数字滤波器结构的MATLAB实现
使用MATLAB进行数字滤波器设计的步骤与方法

使用MATLAB进行数字滤波器设计的步骤与方法数字滤波器是用于信号处理的重要工具,它可以对信号进行去噪、频率调整等操作。
而MATLAB作为一种强大的数学计算软件,提供了丰富的数字信号处理工具箱,可以方便地进行数字滤波器的设计与仿真。
本文将介绍使用MATLAB进行数字滤波器设计的步骤与方法。
1. 了解数字滤波器的基本原理在进行数字滤波器设计之前,首先需要了解数字滤波器的基本原理。
数字滤波器根据其频率响应特性可以分为低通、高通、带通和带阻滤波器等。
此外,数字滤波器的设计还需要考虑滤波器的阶数、截止频率以及滤波器类型等因素。
在设计中,我们可以选择滤波器的类型和相应的参考模型,然后利用MATLAB工具箱提供的函数进行设计。
2. 导入MATLAB中的数字信号处理工具箱使用MATLAB进行数字滤波器设计需要先导入数字信号处理工具箱。
通过在MATLAB命令窗口输入`>> toolbox`即可打开工具箱窗口,并可以选择数字信号处理工具箱进行加载。
加载完成后,就可以调用其中的函数进行数字滤波器设计。
3. 设计数字滤波器在MATLAB中,常用的数字滤波器设计函数有`fir1`、`fir2`、`iirnotch`等。
这些函数可以根据系统特性需求设计相应的数字滤波器。
以FIR滤波器为例,可以使用`fir1`函数进行设计。
该函数需要输入滤波器的阶数和截止频率等参数,输出设计好的滤波器系数。
4. 评估滤波器性能设计好数字滤波器后,需要进行性能评估。
可以使用MATLAB提供的`fvtool`函数绘制滤波器的幅频响应、相频响应和群延迟等。
通过观察滤波器在频域的性能表现,可以判断设计的滤波器是否满足要求。
5. 对滤波器进行仿真在对滤波器性能进行评估之后,还可以使用MATLAB进行滤波器的仿真。
通过将需要滤波的信号输入设计好的滤波器中,观察输出信号的变化,可以验证滤波器的去噪效果和频率调整能力。
MATLAB提供了函数`filter`用于对信号进行滤波处理。
基于matlab的数字滤波器设计

基于matlab的数字滤波器设计一.概述本文重点介绍MATLAB 中用于数字滤波器设计的函数组。
MATLAB具备设计高性能滤波器的众多工具(toolbox),包括数字滤波器设计工具箱(Digital Filter Design T oolbox)、滤波系统仿真工具箱(Filter Design and Analysis Toolbox )以及信号处理工具箱(Signal Processing Toolbox),可以设计数字滤波器的结构和参数,并实现Advanced Digital Filter Design。
二.数字滤波器介绍数字滤波器,也称计算滤波器,是指利用现代计算机中的数字回授技术来进行信号处理的方法,是对计算机处理信号的一种技术。
数字滤波器是模拟滤波器组成的数字信号处理系统,是将模拟的通全在一个硬件上实现的数字信号处理系统,它的功能比模拟滤波器更加强大。
目前它们已经应用于通信、声音、镜头、图像处理、仪器仪表、数据采集等领域。
三.MATLAB 中的滤波器设计(1)首先,MATLAB中提供了丰富的函数来实现滤波器设计工作。
其中最常用的函数有:a. firpm:有限冲激响应滤波器设计,支持线性和非线性过滤器设计。
b. butter:Butterworth低通和高通滤波器设计。
c. fir1:有限冲激响应低通和高通滤波器设计。
d. cheby1:Chebyshev第一类低通和高通滤波器设计。
(2) MATLAB还可以实现进阶的数字滤波器设计,用户可以用以下函数实现自动设计是否优化的滤波器:a. fda:设计优化低通滤波器b. fda2:设计优化定带滤波器c. fda3:设计优化双带和多带滤波器d. gfd:设计优化频谱均衡滤波器四.总结数字滤波器是一种应用广泛的信号处理技术,对于一些信号处理应用有着至关重要的作用。
MATLAB 可以简便的实现滤波器设计,并可以同时考虑多个优化目标,这些特性使其成为进行数字滤波器设计的理想工具。
数字滤波器matlab的程序

数字滤波器matlab的源代码function lvbo(Ua,Ub,choise)%参考指令:lvbo(2*pi,10*pi,1/0/-1)U1=min(Ua,Ub);U2=max(Ua,Ub);Us=16*U2;T=2*pi/Us;T_sum=4*max(2*pi/Ua,2*pi/Ub);sum=T_sum/T;t=T:T:T_sum;x=sin(U1*t)+0.8*sin(U2*t);X=DFT(x);figure(1); subplot(221)U=Us/sum:Us/sum:Us;stem(U,abs(X));grid onaxis([Us/sum,Us/2,0,1.2*max(abs(X))])title('原模拟信号采样频谱图')Ucd=U1+(U2-U1)*1/5;Usd=U2-(U2-U1)*1/5;switch choisecase 1Hz_ejw=IIR_DF_BW(Ucd,1,Usd,30,T,sum);case -1Hz_ejw=IIR_DF_CF(Ucd,1,Usd,30,T,sum);case 0Hz_ejw=FIR_DF_HM(U1,U2,T,sum);otherwiseHz_ejw=IIR_DF_BW(Ucd,1,Usd,30,T,sum);endY=X.