定插入位置,然后根据排列组合的原理计算出所有 可能的排列方式。
定位问题
总结词
定位问题主要考察将元素放在特定位置 上,解题时需要特别关注元素位置的确 定。
2020年高考真题解析
总结词பைடு நூலகம்
难度适中,注重基础
详细描述
2020年的高考排列组合题目难度适中,主 要考查学生对基础知识的掌握程度和运用能 力。题目设计较为常规,涉及到了排列、组 合以及简单的排列组合综合应用。
2021年高考真题解析

高中数学排列组合必考知识点经典练习题(完整版)

高中数学排列组合必考知识点经典练习题(完整版)

排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同3. 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。

高中数学排列组合典型题大全含答案

高中数学排列组合典型题大全含答案

排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A 、38 B、83 C、38A D 、38C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。

所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种(D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

2023年高考数学考点复习——排列组合(原卷版)

2023年高考数学考点复习——排列组合(原卷版)

2023年高考数学考点复习——排列组合考点一、排列例1、A,B,C,D,E五人站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法种数有()A.24种B.36种C.48种D.60种例2、七人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则排法共有()A.48种B.96种C.240种D.480种例3、某班举行了由6名学生参加的“弘扬中华文化”演讲比赛,决出第1名到第6名的名次(没有并列名次).甲、乙两名参赛者去询问成绩,回答者对甲说,“很遗憾,你和乙都没有得到冠军”;对乙说,“你当然不会是最差的”.从回答分析,6人的名次排列情况可能有()A.216种B.240种C.288种D.384种跟踪练习1、A,B,C,D,E,F六名同学进行劳动技术比赛,决出第1名到第6名的名次.A,B,C 去询问成绩,回答者对A说:“很遗憾,你们三个都没有得到冠军.”对B说:“你的名次在C之前.”对C说:“你不是最后一名.”从以上的回答分析,6人的名次排列情况种数共有()A.108B.120C.144D.1562、十进制的算筹计数法是中国数学史上一个伟大的创造,算筹实际上是一根根同长短的小木棍.下图是利用算筹表示数字1~9的一种方法.例如:3可表示为“”,26可表示为“”,现用6根算筹表示不含0的无重复数字的三位数,算筹不能剩余,则这个三位数能被3整除的概率为()A.14B.16C.512D.7243、为了援助湖北抗击疫情,全国各地的白衣天使走上战场的第一线,他们分别乘坐6架我国自主生产的“运20”大型运输机,编号分别为1,2,3,4,5,6,同时到达武汉天河飞机场,每五分钟降落一架,其中1号与6号相邻降落的概率为()A.112B.16C.15D.134、甲、乙两名大学生报名参加第十四届全运会志愿者,若随机将甲、乙两人分配到延安、西安、汉中这3个赛区,则甲、乙都被分到汉中赛区的概率为()A.19B.16C.13D.125、将甲、乙、丙、丁、戊5位同学排成一横排,要求甲、乙均在丙的同侧,且丙丁不相邻,则不同的排法共有__________种.(用数字作答)6、某学校社团将举办庆祝中国共产党成立100周年革命歌曲展演.现从《歌唱祖国》、《英雄赞歌》、《唱支山歌给党听》、《毛主席派人来》4首独唱歌曲和《没有共产党就没有新中国》、《我和我的祖国》2首合唱歌曲中共选出4首歌曲安排演出,要求最后一首歌曲必须是合唱,则不同的安排方法共有___________种.7、杭州亚运会启动志愿者招募工作,甲、乙等6人报名参加了A、B、C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,每人至多参加一个项目,若甲不能参加A、B项目,乙不能参加B、C项目,那么共有__________种不同的选拔志愿者的方案.(用数字作答)8、6人排成一行,甲、乙相邻且丙不排两端的排法有()A.288种B.144种C.96种D.48种9、由1,2,3,4,5,6六个数字按如下要求组成无重复数字的六位数,1必须排在前两位,且2,3,4必须排在一起,则这样的六位数共有()A.48个B.60个C.72个D.84个10、高三(2)班某天安排6节课,其中语文、数学、英语、物理、生物、地理各一节,若要求物理课比生物课先上,语文课与数学课相邻,则编排方案共有()A.42种B.96种C.120种D.144种11、一只口袋内装有4个白球,5个黑球,若将球不放回地随机一个一个摸出来,则第4次摸出的是白球的概率为________.12、某公司在元宵节组织了一次猜灯谜活动,主持人事先将10条不同灯谜分别装在了如图所示的10个灯笼中,猜灯谜的职员每次只能任选每列最下面的一个灯笼中的谜语来猜(无论猜中与否,选中的灯笼就拿掉),则这10条灯谜依次被选中的所有不同顺序方法数为____________.(用数字作答)考点二组合例1、从三个小区中选取6人做志愿者,每个小区至少选取1人,则不同的选取方案数为()A.10 B.20 C.540 D.1080例2、试题安排6名志愿者扶贫干部到甲、乙、丙三个贫困村做扶贫工作,每人只做1个村的脱贫工作,甲村安排1名,乙村安排2名,丙村安排3名,则不同的安排方式共有___________种.例3、某值日小组共有5名同窗,假设任意安排3名同窗负责教室内的地面卫生,其余2名同窗负责教室外的走廊卫生,那么不同的安排方式种数是()A.10 B.20 C.60 D.100跟踪练习1、某中学为了发挥青年志原者的模范带头作用,利用周末开展青年志愿者进社区服务活动.