【精选】2019届高考数学一轮复习第十章第5节古典概型与几何概型练习理新人教A版练习

合集下载

2019届高三数学一轮复习目录(理科)

2019届高三数学一轮复习目录(理科)

2019届高三第一轮复习《原创与经典》(苏教版)(理科)第一章集合常用逻辑用语推理与证明第1课时集合的概念、集合间的基本关系第2课时集合的基本运算第3课时命题及其关系、充分条件与必要条件第4课时简单的逻辑联结词、全称量词与存在量词第5课时合情推理与演泽推理第6课时直接证明与间接证明第7课时数学归纳法第二章不等式第8课时不等关系与不等式第9课时一元二次不等式及其解法第10课时二元一次不等式(组)与简单的线性规划问题第11课时基本不等式及其应用第12课时不等式的综合应用第三章函数的概念与基本初等函数第13课时函数的概念及其表示第14课时函数的定义域与值域第15课时函数的单调性与最值第16课时函数的奇偶性与周期性9第17课时二次函数与幂函数第18课时指数与指数函数第19课时对数与对数函数第20课时函数的图象第21课时函数与方程第22课时函数模型及其应用第四章 导数第23课时 导数的概念及其运算(含复合函数的导数)第24课时 利用导数研究函数的单调性与极值第25课时 函数的最值、导数在实际问题中的应用第五章 三角函数 第26课时任意角、弧度制及任意角的三角函数 第27课时同角三角函数的基本关系式与诱导公式 第28课时两角和与差的正弦、余弦和正切公式 第29课时二倍角的三角函数 第30课时三角函数的图象和性质 第31课时函数sin()y A x ωϕ=+的图象及其应用 第32课时正弦定理、余弦定理 第33课时解三角形的综合应用第六章 平面向量 第34课时平面向量的概念及其线性运算 第35课时平面向量的基本定理及坐标表示 第36课时平面向量的数量积 第37课时平面向量的综合应用第七章 数 列 第38课时数列的概念及其简单表示法 第39课时等差数列 第40课时等比数列 第41课时数列的求和 第42课时等差数列与等比数列的综合应用 第八章 立体几何初步 第43课时平面的基本性质及空间两条直线的位置关系第44课时直线、平面平行的判定与性质第45课时直线、平面垂直的判定与性质第46课时空间几何体的表面积与体积第47课时空间向量的应用——空间线面关系的判定第48课时空间向量的应用——空间的角的计算第九章平面解析几何第49课时直线的方程第50课时两直线的位置关系与点到直线的距离第51课时圆的方程第52课时直线与圆、圆与圆的位置关系第53课时椭圆第54课时双曲线、抛物线第55课时曲线与方程第56课时直线与圆锥曲线的位置关系第57课时圆锥曲线的综合应用第十章复数、算法、统计与概率第58课时抽样方法、用样本估计总体第59课时随机事件及其概率第60课时古典概型第61课时几何概型互斥事件第62课时算法的含义及流程图第63课时复数第十一章计数原理、随机变量及其分布第64课时分类计数原理与分步计数原理第65课时排列与组合第66课时二项式定理第67课时离散型随机变量及其概率分布第68课时事件的独立性及二项分布第69课时离散型随机变量的均值与方差第十二章选修4系列第70课时选修4-1 《几何证明选讲》相似三角形的进一步认识第71课时选修4-1 《几何证明选讲》圆的进一步认识第72课时选修4-2 《矩阵与变换》平面变换、变换的复合与矩阵的乘法第73课时选修4-2 《矩阵与变换》逆变换与逆矩阵、矩阵的特征值与特征向量第74课时选修4-4《参数方程与极坐标》极坐标系第75课时选修4-4《参数方程与极坐标》参数方程第76课时选修4-5《不等式选讲》绝对值的不等式第77课时选修4-5《不等式选讲》不等式的证明。