*Hz_ejw;y=1/sum*conj(DFT(conj(Y)));figure(1); subplot(224)plot(t,real(y)); title('模拟信号滤波后');grid on axis([0,T_sum,-max(real(y))*1.5,max(real(y))*1.5]) subplot(222);plot(t,x); hold onaxis([0,T_sum,-max(x)*1.2,max(x)*1.2])x=sin(U1*t);plot(t,x,':r');grid ontitle('模拟信号滤波前')function Hz_ejw=IIR_DF_BW(Ucd,Ap,Usd,As,t,sum)% 巴特沃思滤波器E=(10^(0.1*Ap)-1)^0.5;V=(10^(0.1*As)-1)^0.5;Wc=Ucd*t; Ws=Usd*t;Ucd=Wc/t; Usd=Ws/t;Uca=(2/t)*tan(Ucd*t/2); Usa=(2/t)*tan(Usd*t/2);N=ceil(log10(V/E)/log10(Usa/Uca));k=[1:2*N];Spk=exp(j*(pi/2+(2*k-1)/(2*N)*pi));i=find(real(Spk)<0);Sk(1:N)=Spk(i);den=real(poly(Sk'));k0=polyval(den,0);disp('模拟巴特沃思滤波器的归一化统函数 Ha(s) 为')tf(k0,den)syms s z T;den_jU=1;s=s/Uca;for i=1:Nden_jU=s^(N-i+1)*den(i)+den_jU;endHa_s=simple(1/den_jU);H_z=subs(Ha_s,'s',(2/T)*((1-1/z)/(1+1/z)));k=1:sum;w=(2*pi/sum)*k;ejw=exp(j*w);Hz_ejw=subs(H_z,{z,T},{ejw,t*ones(1,length(ejw))}); figure(1); subplot(223)plot(w,abs(Hz_ejw)); grid ontitle('巴特沃思低通滤波器')axis([2*pi/sum,pi,-0.2,1.2*max(abs(Hz_ejw))]) function Hz_ejw=IIR_DF_CF(Ucd,Ap,Usd,As,t,sum)% 切比雪夫低通滤波器E=(10^(0.1*Ap)-1)^0.5;V=(10^(0.1*As)-1)^0.5;Wc=Ucd*t; Ws=Usd*t;Ucd=Wc/t; Usd=Ws/t;Uca=(2/t)*tan(Ucd*t/2); Usa=(2/t)*tan(Usd*t/2);N=ceil(acosh(V/E)/acosh(Usa/Uca));;A=1/E+(1/E^2+1)^0.5;a=1/2*(A^(1/N)-A^(-1/N));b=1/2*(A^(1/N)+A^(-1/N));k=1:2*N;Spk=-a*sin((2*k-1)/(2*N)*pi)+j*b*...cos((2*k-1)/(2*N)*pi);i=find(real(Spk)<0);Sk(1:N)=Spk(i);den=real(poly(Sk'));k0=1;disp('模拟切比雪夫低通滤波器的归一化统函数 Ha(s) 为') tf(k0,den)if (rem(N,2)==1)for i=1:Nk0=k0*(-Sk(i));endelseif ((rem(N,2))==0)k0=1;for i=1:Nk0=k0*(-Sk(i));endendif (rem(N,2)==0)k0=10^(-0.05*Ap)*k0;endk0=real(k0);syms s z T;den_jU=1;s=s/Uca;for i=1:Nden_jU=s^(N-i+1)*den(i)+den_jU;endHa_s=simple(1/den_jU);H_z=subs(Ha_s,'s',(2/T)*((1-1/z)/(1+1/z)));k=1:sum;w=(2*pi/sum)*k;ejw=exp(j*w);Hz_ejw=subs(H_z,{z,T},{ejw,t*ones(1,length(ejw))}); figure(1); subplot(223)plot(w,abs(Hz_ejw));grid ontitle('切比雪夫低通滤波器')axis([2*pi/sum,pi,-0.5,max(abs(Hz_ejw))])function Hz_ejw=FIR_DF_HM(U1,U2,T,sum)wp=U1*T;ws=U2*T;kuan=ws-wp;M=sum;n=[0:1:M-1];wc=(ws+wp)/2;hd=H_D(wc,M);window=hamming_m(M);h_z=hd.