该校决定成立一个含有甲、乙两人的4人青年志愿者社区服务团队,现把4人分配到A和B两个社区去服务,若每个社区都有志愿者,每个志愿者只服务一个社区,且甲、乙两人不同在一个社区的分配方案种类有()A.4 B.8 C.10 D.122、某城市新修建的一条道路上有10盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有___________种(请用数字作答)3、某盒中有9个大小相同的球,分别标号为1,2,…,9,从盒中任取3个球,则取出的3个球的标号之和能被3整除的概率是______;记ξ为取出的3个球的标号之和被3除的余数,则随机变Eξ=______.量ξ的数学期望()4、从2名教师和5名学生中,选出3人参加“我爱我的祖国”主题活动.要求入选的3人中至少有一名教师,则不同的选取方案的种数是()A.20 B.55 C.30 D.255、国外新冠肺炎不断扩散蔓延,某地8名防疫工作人员到A、B、C、D四个社区做防护宣传,每名工作人员只去1个社区、A社区安排1名、B社区安排2名、C社区安排3名,剩下的人员到D社区,则不同的安排方法共有()A.39种B.168种C.1268种D.1680种6、从将标号为1,2,3,…,9的9个球放入标号为1,2,3,…,9的9个盒子里,每个盒内只放一个球,恰好3个球的标号与其所在盒子的标号不一致的放入方法种数为()A.84 B.168 C.240 D.2527、某盒中有9个大小相同的球,分别标号为1,2,…,9,从盒中任取3个球,则取出的3个球的标号之和能被3整除的概率是______;记ξ为取出的3个球的标号之和被3除的余数,则随机变Eξ=______.量ξ的数学期望()考点三排列组合综合运用例1、重庆11中本学期接收了5名西藏学生,学校准备把他们分配到A,B,C三个班级,每个班级至少分配1人,则其中学生甲不分配到A班的分配方案种数是()A.720 B.100 C.150 D.345例2、现有4份不同的礼物,若将其全部分给甲、乙两人,要求每人至少分得1份,则不同的分法共有()A.10种B.14种C.20种D.28种例3、将4名志愿者全部安排到某社区参加3项工作,每人参加1项,每项工作至少有1人参加,则不同的安排方式共有()A.24种B.36种C.60种D.72种跟踪练习1、现有5种不同颜色要对如图所示的五个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.420种B.780种C.540种D.480种2、重庆11中本学期接收了5名西藏学生,学校准备把他们分配到A,B,C三个班级,每个班级至少分配1人,则其中学生甲不分配到A班的分配方案种数是()A.720 B.100 C.150 D.3453、现有4份不同的礼物,若将其全部分给甲、乙两人,要求每人至少分得1份,则不同的分法共有()A.10种B.14种C.20种D.28种4、现有甲、乙、丙、丁四名义工到A,B,C三个不同的社区参加公益活动.若每个社区至少分一名义工,则甲单独被分到A社区的概率为()A.16B.12C.13D.345、5名同学到甲、乙、丙3个社区协助工作人员调查新冠疫苗的接种情况,若每个社区至少有1名同学,每名同学只能去1个社区,且分配到甲、乙两个社区的人数不同,则不同的分配方法的种数为()A.60 B.80 C.100 D.1206、某部门安排甲、乙、丙、丁、戊五名专家赴三地工作.因工作需要,每地至少需要安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的安排方案的总数为()A.36 B.30 C.24 D.187、《数术记遗》是东汉时期徐岳编撰的一本数学专著,该书介绍了我国古代14种算法,其中积算(即筹算)、太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算13种均需要计算器械.某研究性学习小组3人分工搜集整理这13种计算器械的相关资料,其中一人搜集5种,另两人每人搜集4种,则不同的分配方法种数为()A.54431384322C C C AAB.54421384233C C C AAC.544138422C C CAD.5441384C C C8、一次表彰大会上,计划安排这5名优秀学生代表上台发言,这5名优秀学生分别来自高一、高二和高三三个年级,其中高一、高二年级各2名,高三年级1名.发言时若要求来自同一年级的学生不相邻,则不同的排法共有()种.A.36 B.48 C.72 D.1209、2021年1月18日,国家航天局探月与航天工程中心组织完成了我国首辆火星车全球征名活动的初次评审.初评环节遴选出弘毅、麒麟、哪吒、赤兔、祝融、求索、风火轮、追梦、天行、星火共10个名称,作为我国首辆火星车的命名范围.某同学为了研究这些初选名字的内涵,计划从中随机选取4个依次进行分析,若同时选中哪吒、赤兔,则哪吒和赤兔连续被分析,否则随机依次分析,则所有不同的分析情况有()A.4704种B.2800种C.2688种D.3868种10、在1,2,3,4,5,6,7中任取6个不同的数作为一个3行2列矩阵的元素,要求矩阵的第2行的两个数字之和等于5,而矩阵的第1行和第3行的两个数字之和都不等于5,则可组成不同矩阵的个数为().A.204 B.260 C.384 D.48011、从1,2,3,4,5这五个数字中任取3个组成无重复数字的三位数,当三个数字中有2和3时,2需排在3的前面(不一定相邻),这样的三位数有()A.51个B.54个C.12个D.45个12、在1,2,3,4,5,6,7中任取6个不同的数作为一个3行2列矩阵的元素,要求矩阵的第2行的两个数字之和等于5,而矩阵的第1行和第3行的两个数字之和都不等于5,则可组成不同矩阵的个数为().A.204 B.260 C.384 D.48013、数学对于一个国家的发展至关重要,发达国家常常把保持数学领先地位作为他们的战略需求.现某大学为提高数学系学生的数学素养,特开设了“古今数学思想”,“世界数字通史”,“几何原本”,“什么是数学”四门选修课程,要求数学系每位同学每学年至多选3门,大一到大三三学年必须将四门]选修课程选完,则每位同学的不同选修方式有()A.60种B.78种C.84种D.144种14、2020年,新型冠状病毒引发的疫情牵动着亿万人的心.八方驰援战疫情,众志成城克时难,社会各界支援湖北,共抗新型冠状病毒肺炎.山东某医院的甲、乙、丙、丁、戊5名医生到湖北的A,B,C三个城市支援,若要求每个城市至少安排1名医生,则A城市恰好只有医生甲去支援的概率为______.15、南昌花博会期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,其中的小李和小王不在一起,不同的安排方案共有________种.。