【创新方案】2019高考数学(理)一轮复习配套文档:第10章 第5节 古典概型

【创新方案】2019高考数学(理)一轮复习配套文档:第10章 第5节 古典概型

第五节古典概型【考纲下载】1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件及事件发生的概率.1.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)有限性:试验中所有可能出现的基本事件只有有限个;(2)等可能性:每个基本事件出现的可能性相等.3.古典概型的概率公式P(A)=A包含的基本事件的个数基本事件的总数.1.在一次试验中,其基本事件的发生一定是等可能的吗?提示:不一定.如试验一粒种子是否发芽,其发芽和不发芽的可能性是不相等的.2.如何判断一个试验是否为古典概型?提示:关键看这个实验是否具有古典概型的两个特征:有限性和等可能性.1.一枚硬币连掷2次,恰有一次正面朝上的概率为( )A.23B.14C.13D.12解析:选D 一枚硬币连掷2次,其结果共有正正,正反,反正,反反四种结果,恰有一次正面朝上的有正反、反正两种结果.因此,恰有一次正面朝上的概率为24=12.2.甲、乙、丙三名同学站成一排,甲站在中间的概率是( )A.16B.12C.13D.23解析:选C 甲、乙、丙三名同学站成一排共有如下6种情况:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,而甲站在中间的共有乙甲丙,丙甲乙两种情况,因此,甲站在中间的概率为26=13.3.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是( ) A.45 B.35 C.25 D.15解析:选D 依题意可知a ,b 共有如下15种情况:(1,1),(2,1),(3,1),(4,1),(5,1),(1,2),(2,2),(3,2),(4,2),(5,2),(1,3),(2,3),(3,3),(4,3),(5,3),其中b>a 的共有3种情况.所以b>a 的概率为315=15. 4.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的横、纵坐标,则点P 在直线x +y =5的下方的概率为________.解析:点P 在直线x +y =5下方的情况有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6种可能,故P =66×6=16. 答案:165.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P(m ,n),则点P 在圆x 2+y 2=9内部的概率为________.解析:点P(m ,n)共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)6种情况,只有(2,1),(2,2)这两种情况满足在圆x 2+y 2=9内部,所以所求概率为26=13.答案:13[例1] (1)(2018·江西高考)集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( )A.23B.12C.13D.16(2)(2018·新课标全国卷Ⅰ)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A.12B.13C.14D.16[自主解答] (1)从A ,B 中各任意取一个数,共有6种取法,其中两数之和为4的是(2,2),(3,1).所以两数之和等于4的概率为26=13.(2)任取两个数共有6种取法,取出两个数之差的绝对值为2的有(1,3),(2,4)2种结果.所以概率为26=13.[答案] (1)C (2)B【互动探究】在本例(1)中,若将“则这两数之和等于4的概率”改为“则这两数之和等于5的概率”,则结果如何? 解:由原题知从A ,B 中各任意取一个数共有6种取法,其中两数之和等于5的是(2,3),(3,2),故其概率为26=13.【方法规律】1.求古典概型概率的基本步骤 (1)算出所有基本事件的个数n. (2)求出事件A 包含的所有基本事件数m. (3)代入公式P(A)=mn ,求出P(A).2.基本事件个数的确定方法(1)列举法:此法适合于基本事件较少的古典概型.(2)列表法:此法适合于从多个元素中选定两个元素的试验,也可看成是坐标法.(2018·重庆模拟)有编号为A 1,A 2,A 3,A 4,A 5,A 6的6位同学,进行100米赛跑,得到下面的成绩:其中成绩在13(1)从上述6名同学中,随机抽取一名,求这名同学成绩优秀的概率;(2)从成绩优秀的同学中,随机抽取2名,用同学的编号列出所有可能的抽取结果,并求这2名同学的成绩都在12.3秒内的概率.解:(1)由所给的成绩可知,优秀的同学有4名,设“从6名同学中随机抽取一名是优秀”为事件A ,则P(A)=46=23. (2)优秀的同学编号是A 1,A 2,A 3,A 5,从这4名同学中抽取2名,所有的可能情况是:(A 1,A 2),(A 1,A 3),(A 1,A 5),(A 2,A 3),(A 2,A 5),(A 3,A 5);设“这2名同学成绩都在12.3以内”为事件B ,符合要求的情况有:(A 1,A 3),(A 1,A 5),(A 3,A 5),所以P(B)=36=12.[例2] (1)(2018·安徽高考)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A.23B.25C.35D.910(2)某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.①求此人被评为优秀的概率; ②求此人被评为良好及以上的概率.[自主解答] (1)记事件A 为“甲或乙被录用”.从五人中录用三人,基本事件有(甲,乙,丙)、(甲,乙,丁)、(甲,乙,戊)、(甲,丙,丁)、(甲,丙,戊)、(甲,丁,戊)、(乙,丙,丁)、(乙,丙,戊)、(乙,丁,戊)、(丙,丁,戊),共10种可能,而A 的对立事件A -仅有(丙,丁,戊)一种可能,则A 的对立事件A -的概率为P(A -)=110.故P(A)=1-P(A -)=910.(2)将5杯饮料编号为:1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5杯饮料中选出3杯的所有可能情况为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共有10种.令D 表示事件“此人被评为优秀”,E 表示事件“此人被评为良好”,F 表示事件“此人被评为良好及以上”,则①P(D)=110.②因为P(E)=610=35,所以P(F)=P(D)+P(E)=710.[答案] (1)D 【方法规律】求较复杂事件的概率问题的方法(1)将所求事件转化成彼此互斥的事件的和事件,再利用互斥事件的概率加法公式求解. (2)先求其对立事件的概率,再利用对立事件的概率公式求解.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率; (2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率. 解:(1)甲校两名男教师分别用A ,B 表示,女教师用C 表示;乙校男教师用D 表示,两名女教师分别用E ,F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D),(A ,E),(A ,F),(B ,D),(B ,E),(B ,F),(C ,D),(C ,E),(C ,F),共9种.从中选出两名教师性别相同的结果有:(A ,D),(B ,D),(C ,E),(C ,F),共4种,所以选出的2名教师性别相同的概率为P =49.