*window;Hz_ejw=DFT(h_z);k=1:sum;w=(2*pi/sum)*k;figure(1); subplot(223)plot(w,abs(Hz_ejw));grid onaxis([2*pi/sum,pi,-0.2,1.2*max(abs(Hz_ejw))]);title('海明窗函数低通滤波器')function hd=H_D(wc,N)M=(N-1)/2;for k=-M:Mif k==0hd(k+M+1)=wc/pi;elsehd(k+M+1)=sin(wc*k)/(pi*k);endendfunction wn=hamming_m(M)n=0:M-1;wn(n+1)=0.54-0.46*cos((2*pi*n)/(M-1));function Xk=DFT(xn)% 离散傅立叶变换,xn为原序列,Xk为DFT变换后的序列N=length(xn);n=0:N-1;k=0:N-1;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=xn*WNnk;。
MATLAB中的数字滤波器设计与实现

MATLAB中的数字滤波器设计与实现数字滤波器在信号处理中具有重要的作用,可用于去除噪声、滤波信号以及提取特定频率的成分。
MATLAB作为一种强大的数学软件,提供了多种数字滤波器设计和实现的工具,为工程师和科学家们提供了便捷而高效的解决方案。
本文将介绍MATLAB中数字滤波器的设计原理和实现方法,帮助读者更好地理解数字滤波器在实际应用中的重要性。
1. 数字滤波器的基本原理数字滤波器是一种能够改变信号频谱特性的系统,常用于消除噪声、去除不需要的频率成分或者提取感兴趣的信号成分。
数字滤波器分为FIR(有限长冲击响应)和IIR(无限长冲击响应)两种类型。
FIR滤波器的冲击响应为有限长序列,实现简单且稳定;IIR滤波器的冲击响应为无限长序列,具备更好的频率响应特性。
在MATLAB中,我们可以通过不同的函数和工具箱来设计这些数字滤波器。
2. FIR数字滤波器的设计与实现FIR数字滤波器的设计主要通过窗函数和频域采样进行。
MATLAB提供了一系列用于FIR滤波器设计的函数,如fir1、fir2等。
其中,fir1函数可以使用窗函数方法设计低通、高通、带通和带阻滤波器;fir2函数则可以实现自定义的频率响应。
具体设计步骤为:选择合适的窗函数、确定滤波器阶数和截止频率、生成滤波器系数。
设计完成后,可以通过filter函数将滤波器应用到目标信号上。
3. IIR数字滤波器的设计与实现IIR数字滤波器的设计方法主要有脉冲响应不变法和双线性变换法。
MATLAB提供了butter、cheby1、cheby2、ellip等函数来方便地实现IIR滤波器设计。
这些函数可以通过选择滤波器类型、阶数、截止频率等参数来生成相应的滤波器系数。
与FIR滤波器不同的是,IIR滤波器具有反馈结构,在MATLAB中可以使用filter函数来实现。
4. 数字滤波器的性能评估与优化正确评估和优化数字滤波器的性能对于滤波器的应用至关重要。
MATLAB提供了多种函数和工具箱来评估滤波器的频率响应、相位响应、时域响应等,如freqz、grpdelay、impz等。
基于MATLAB的IIR数字滤波器设计与仿真

基于MATLAB的IIR数字滤波器设计与仿真一、概述在现代数字信号处理领域中,数字滤波器扮演着至关重要的角色。
其通过对输入信号的特定频率成分进行增强或抑制,实现对信号的有效处理。
无限脉冲响应(IIR)数字滤波器因其设计灵活、实现简单且性能优良等特点,得到了广泛的应用。
本文旨在基于MATLAB平台,对IIR数字滤波器的设计与仿真进行深入研究,以期为相关领域的研究与应用提供有益的参考。
IIR数字滤波器具有无限长的单位脉冲响应,这使得其在处理信号时能够展现出优秀的性能。
与有限脉冲响应(FIR)滤波器相比,IIR滤波器在实现相同性能时所需的阶数更低,从而减少了计算复杂度和存储空间。
在需要对信号进行高效处理的场合,IIR滤波器具有显著的优势。
MATLAB作为一款功能强大的数学软件,提供了丰富的函数和工具箱,使得数字滤波器的设计与仿真变得简单而高效。
通过MATLAB,我们可以方便地实现IIR滤波器的设计、分析和优化,从而满足不同应用场景的需求。
本文将首先介绍IIR数字滤波器的基本原理和特性,然后详细阐述基于MATLAB的IIR数字滤波器的设计方法和步骤。
接着,我们将通过仿真实验验证所设计滤波器的性能,并对其结果进行分析和讨论。
本文将总结IIR数字滤波器设计与仿真的关键技术和注意事项,为相关领域的研究人员和工程师提供有益的参考和启示。
1. IIR数字滤波器概述IIR(Infinite Impulse Response)数字滤波器是数字信号处理中常用的一类滤波器,它基于差分方程实现信号的滤波处理。
与FIR (Finite Impulse Response)滤波器不同,IIR滤波器具有无限长的单位脉冲响应,这意味着其输出不仅与当前和过去的输入信号有关,还与过去的输出信号有关。