高中排列组合知识点汇总及典型例题(全)

高中排列组合知识点汇总及典型例题(全)

高中排列组合知识点汇总及典型例题(全)一、基本原理1.加法原理:如果做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:如果做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。

注:当做一件事时,元素或位置允许重复使用时,常用基本原理求解。

二、排列从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为An公式:Anm=n(n-1)(n-2)…(n-m+1)=n!/(n-m)!规定:0!=1性质:1.n!=n×(n-1)。

(n+1)×n!=(n+1)!2.n×n!=[(n+1)-1]×n!=(n+1)×n!-n!=(n+1)!-n!3.n(n+1)/2-1=n(n-1)/2三、组合从n个不同元素中任取m(m≤n)个元素并组成一组,叫做从n个不同的m元素中任取m个元素的组合数,记作C nm。

公式:Cnm=n!/m!(n-m)! 性质:1.若Cn1=m,则Cnm=Cnm-1+Cn-1m-1规定:Cn1=Cnn=12.Cn0+Cn1+。

+C nn=2^n3.Crr+1+Crr+2+。

+C rn=Cr+1n4.CnC1nCnn=2^n四、处理排列组合应用题1.明确要完成的是一件什么事(审题);2.确定有序还是无序,分步还是分类;3.解排列、组合题的基本策略:1)直接法;2)间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。

3)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。

注意:分类不重复不遗漏。

即:每两类的交集为空集,所有各类的并集为全集。

3.排列应用题:一种解法是穷举法,即将所有满足题设条件的排列和组合逐一列举出来。

另一种解法是特殊元素和特殊位置优先考虑。

对于相邻问题,可以使用捆绑法,将相邻的元素看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档