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B),(A ,C),(A ,D),(A ,E),(A ,F),(B ,C),(B ,D),(B ,E),(B ,F),(C ,D),(C ,E),(C ,F),(D ,E),(D ,F),(E ,F),共15种.从中选出两名教师来自同一学校的结果有:(A ,B),(A ,C),(B ,C),(D ,E),(D ,F),(E ,F),共6种.所以选出的2名教师来自同一学校的概率为P =6=2.1.古典概型与统计的综合应用,是高考2.高考对古典概型与统计的综合应用的考查主要有以下几个(1)由频率来估计概率;(2)由频率估计部分事件发生的概率;(3)求方差(或均值)等.[例3] (2018·天津高考)某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4, 则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(2)在该样本的一等品中,随机抽取2件产品,①用产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.[自主解答] (1)计算10件产品的综合指标S,如下表:其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为10=0.6,从而可估计该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{A5,A7},{A5,A9},{A7,A9},共15种.②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.所以P(B)=615=25.古典概型与统计综合应用的常见类型及解题策略(1)由频率来估计概率.利用频率与概率的关系来估计.(2)由频率来估计部分事件发生的概率.往往结合题设条件.注意事件的互斥、对立,利用概率的加法公式求解.(3)求方差(或均值).结合题设中的数据、方差(或均值公式)求解.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):10辆. (1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下: 9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.解:(1)依据条件可知,轿车A 、B 的抽样,A 类轿车抽样比为10100+300.因此本月共生产轿车40010×50=2 000(辆).故z =2 000-(100+300+150+450+600)=400(辆). (2)设所抽取样本中有a 辆舒适型轿车, 由题意得4001 000=a5,则a =2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共10个.事件E 包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),共7个. 故P(E)=710,即所求概率为710.(3)样本平均数x -=18×(9.4+8.6+9.2+9.6+8.7+9.3+9.0+8.2)=9.设D 表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包含的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P(D)=34,即所求概率为34. ————————————[课堂归纳——通法领悟]————————————————3种方法——基本事件个数的确定方法 (1)列举法:(见本节考点一[方法规律]);(2)列表法:(见本节考点一[方法规律]);(3)树状图法:树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件个数的探求.个技巧——求解古典概型问题概率的技巧(1)较为简单问题可直接使用古典概型的概率公式计算;(2)较为复杂的概率问题的处理方法:一是转化为几个互斥事件的和,利用互斥事件的加法公式进行求解;二是采用间接法,先求事件A的对立事件A的概率,再由P(A)=1-P(A)求事件A的概率.个构建——构建不同的概率模型解决问题(1)原则:建立概率模型的一般原则是“结果越少越好”,这就要求选择恰当的观察角度,把问题转化为易解决的古典概型问题;(2)作用:一方面,对于同一个实际问题,我们有时可以通过建立不同“模型”来解决,即“一题多解”,在这“多解”的方法中,再寻求较为“简捷”的解法;另一方面,我们又可以用同一种“模型”去解决很多“不同”的问题,即“多题一解”.答题模板(七)求古典概型的概率[典例] (2018·山东高考)(12分)某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:(1)从该小组身高低于(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.[快速规范审题]第(1)问1.审结论,明解题方向观察所求结论:求选到的2人身高都在1.78以下的概率应求2人身高都在1.78以下的选法与2人身高都在1.80以下选法之比――→2.审条件,挖解题信息观察条件:由表中的数据得出身高1.80以下的有A,B,C,D 4人,身高在1.78以下的有A,B,C 3人.3.建联系,找解题突破口身高1.80以下选2人有(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6种情况;身高1.78以下选2人有(A,B),(A,C),(B,C),共3种情况,利用公式求解.第(2)问1.审结论,明解题方向观察所求结论:求选到2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率 应求从身高都在 1.70以上且体重指标都在[18.5,23.9)中的选2――→人的种数与从该小组同学中选2人的种数之比2.审条件,挖解题信息观察条件:如表中数据得出该小组共有5人,其中身高都在1.70以上且体重指标都在[18.5,23.9)中的人有C ,D ,E ,共3人.3.建联系,找解题突破口从该小组中选2人共有10种方法,从C ,D ,E 中选2人共有3种方法,利用公式求解.[准确规范答题]列举从4人中选2人的可能结果时,易漏掉或重复某种结果(1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B),(A ,C),(A ,D),(B ,C),(B ,D),(C ,D),共6种. ⇨2分由于每个人被选到的机会均等,因此这些 基本事件的出现是等可能的.选到的2人的身高都在1.78以下的事件有:(A ,B),(A ,C),(B ,C),共3种. ⇨4分 因此选到的2人身高都在1.78以下的概率为P =36=12. ⇨6分所有事件包含的事件数列举不全或重复(2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B),(A ,C),(A ,D),(A ,E),(B ,C),(B ,D),(B ,E),(C ,D),(C ,E),(D ,E),共10种. ⇨8分由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C ,D),(C ,E),(D ,E),共3种. ⇨10分因此选到的2人身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为P 1=310.⇨12分 [答题模板速成]求古典概型概率的一般步骤:[全盘巩固]1.投掷两颗骰子,得到其向上的点数分别为m和n,则得到点数相同的概率为( )A.13B.14C.16D.112解析:选C 投掷两颗骰子得到点数相同的情况只有6种,所以所求概率为66×6=16.2.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是( )A.112B.110C.325D.1125解析:选D 小正方体三面涂有油漆的有8种情况,故所求概率为81 000=1125.3.