这种特性使得IIR滤波器在实现相同的滤波效果时,通常具有更低的计算复杂度,从而提高了处理效率。
IIR滤波器的设计灵活多样,可以根据不同的需求实现低通、高通、带通和带阻等多种滤波功能。
FIR滤波器的MATLAB设计与实现

FIR滤波器的MATLAB设计与实现FIR滤波器(Finite Impulse Response Filter)是一种数字滤波器,其特点是其响应仅由有限长度的序列决定。
在MATLAB中,我们可以使用信号处理工具箱中的函数来设计和实现FIR滤波器。
首先,需要明确FIR滤波器的设计目标,包括滤波器类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的增益等。
这些目标将决定滤波器的系数及其顺序。
在MATLAB中,我们可以使用`fir1`函数来设计FIR滤波器。
该函数的使用方式如下:```matlabh = fir1(N, Wn, type);```其中,`N`是滤波器长度,`Wn`是通带边缘频率(0到0.5之间),`type`是滤波器的类型('low'低通、'high'高通、'bandpass'带通、'stop'带阻)。
该函数会返回一个长度为`N+1`的滤波器系数向量`h`。
例如,如果要设计一个采样频率为10kHz的低通滤波器,通带截止频率为2kHz,阻带频率为3kHz,可以使用以下代码:```matlabfc = 2000; % 通带截止频率h = fir1(50, fc/(fs/2), 'low');```上述代码中,`50`表示滤波器的长度。
注意,滤波器的长度越大,滤波器的频率响应越陡峭,但计算成本也更高。
在设计完成后,可以使用`freqz`函数来分析滤波器的频率响应。
例如,可以绘制滤波器的幅度响应和相位响应曲线:```matlabfreqz(h);```除了使用`fir1`函数外,MATLAB还提供了其他函数来设计FIR滤波器,如`fir2`、`firpm`、`firls`等,具体使用方式可以参考MATLAB的文档。
在实际应用中,我们可以将FIR滤波器应用于音频处理、图像处理、信号降噪等方面。
例如,可以使用FIR滤波器对音频信号进行去噪处理,或者对图像进行锐化处理等。
如何利用Matlab技术进行数字滤波

如何利用Matlab技术进行数字滤波数字滤波是一种广泛应用于信号处理和图像处理中的技术。
而Matlab作为一种强大的数学软件工具,在数字滤波方面也有很高的应用价值。
本文将介绍如何利用Matlab技术进行数字滤波,从概念到具体实现,帮助读者更好地掌握这一技术。
一、数字滤波的基本概念数字滤波是一种对数字信号进行处理的技术,通过改变信号的频率特性或时域特性,达到去除或强调信号中某些成分的目的。
数字滤波可以分为无限长脉冲响应(IIR)滤波器和有限长脉冲响应(FIR)滤波器两种。
二、Matlab中数字滤波的基本函数在Matlab中,数字滤波可以使用一些基本函数实现。
其中最常用的是fir1和filter函数。
fir1函数用于设计FIR滤波器的滤波器系数,而filter函数用于对信号进行滤波处理。
三、设计FIR滤波器FIR滤波器是一种非递归滤波器,其系统函数是有限长的。
在Matlab中,可以使用fir1函数对FIR滤波器的系数进行设计。
fir1函数的输入参数包括滤波器阶数、截止频率以及窗函数类型等。
通过调节这些参数,可以设计出不同的FIR滤波器。
四、对信号进行滤波处理在得到FIR滤波器的系数后,可以使用filter函数对信号进行滤波处理。
filter函数的输入参数包括滤波器系数和待滤波的信号等。
通过调用filter函数,可以对信号进行低通滤波、高通滤波或带通滤波等操作。
五、实例演示为了更好地理解如何利用Matlab进行数字滤波,下面将通过一个实例对其进行演示。
假设有一个包含高频噪声的信号,我们希望去除这些噪声,得到清晰的信号。
首先,我们使用fir1函数设计一个低通滤波器。
假设我们希望截止频率为1kHz,滤波器阶数为100。
通过调用fir1函数,得到该滤波器的系数。
接下来,我们生成一个包含高频噪声的信号,并加上一些正弦波成分。
我们将这个信号输入到filter函数中,利用之前得到的滤波器系数进行滤波处理。
最终,我们可以得到去除了噪声的清晰信号。
数字滤波器的设计及其MATLAB实现

设计低通数字滤波器,要求在通带内频率低于0.2pirad时,允许幅度误差在1dB以内,在频率0.3pi rad~pi rad之间的阻带衰减大于15dB,用脉冲响应不变法设计数字滤波器,T=1: 切比雪夫I型模拟滤波器的设计子程序:function [b,a]=afd_chb1(Omegap,Omegar,Ar)if Omegap<=0error('通带边缘必须大于0')endif(Dt<=0)|(Ar<0)error('通带波动或阻带衰减必须大于0');endep=sqrt(10^(Dt/10)-1);A=10^(Ar/20);OmegaC=Omegap;OmegaR=Omegar/Omegap;g=sqrt(A*A-1)/ep;N=ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));fprintf('\n***切比雪夫I型模拟低通滤波器阶数=%2.0f\n',N);[b,a]=u_chblap(N,Dt,OmegaC);设计非归一化切比雪夫I型模拟低通滤波器原型程序:function [b,a]=u_chblap(N,Dt,OmegaC)[z,p,k]=cheb1ap(N,Dt);a=real(poly(p));aNn=a(N+1);p=p*OmegaC;a=real(poly(p));aNu=a(N+1);k=k*aNu/aNn;b0=k;B=real(poly(z));b=k*B;直接形式转换成级联形式子程序:function [C,B,A]=sdir2cas(b,a)Na=length(a)-1;Nb=length(b)-1;b0=b(1);b=b/b0;a0=a(1);a=a/a0;C=b0/a0;p=cplxpair(roots(a));K=floor(Na/2);if K*2==NaA=zeros(K,3);for n=1:2:NaArow=p(n:1:n+1,:);Arow=poly(Arow);A((fix(n+1)/2),:)=real(Arow);elseif Na==1A=[0 real(poly(p))];elseA=zeros(K+1,3);for n=1:2:2*KArow=p(n:1:n+1,:);Arow=poly(Arow);A((fix(n+1)/2),:)=real(Arow);endA(K+1,:)=[0 real(poly(p(Na)))];endz=cplxpair(roots(b));K=floor(Nb/2);if Nb==0B=[0 0 poly(z)];elseif K*2==NbB=zeros(K,3);for n=1:2:NbBrow=z(n:1:n+1,:);Brow=poly(Brow);B((fix(n+1)/2),:)=real(Brow);endelseif Nb==1B=[0 real(poly(z))];elseB=zeros(K+1,3);for n=1:2:2*KBrow=z(n:1:n+1,:);Brow=poly(Brow);B((fix(n+1)/2),:)=real(Brow);endB(K+1,:)=[0 real(poly(z(Nb)))];End计算系统函数的幅度响应和相位响应子程序:function [db,mag,pha,w]=freqs_m(b,a,wmax)w1=0:500;w=w1*wmax/500;h=freqs(b,a,w);mag=abs(h);db=20*log10((mag+eps)/max(mag));pha=angle(h);脉冲响应不变法程序:function [b,a]=imp_invr(c,d,T)[R,p,k]=residue(c,d);p=exp(p*T);[b,a]=residuez(R,p,k);b=real(b).*T;数字滤波器响应子程序:function [db,mag,pha,grd,w]=freqz_m(b,a);[H,w]=freqz(b,a,1000,'whole');H=(H(1:501))';w=(w(1:501))';mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);grd=grpdelay(b,a,w);直接转换成并联型子程序:function [C,B,A]=dir2par(b,a)M=length(b);N=length(a);[r1,p1,C]=residuez(b,a);p=cplxpair(p1,10000000*eps);x=cplxcomp(p1,p);r=r1(x);K=floor(N/2);B=zeros(K,2);A=zeros(K,3);if K*2==Nfor i=1:2:N-2br=r(i:1:i+1,:);ar=p(i:1:i+1,:);[br,ar]=residuez(br,ar,[]);B((fix(i+1)/2),:)real(br');A((fix(i+1)/2),:)real(ar');end[br,ar]=residuez(r(N-1),p(N-1),[]);B(K,:)=[real(br') 0];A(K,:)=[real(ar') 0];elsefor i=1:2:N-1br=r(i:1:i+1,:);ar=p(i:1:i+1,:);[br,ar]=residuez(br,ar,[]);B((fix(i+1)/2),:)real(br);A((fix(i+1)/2),:)real(ar);endEnd比较两个含同样标量元素但(可能)有不同下标的复数对及其相位留数向量子程序:function I=cplxcomp(p1,p2)I=[];for i=1:length(p2)for