连掷两次骰子分别得到点数m、n,则向量(m,n)与向量(-1,1)的夹角θ>90°的概率是( )A.512 B.712C.13D.12解析:选A 因为(m,n)·(-1,1)=-m+n<0,所以m>n.基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),…,(5,4),(6,1),…,(6,5),共1+2+3+4+5=15(个).故P=1536=512.4.(2018·杭州模拟)在一个盒子中有编号为1,2的红球2个,编号为1,2的白球2个,现从盒子中摸出两个球,每个球被摸到的概率相同,则摸出的两个球中既含有2种不同颜色又含有2个不同编号的概率是( )A.16B.14C.13D.12解析:选C 从4个球中摸出2个球的情况共有6种,其中2球颜色不同且编号不同的情况有2种,故所求概率P=26=13.5.已知A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是( )A.29B.13C.89D.1解析:选C 因为A∩B=B,所以B可能为∅,{1},{2},{3},{1,2},{2,3},{1,3}.当B=∅时,a2-4b<0,满足条件的a,b为a=1,b=1,2,3;a=2,b=2,3;a=3,b=3. 当B={1}时,满足条件的a,b为a=2,b=1.当B={2},{3}时,没有满足条件的a,b.当B={1,2}时,满足条件的a,b为a=3,b=2.当B={2,3},{1,3}时,没有满足条件的a,b.故A∩B=B的概率为83×3=89.6.(2018·深圳模拟)一名同学先后投掷一枚骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在直角坐标系xOy 中,以(x ,y)为坐标的点落在直线2x +y =8上的概率为( )A.16B.112C.536D.19解析:选B 基本事件的总数是36,随机事件包含的基本事件是(1,6),(2,4),(3,2),根据古典概型的公式,得所求的概率是336=112.7.(2018·新课标全国卷Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.解析:任取两个不同的数的情况有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,其中和为5的有2个,所以所求概率为210=0.2.答案:0.28.(2018·浙江高考)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________.解析:设3名男同学分别为a 1、a 2、a 3,3名女同学分别为b 1、b 2、b 3,则从6名同学中任选2名的结果有a 1a 2,a 1a 3,a 2a 3,a 1b 1,a 1b 2,a 1b 3,a 2b 1,a 2b 2,a 2b 3,a 3b 1,a 3b 2,a 3b 3,b 1b 2,b 1b 3,b 2b 3,共15种,其中都是女同学的有3种,所以概率P =315=15.答案:159.从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是________.解析:设正方形ABCD 的中心为O ,从A 、B 、C 、D 、O 五点中,随机取两点,所有可能的结果为AB ,AC ,AD ,BC ,BD ,CD ,AO ,BO ,CO ,DO ,共10种,其中距离为22的结果有AO ,BO ,CO ,DO ,共4种,故所求概率为410=25.答案:2510. (2018·江西高考)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X ,若X>0就去打球,若X =0就去唱歌,若X<0就去下棋.(1)写出数量积X 的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率. 解:(1)X 的所有可能取值为-2,-1,0,1. (2)数量积为-2的有2OA ·5OA ,共1种;数量积为-1的有1OA ·5OA ,1OA ·6OA ,2OA ·4OA ,2OA ·6OA ,3OA ·4OA ,3OA ·5OA ,共6种;数量积为0的有1OA ·3OA ,1OA ·4OA ,3OA ·6OA ,4OA ·6OA ,共4种; 数量积为1的有1OA ·2OA ,2OA ·3OA ,4OA ·5OA ,5OA ·6OA ,共4种. 故所有可能的情况共有15种.所以小波去下棋的概率为P 1=715; 因为去唱歌的概率为P 2=415, 所以小波不去唱歌的概率P =1-P 2=1-415=1115. 11.将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)两数中至少有一个奇数的概率.解:将一颗骰子先后抛掷2次,此问题中含有36个等可能的基本事件. (1)记“两数之和为5”为事件A ,则事件A 中含有4个基本事件,所以P(A)=436=19. 所以两数之和为5的概率为19. (2)记“两数中至少有一个奇数”为事件B ,则事件B 与“两数均为偶数”为对立事件.所以P(B)=1-936=34. 所以两数中至少有一个奇数的概率为34. 12.(2018·雅安模拟)甲、乙两人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i ,j)表示甲、乙抽到的牌面数字(如果甲抽到红桃2,乙抽到红桃3,记为(2,3)),写出甲乙两人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?(3)甲乙约定,若甲抽到的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由. 解:(1)方片4用4′表示,则甲乙两人抽到的牌的所有情况为:(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4)共12种不同的情况(2)甲抽到3,乙抽到的牌只能是2,4,4′,因此乙抽到的牌的数字大于3的概率为23. (3)甲抽到的牌比乙大,有(4,2),(4,3),(4′,2),(4′,3),(3,2),共5种情况.甲胜的概率为P 1=512,乙胜的概率为P 2=712.因为512<712,所以此游戏不公平. [冲击名校]现有编号分别为1,2,3,4,5的五道不同的政治题和编号分别为6,7,8,9的四道不同的历史题.甲同学从这九道题中一次性随机抽取两道题,每道题被抽到的概率是相等的,用符号(x ,y)表示事件“抽到的两道题的编号分别为x 、y ,且x<y”.(1)问有多少个基本事件,并列举出来;(2)求甲同学所抽取的两道题的编号之和小于17但不小于11的概率.解:(1)共有36个等可能的基本事件,列举如下:(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(2,3),(2,4),(2,5),(2,6),(2,7),(2,8),(2,9),(3,4),(3,5),(3,6),(3,7),(3,8),(3,9),(4,5),(4,6),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),(8,9).(2)记“甲同学所抽取的两道题的编号之和小于17但不小于11”为事件A ,则事件A 为“x,y ∈{1,2,3,4,5,6,7,8,9},且x +y ∈[11,17),其中x<y”.由(1)可知事件A 共包含15个基本事件,列举如下:(2,9),(3,8),(3,9),(4,7),(4,8),(4,9),(5,6),(5,7),(5,8),(5,9),(6,7),(6,8),(6,9),(7,8),(7,9),所以P(A)=1536=512.即甲同学所抽取的两道题的编号之和小于17但不小于11的概率为512.。