j=1:length(p1)if(abs(p1(j)-p2(i))<0.0001)I=[I,j];endendendI=I';双线性变换巴特沃斯低通滤波器设计:巴特沃思模拟滤波器的设计子程序:function [b,a]=afd_butt(wp,ws,Rp,rs)if wp<=0error('通带边缘必须大于0');endif ws<=wperror('阻带边缘必须大于通带边缘');endif(Rp<=0)|(Rs<0)error('通带波动或阻带衰减必须大于0');endN=ceil((log10((10^(Rp/10)-1)/(10^(Rs/10)-1)))/(2*log10(wp/ws))); fprintf('\n***Butterworth Filter Order=%2.0f\n',N);OmegaC=wp/((10^(Rp/10)-1)^(1/(2*N)));[b,a]=u_buttap(N,OmegaC)设计非归一化巴特沃思模拟低通滤波器原型子程序:function [b,a]=u_buttap(N,OmegaC)[z,p,k]=buttap(N);p=p*OmegaC;k=k*OmegaC^N;B=real(poly(z));b0=k;b=k*B;a=real(poly(p));直接型到级联型形式的转换:function [b0,B,A]=dir2cas(b,a)b0=b(1);b=b/b0;a0=a(1);a=a/a0;b0=b0/a0;M=length(b);N=length(a);if N>Mb=[b,zeros(1,N-M)];a=[a,zeros(1,M-N)];elseNM=0;endk=floor(N/2);B=zeros(k,3);A=zeros(k,3);if k*2==Nb=[b,0];a=[a,0];endbroots=cplxpair(roots(b));aroots=cplxpair(roots(a));for i=1:2:2*kbr=broots(i:1:i+1,:);br=real(polt(br));B((fix(i+1)/2),:)=br;ar=aroots(i:1:i+1,:);ar=real(polt(ar));A((fix(i+1)/2),:)=ar;Endfunction [db,mag,pha,grd,w]=freqz_m(b,a)[h,w]=freqz(b,a,1000,'whole');h=(h(1:501))';w=(w(1:501))';mag=abs(h);db=20*log10((mag+eps)/max(mag));pha=angle(h);grd=grdelay(b,a,w);设计一个巴特沃思高通滤波器,要求通带截止频率为0.6pi,通带内衰减不大于1dB,阻带·起始频率为0.4pi,阻带内衰减不小于15dB,T=1:>> wp=0.6*pi;ws=0.4*pi;>> Rp=1;Rs=15;T=1;>> [N,wn]=buttord(wp/pi,ws/pi,Rp,Rs) 计算巴特沃思滤波器阶数和截止频率N =4wn =>> [b,a]=butter(N,wn,'high'); 频率变换法计算巴特沃思高通滤波器>> [C,B,A]=dir2cas(b,a)C =0.0751B =1.0000 -2.0000 1.00001.0000 -2.0000 1.0000A =1.0000 0.1562 0.44881.0000 0.1124 0.0425>> [db,mag,pha,grd,w]=freqz_m(b,a);>> subplot(2,1,1);plot(w/pi,mag);>> subplot(2,1,2);plot(w/pi,db);椭圆带通滤波器的设计--ellip函数的应用:>> ws=[0.3*pi 0.75*pi]; 数字阻带边缘频率>> wp=[0.4*pi 0.6*pi]; 数字通带边缘频率>> Rp=1;Rs=40;>> Ripple=10^(-Rp/20); 通带波动>> Attn=10^(-Rs/20); 阻带衰减>> [N,wn]=ellipord(wp/pi,ws/pi,Rp,Rs) 计算椭圆滤波器参数N =4wn =0.4000 0.6000>> [b,a]=ellip(N,Rp,Rs,wn); 数字椭圆滤波器的设计>> [b0,B,A]=dir2cas(b,a) 级联形式实现b0 =0.0197B =1.0000 1.5066 1.00001.0000 0.9268 1.00001.0000 -0.9268 1.00001.0000 -1.5066 1.0000A =1.0000 0.5963 0.93991.0000 0.2774 0.79291.0000 -0.2774 0.79291.0000 -0.5963 0.9399>> figure(1);>> [db,mag,pha,grd,w]=freqz_m(b,a);>> subplot(2,2,1);plot(w/pi,mag);>> grid on;>> subplot(2,2,3);plot(w/pi,db);grid on;>> subplot(2,2,2);plot(w/pi,pha/pi);grid on;>> subplot(2,2,4);plot(w/pi,grd);设计一个巴特沃思带阻滤波器,要求通带上下截止频率为0.8pi、0.2pi,通带内衰减不大于1dB,阻带上起始频率为0.7pi、0.4pi,阻带内衰减不小于30dB:>> wp=[0.2*pi 0.8*pi];>> ws=[0.4*pi 0.7*pi];>> Rp=1;Rs=30;>> [N,wn]=buttord(wp/pi,ws/pi,Rp,Rs);>> [b,a]=butter(N,wn,'stop');>> [C,B,A]=dir2cas(b,a)C =0.0394B =1.0000 0.3559 0.99941.0000 0.3547 1.00401.0000 0.3522 0.99541.0000 0.3499 1.00461.0000 0.3475 0.99601.0000 0.3463 1.0006A =1.0000 1.3568 0.79281.0000 1.0330 0.46331.0000 0.6180 0.17751.0000 -0.2493 0.11131.0000 -0.6617 0.37551.0000 -0.9782 0.7446>> [db,mag,pha,grd,w]=freqz_m(b,a); >> subplot(2,1,1);plot(w/pi,mag);>> subplot(2,1,2);plot(w/pi);数字低通---数字带阻:function [bz,az]=zmapping(bZ,aZ,Nz,Dz) bzord=(length(bZ)-1)*(length(Nz)-1); azord=(length(aZ)-1)*(length(Dz)-1);bz=zeros(1,bzord+1);for k=0:bzordpln=[1];for i=0:k-1pln=conv(pln,Nz);endpld=[1];for i=0:bzord-k-1pld=conv(pld,Dz);endbz=bz+bZ(k+1)*conv(pln,pld); endfor k=0:azordpln=[1];for i=0:k-1pln=conv(pln,Nz);endpld=[1];for i=0:azord-k-1pld=conv(pld,Dz);endaz=az+aZ(k+1)*conv(pln,pld); endall=az(1);az=az/az1;bz=bz/az1;线性相位FIR滤波器的幅度特性:function pzkplot(num,den)hold on;axis('square');x=-1:0.01:1;y=(1-x.^2).^0.5;y1=-(1-x.^2).^0.5;plot(x,y,'b',x,y1,'b');num1=length(num);den1=length(den);if(num1>1)z=roots(num);elsez=0;endif(den1>1)p=roots(den);elsep=0;endif(num>1&den1>1)r_max_z=max(abs(real(z)));i_max_z=max(abs(imag(z)));a_max_z=max(r_max_z,i_max_z);r_max_p=max(abs(real(p)));i_max_p=max(abs(imag(p)));a_max_p=max(r_max_p,i_max_p);a_max=max(a_max_z,a_max_p);elseif (num1>1)r_max_z=max(abs(real(z)));i_max_z=max(abs(imag(z)));a_max=max(r_max_z,i_max_z);elser_max_p=max(abs(real(p)));i_max_p=max(abs(imag(p)));a_max=max(r_max_p,i_max_p);endaxis([-a_max a_max -a_max a_max]);plot([-a_max a_max],[0 0],'b');plot([0 0],[-a_max a_max],'b');plot([-a_max a_max],[a_max a_max],'b');plot([a_max a_max],[-a_max a_max],'b');Lz=length(z);for i=1:Lz;plot(real(z(i)),imag(z(i)),'bo');endLp=length(p);for j=1:Lpplot(real(p(j)),imag(p(j)),'bx');endtitle('The zeros-pole plot');xlabel('虚部');ylabel('实部');function [Hr,w,a,L]=Hr_Type1(h)M=length(h);L=(M-1)/2;a=[h(L+1) 2*h(L:-1:1)];n=[0:1:L];w=[0:1:500]'*pi/500;Hr=cos(w*n)*a';设计I型线性相位FIR滤波器:>> h=[-4 