高考数学一轮复习第10章第5讲古典概型课件理

高考数学一轮复习第10章第5讲古典概型课件理

在范围[20,60)的3名乘客编号为b1,b2,b3. 从7人中任选两人包含以下21个基
本事件:
答案
(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a1,b3),(a2,a3), (a2,a4),(a2,b1),(a2,b2),(a2,b3),(a3,a4),(a3,b1),(a3,b2),(a3, b3),(a4,b1),(a4,b2),(a4,b3),(b1,b2),(b1,b3),(b2,b3),其中抽到的 两人候车时间都不少于20分钟包含以下3个基本事件:(b1,b2),(b1,b3), (b2,b3),
解析
题型 二 古典概型的交汇问题
角度1 古典概型与平面向量相结合 1.设连续掷两次骰子得到的点数分别为m,n,平面向量a=(m,n),b =(1,-3). (1)求使得事件“a⊥b”发生的概率; (2)求使得事件“|a|≤|b|”发生的概率.
解 由题意知,m∈{1,2,3,4,5,6},n∈{1,2,3,4,5,6},故(m,n)所有可能 的取法共有36种.
解析
2.在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一 个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为________.
答案 1 3
答案
解析 点P(m,n)共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情 况,只有(2,1),(2,2)这2个点在圆x2+y2=9的内部,所求概率为26=13.
2
5
C.3
D.6
答案 B
答案
解析 从1,2,3,4四个数字中任取两个不同数字,共有(1,2),(1,3),
(1,4),(2,3),(2,4),(3,4)共6个基本事件,其中这两个数字之积小于5的有

2019高三数学人教A版理一轮课件:第10章 第5节 古典概

2019高三数学人教A版理一轮课件:第10章 第5节 古典概

[答案] (1)× (2)× (3)√ (4)×
2.(2016· 全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得 第一位是 M,I,N 中的一个字母,第二位是 1,2,3,4,5 中的一个数字,则小敏输 入一次密码能够成功开机的概率是( 8 A. 15 1 C. 15 ) 1 B. 8 1 D. 30
4.从 3 名男同学,2 名女同学中任选 2 人参加知识竞赛,则选到的 2 名同 学中至少有 1 名男同学的概率是________.
9 10 C2 9 2 [所求概率为 P=1- 2= .] C5 10
5.(教材改编)同时掷两个骰子,向上点数不相同的概率为________.
5 [掷两个骰子一次,向上的点数共有 6×6=36 种可能的结果,其中点数 6 6 5 相同的结果共有 6 个,所以点数不同的概率 P=1- = .] 6×6 6
基本事件总数为 25,第一张卡片上的数大于第二张卡片上的数的事件数为 10, 10 2 ∴所求概率 P= = . 25 5 故选 D.]
[规律方法] 1.求古典概型概率的步骤 1判断本试验的结果是否为等可能事件,设出所求事件 A; 2分别求出基本事件的总数 n 与所求事件 A 中所包含的基本事件个数 m; m 3利用公式 PA= ,求出事件 A 的概率. n
4.古典概型的概率公式
A包含的基本事件的个数 基本事件的总数 P(A)= .
[知识拓展] 划分基本事件的标准必须统一,保证基本事件的等可能性.
[基本能力自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基 本事件是“发芽与不发芽”.( 个结果是等可能事件.( 性相同.( ) ) ) ) (2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三 (3)从-3,-2,-1,0,1,2 中任取一数,取到的数小于 0 与不小于 0 的可能 (4)利用古典概型的概率可求“在边长为 2 的正方形内任取一点,这点到正 方形中心距离小于或等于 1”的概率.(

高考数学一轮复习 第十篇 第5节 古典概型与几何概型训练 理 新人教版

高考数学一轮复习 第十篇 第5节 古典概型与几何概型训练 理 新人教版

——————————新学期新成绩新目标新方向——————————第5节古典概型与几何概型基础巩固(时间:30分钟)1.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m,第二次出现的点数为n,向量p=(m,n),q=(3,6).则向量p与q共线的概率为( D )(A) (B) (C) (D)解析:由题意可得,基本事件(m,n)(m,n=1,2,…,6)的个数=6×6=36.若p∥q,则6m-3n=0,得到n=2m.满足此条件的共有(1,2),(2,4),(3,6)三个基本事件.因此向量p与q共线的概率为P==.故选D.2.(2017·黑龙江大庆市二模)男女生共8人,从中任选3人,出现2个男生,1个女生的概率为,则其中女生人数是( C )(A)2人 (B)3人(C)2人或3人(D)4人解析:设女生人数是x人,则男生(8-x)人,又因为从中任选3人,出现2个男生,1个女生的概率为,所以=,所以x=2或3.故选C.3.(2017·兰州调研)从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为( B )(A) (B) (C) (D)解析:构成的两位数共有=20个,其中大于40的两位数有=8个,所以所求概率为=,故选B.4.(2017·湖南湘西州一模)已知f(x)=在区间(0,4)内任取一个为x,则不等式log2x-(lo4x-1)f(log3x+1)≤的概率为( B )(A) (B)(C) (D)解析:由题意,log3x+1≥1且log2x-(lo4x-1)≤,或0<log3x+1<1且log2x+2(lo4x-1)≤, 解得1≤x≤2或<x<1,所以原不等式的解集为(,2],所求概率为=.故选B.5.(2017·河北邢台市模拟)某值日小组共有3名男生和2名女生,现安排这5名同学负责周一至周五擦黑板,每天1名同学,则这 5 名同学值日日期恰好男生与女生间隔的概率为( B )(A)(B)(C) (D)解析:5名同学所有的值日方法有=120种,其中男生女生间隔的方法有=12种,所以所求的概率为=.故选B.6.在二项式(+)n的展开式中,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( D )(A) (B) (C) (D)解析:注意到二项式(+)n的展开式的通项是T r+1=()n-r()r=.依题意有+=2=n,即n2-9n+8=0,(n-1)(n-8)=0(n≥2),因此n=8.因为二项式(+)8的展开式的通项是T r+1=2-r,其展开式中的有理项共有3项,所求的概率等于=.故选D.7.用两种不同的颜色给图中三个矩形随机涂色,每个矩形只涂一种颜色,则相邻两个矩形涂不同颜色的概率是.解析:由于只有两种颜色,不妨将其设为1和2,若只用一种颜色有111;222.若用两种颜色有122;212;221;211;121;112.所以基本事件共有8种.又相邻颜色各不相同的有2种,故所求概率为.答案:8.(2018·济南市一模)在平面直角坐标系内任取一个点P(x,y)满足则点P落在曲线y=与直线x=2,y=2围成的阴影区域(如图所示)内的概率为.解析:S阴影=2×(2-)-dx=3-ln x=3-(ln 2-ln)=3-ln 4S正方形=4,则点P落在曲线y=与直线x=2,y=2围成的阴影区域(如题图所示)内的概率为.答案:能力提升(时间:15分钟)9.(2017·新余模拟)如图,将半径为1的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为( A )(A) -1 (B)(C)1- (D)解析:作圆的外接正方形,并连接星形的对角线,可知正方形内圆外部分面积与星形面积相等,则星形区域的面积等于22-π=4-π,又因为圆的面积等于π×12=π,因此所求的概率等于=-1.故选A.10.在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到一瓶饮料已过保质期的概率为.(结果用最简分数表示)解析:法一由题意知本题属古典概型,概率为P==.法二本题属古典概型,概率为P=1-=.答案:11.(2017·海口调研)张先生订了一份《南昌晚报》,送报人在早上6:30~7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00~8:00之间,则张先生在离开家之前能拿到报纸的概率是.解析:以横坐标x表示报纸送到时间,以纵坐标y表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A发生,所以P(A)==.答案:12.(2017·信阳模拟)在某项大型活动中,甲、乙等五名志愿者被随机地分到A, B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A岗位服务的概率;(2)求甲、乙两人不在同一个岗位服务的概率;(3)求五名志愿者中仅有一人参加A岗位服务的概率.解:(1)记“甲、乙两人同时参加A岗位服务”为事件E A,那么P(E A)==,即甲、乙两人同时参加A岗位服务的概率是.(2)记“甲、乙两人同时参加同一岗位服务”为事件E,那么P(E)==,所以甲、乙两人不在同一岗位服务的概率是P()=1-P(E)=.(3)有两人同时参加A岗位服务的概率P2==,所以仅有一人参加A岗位服务的概率P1=1-P2=.13.设有关于x的一元二次方程x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.解:设事件A为“方程x2+2ax+b2=0有实根”.当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2), (3,0),(3,1),(3,2).其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本事件,故事件A发生的概率为P(A)==.(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},构成事件A的区域为{ (a,b)|0≤a≤3,0≤b≤2,a≥b},如图.所以所求的概率为P(A)==.14.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.(1)如果甲船和乙船的停泊的时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率;(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.解:(1)设甲、乙两船到达时间分别为x,y,则0≤x<24,0≤y<24且y-x>4或y-x<-4.作出区域设“两船无需等待码头空出”为事件A,则P(A)==.(2)当甲船的停泊时间为4小时,乙船停泊时间为2小时,两船不需等待码头空出,则满足x-y>2或y-x>4,设在上述条件时“两船不需等待码头空出”为事件B,画出区域P(B)===.。