1 -1 -2 5 6 5 -2 -1 1 -4];>> M=length(h);n=0:M-1;>> [Hr,w,a,L]=Hr_Type1(h);>> amax=max(a)+1;>> amin=min(a)-1;>> subplot(2,2,1);stem(n,h);>> axis([-1 2*L+1 amin amax]);text(2*L+1.5,amin,'n'); >> xlabel('n');ylabel('h(n)');title('脉冲响应');>> subplot(2,2,3);stem(0:L,a);>> axis([-1 2*L+1 amin amax]);>> xlabel('n');ylabel('a(n)');title('a(n) 系数');>> subplot(2,2,2);plot(w/pi,Hr);>> grid on;text(1.05,-20,'频率pi');>> xlabel('频率');ylabel('Hr');title('I 型振幅响应');>> subplot(2,2,4);pzkplot(h,1);>> title('零极点分布');function [hr,w,b,L]=Hr_Type2(h)M=length(h);L=M/2;b=2*h(L:-1:1);n=[1:1:L];n=n-0.5;w=[0:1:500]'*pi/500;hr=cos(w*n)*b';II型线性相位FIR滤波器:>> h=[-4 1 -1 -2 5 6 5 -2 -1 1 -4];>> M=length(h);n=0:M-1;>> [Hr,w,b,L]=Hr_Type2(h);Warning: Integer operands are required for colon operator when used as index. > In Hr_Type2 at 2>> bmax=max(b)+1;bmin=min(b)-1;>> subplot(2,2,1);stem(n,h);axis([-1 2*L+1 bmin bmax]);text(2*L+1.5,bmin,'n');xlabel('n');ylabel('h(n)');title('脉冲响应');>> subplot(2,2,3);stem(1:L,b);axis([-1 2*L+1 bmin bmax]);xlabel('n');ylabel('b(n)');title('b(n) 系数');>> subplot(2,2,2);plot(w/pi,Hr);grid on;text(1.05,-20,'频率pi');xlabel('频率');ylabel('Hr');title('II 型振幅响应');>> subplot(2,2,4);pzkplot(h,1);title('零极点分布');function [hr,w,c,L]=Hr_Type3(h)M=length(h);L=(M-1)/2;b=2*h(L+1:-1:1);n=[1:1:L];w=[0:1:500]'*pi/500;hr=cos(w*n)*c';用MA TLAB编程绘制各种窗函数的形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(Digital Signal Processing)
IIR数字滤波器的基本结构 FIR数字滤波器的基本结构 数字滤波器的格型结构 数字滤波器结构的MATLAB实现 有限字长效应
数字滤波器结构的MATLAB实现
直接型结构
级联型结构
并联型结构 格型结构
滤波器结构及有限字长
直接型结构
MATLAB描述:
[K,C]=tf2latc(num,den) %由直接型得到格型 [num,den]=latc2tf(K,C) %由格型得到直接型
滤波器结构及有限字长Fra bibliotek将零极点增益表示的H(z)转换成基本二阶节形式 sos=zp2sos(z,p,k)
滤波器结构及有限字长
并联型结构
通过residuez函数实现将IIR的H(z)展开 为一阶有理分式之和的形式 [r,p,k]=residuez(num,den)
部分分式留数 极点 多项式 H(z)分子和分母系数向量 共轭复数极点 构成的向量
IIR由两个行矢量b和a描述,b包含{bn}系 数,a包含{an}系数
MATLAB实现: 利用filter函数 IIR: filter(b,a,x)
滤波器结构及有限字长
级联型结构
基本二阶节的MATLAB描述
b01 b s os 02 b0 L b11 b12 b1L b12 b22 b2 L a 01 a 02 a0 L a11 a12 a1L a12 a 22 a2 L
实系数二阶分式 分子和分母系数向量
共轭复数留数 构成的向量
利用[b1,a1]=residuez(R1,P1,0) 可将二 个复系数一阶分式合并成实系数二阶分式。
滤波器结构及有限字长
格型结构
AZ和AP系统
K=poly2rc(a)
%由直接型得到格型
a=rc2poly(K) %由格型得到直接型 AZAP系统