高考数学一轮备考古典概型问题专项练习(有答案)

高考数学一轮备考古典概型问题专项练习(有答案)

2019届高考数学一轮备考古典概型问题专项练习(有答案)古典概型是由法国数学家拉普拉斯提出的,为此查字典数学网整理了古典概型问题专项练习,供练习。

例1:某班级的某一小组有6位学生,其中4位男生,2位女生,现从中选取2位学生参加班级志愿者小组,求下列事件的概率:(1)选取的2位学生都是男生;(2)选取的2位学生一位是男生,另一位是女生。

破题切入点:先求出任取2位学生的基本事件的总数,然后分别求出所求的两个事件含有的基本事件数,再利用古典概型概率公式求解。

解:(1)设4位男生的编号分别为1,2,3,4,2位女生的编号分别为5,6。

从6位学生中任取2位学生的所有可能结果为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种。

从6位学生中任取2位学生,所取的2位全是男生的方法数,即从4位男生中任取2个的方法数,共有6种,即(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)。

所以选取的2位学生全是男生的概率为P1=。

(2)从6位学生中任取2位,其中一位是男生,而另一位是女生,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),共8种。

所以选取的2位学生一位是男生,另一位是女生的概率为P2=。

教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。

其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

高考数学一轮复习专题训练—古典概型与几何概型

高考数学一轮复习专题训练—古典概型与几何概型

古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。

2019版高考数学创新大一轮复习人教A版全国通用(课件+讲义)第5节 古典概型

2019版高考数学创新大一轮复习人教A版全国通用(课件+讲义)第5节 古典概型

[例 1] (1)(2017·山东卷)从分别标有 1,2,…,9 的 9 张卡片中不放回地随机抽取 2
次,每次抽取 1 张,则抽到的 2 张卡片上的数奇偶性不同的概率是( )
5
4
5
7
A.18 B.9 C.9 D.9
(2)(2018·沈阳模拟)将 A,B,C,D 这 4 名同学从左至右随机地排成一排,则“A 与 B
(2,3),共 9 种. 由 ax-y+b=0 得 y=ax+b, 当a≥0,时,直线不经过第四象限,
b≥0
限的概率 P=92.
y
a<0直线 b 一定过第
四象限
x
O
答案
y
O b
(1)B (2)A
a>0,只要 x b<0直线
一定过第 四象限
7
@《创新设计》
目录
考点二 复杂的古典概型的概率(典例迁移)
象限的概率为( ) A.29 B.13 C.49 D.14
解析 (2)(a,b)所有可能的结果为
符合条件的(a,b)的结果为
(-2,-1),(-2,1),(-2,3),(-1,-1), (2,1),(2,3),共 2 种,
(-1,1),(-1,3),(2,-1),(2,1),
∴直线 ax-y+b=0 不经过第四象
在O→G=O→E+O→F中,当O→G=O→P+O→Q,O→G=O→P+O→N,
O→G=O→N+O→M,O→G=O→M+O→Q时,
点 G 在平行四边形的边界上,而其余情况的点 G 都在平行 四边形外,故所求的概率是 1-146=34. 答案 (1)C (2)34
15
@《创新设计》
目录
考考点三 古典概型与统计知识的交汇问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【精选】2019届高考数学一轮复习第十章第5节古典概型与几何概型练习理新人教A 版练习[基础训练组]1.(导学号14577978)将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p =(m ,n ),q =(3,6).则向量p 与q 共线的概率为( )A.13 B.14 C.16D.112解析:D [由题意可得:基本事件(m ,n )(m ,n =1,2,…,6)的个数=6×6=36. 若p ∥q ,则6m -3n =0,得到n =2m .满足此条件的共有(1,2),(2,4),(3,6)三个基本事件.因此向量p 与q 共线的概率为p =336=112.]2.(导学号14577979)(2018·二模)男女生共8人,从中任选3人,出现2个男生,1个女生的概率为1528,则其中女生人数是( )A .2人B .3人C .2人或3人D .4人解析:C [设女生人数是x 人,则男生(8-x )人,又因为从中任选3人,出现2个男生,1个女生的概率为1528,∴C 28-x C 1x C 38=1528,∴x =2或3.故选C.]3.(导学号14577980)(2018·调研)从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为( )A.15B.25C.35D.45解析:B [构成的两位数共有A 25=20个,其中大于40的两位数有C 12C 14=8个,所以所求概率为820=25,故选B.]4.(导学号14577981)(2018·湘西州一模)已知f (x )=⎩⎪⎨⎪⎧-2,0<x <11,x ≥1在区间(0,4)内任取一个为x ,则不等式log 2x -(log 144x -1)f (log 3x +1)≤72的概率为( )A.13 B.512 C.12D.712解析:B [由题意,log 3x +1≥1且log 2x -(log 144x -1)≤72,或0<log 3x +1<1且log 2x +2(log 144x -1)≤72,解得1≤x ≤2或13<x <1,∴原不等式的解集为⎝ ⎛⎦⎥⎤13,2,所求概率为2-134-0=512.故选B.]5.(导学号14577982)(2018·模拟)某值日小组共有3名男生和2名女生,现安排这5名同学负责周一至周五擦黑板,每天1名同学,则这5 名同学值日日期恰好男生与女生间隔的概率为( )A.125B.110C.25D.15解析:B [5名同学所有的值日方法有A 55=120种,其中男生女生间隔的方法有A 33A 22=12种,∴所求的概率为12120=110,故选B.]6.(导学号14577983)用两种不同的颜色给图中三个矩形随机涂色,每个矩形只涂一种颜色,则相邻两个矩形涂不同颜色的概率是 ________ .解析:由于只有两种颜色,不妨将其设为1和2,若只用一种颜色有111;222. 若用两种颜色有122;212;221;211;121;112. 所以基本事件共有8种.又相邻颜色各不相同的有2种,故所求概率为14.答案:147.(导学号14577984)在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期的概率为 ________ .(结果用最简分数表示)解析:法一:由题意知本题属古典概型,概率为P =C 127C 13+C 23C 230=28145. 法二:本题属古典概型,概率为P =1-C 227C 230=28145.答案:281458.(导学号14577985)(2018·一模)在平面直角坐标系内任取一个点P (x ,y )满足⎩⎪⎨⎪⎧0≤x ≤20≤y ≤2,则点P 落在曲线y =1x与直线x =2,y =2围成的阴影区域(如图所示)内的概率为 ________ .答案:3-ln 449.(导学号14577986)(2018·信阳模拟)在某项大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加A 岗位服务的概率.解:(1)记“甲、乙两人同时参加A 岗位服务”为事件E A ,那么P (E A )=A 33C 25A 44=140,即甲、乙两人同时参加A 岗位服务的概率是140.(2)记“甲、乙两人同时参加同一岗位服务”为事件E ,那么P (E )=A 44C 25A 44=110,所以甲、乙两人不在同一岗位服务的概率是P (E -)=1-P (E )=910.(3)有两人同时参加A 岗位服务的概率P 2=C 25A 33C 25A 44=14,所以仅有一人参加A 岗位服务的概率P 1=1-P 2=34.10.(导学号14577987)设有关于x 的一元二次方程x 2+2ax +b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,故事件A 发生的概率为P (A )=912=34.(2)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}, 构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b },如图.所以所求的概率为P (A )=3×2-12×223×2=23.[能力提升组]11.(导学号14577988)(2018·一模)在一次比赛中某队共有甲,乙,丙等5位选手参加,赛前用抽签的方法决定出场的顺序,则乙、丙都不与甲相邻出场的概率是( )A.110 B.15 C.25D.310解析:B 在一次比赛中某队共有甲,乙,丙等5位选手参加,赛前用抽签的方法决定出场的顺序,基本事件总数n =A 55=120,乙、丙都不与甲相邻出场包含的基本事件个数m=A 22A 33+A 22A 23=24,∴乙、丙都不与甲相邻出场的概率p =m n =24120=15.故选B.]12.(导学号14577989)(2018·模拟)如图,将半径为1的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为( )A.4π-1 B.1π C .1-1πD.2π解析:A [顺次连接星形的四个顶点,则星形区域的面积等于22-4×14×π×12=4-π,又因为圆的面积等于π×12=π,因此所求的概率等于4-ππ=4π-1.]13.(导学号14577990)(2018·调研)张先生订了一份《南昌晚报》,送报人在早上6:30~7:30之间把报纸送到他家,张先生离开家去上班的时间在早上7:00~8:00之间,则张先生在离开家之前能拿到报纸的概率是 ________ .解析:以横坐标x 表示报纸送到时间,以纵坐标y 表示张先生离家时间,建立平面直角坐标系,如图.因为随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意只要点落在阴影部分,就表示张先生在离开家之前能拿到报纸,即所求事件A 发生,所以P (A )=1×1-12×12×121×1=78.答案:7814.(导学号14577991)甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.(1)如果甲船和乙船的停泊的时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率;(2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.解:(1)设甲、乙两船到达时间分别为x 、y ,则0≤x <24,0≤y <24且y -x >4或y -x <-4.作出区域⎩⎪⎨⎪⎧0≤x <24,0≤y <24,y -x <4或y -x <-4.设“两船无需等待码头空出”为事件A , 则P (A )=2×12×20×2024×24=2536.(2)当甲船的停泊时间为4小时,乙船停泊时间为2小时,两船不需等待码头空出,则满足x -y >2或y -x >4,设在上述条件时“两船不需等待码头空出”为事件B ,画出区域⎩⎪⎨⎪⎧0≤x <24,0≤y <24,y -x >4或x -y >2.P (B )=12×20×20+12×22×2224×24=442576=221288.。

相关文档
最新文档