2023届高考物理一轮复习练习:动量守恒定律考点题型梳理
备考2025届高考物理一轮复习讲义第七章动量守恒定律第2讲动量守恒定律及应用考点3人船模型

考点3 人船模型1.人船模型问题如图所示,两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.2.人船模型的特点(1)两物体满意动量守恒定律:m1v1-m2v2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x1 x2=v1v2=m2m1.(3)应用x1x2=v1v2=m2m1时要留意:v1、v2和x1、x2一般都是相对地面而言的.3.“人船模型”的拓展研透高考明确方向6.[人船模型]有一只小船停靠在湖边码头,小船又窄又长.一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停岸,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d,然后用卷尺测出船长L.已知他的自身质量为m,水的阻力不计,则船的质量为(B)A.m(L+d)d B.m(L-d)dC.mLd D.m(L+d)L解析设船的质量为M,人走动的时候船的平均速度为v,人的平均速度为v',人从船尾走到船头用时为t,人的位移为L-d,船的位移为d,所以v=dt ,v'=L−dt.以船后退的方向为正方向,依据动量守恒定律有Mv-mv'=0,可得M dt =m(L−d)t,小船的质量为M=m(L−d)d,故B正确.7.[“人船模型”的拓展/2024云南曲靖模拟/多选]如图所示,一半圆槽滑块的质量为M,半圆槽半径为R,滑块静止在光滑水平桌面上,一质量为m的小型机器人(可视为质点)置于半圆槽的A端,在无线遥控器限制下,小型机器人从半圆槽A端移动到B端.下列说法正确的是(CD)A.小型机器人与滑块组成的系统动量守恒B.滑块运动的距离为MRM+mC.滑块与小型机器人运动的水平距离之和为2RD.小型机器人运动的位移是滑块的Mm倍解析小型机器人和滑块组成的系统只在水平方向动量守恒,A错误;小型机器人从A端移动到B端的过程中,由水平方向动量守恒得mx1=Mx2,依据位移关系有x1+x2=2R,可得小型机器人和滑块移动的距离分别为x1=2MRM+m ,x2=2mRM+m,即小型机器人运动的位移与滑块运动的位移之比为x1x2=Mm,故B错误,C、D正确.。
实验:验证动量守恒定律-2024高三物理一轮复习题型归纳(新高考专用)(解析版)

第六章 碰撞与动量守恒定律实验:验证动量守恒定律【考点预测】1.验证动量守恒定律目的、原理、器材2.验证动量守恒定律实验步骤和数据处理3.验证动量守恒定律注意事项和误差分析【方法技巧与总结】一、实验目的验证一维碰撞中的动量守恒定律。
二、实验原理在一维碰撞中,测出相碰的两物体的质量m1、m2和碰撞前、后物体的速度v1、v2、v1′、v2′,算出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v1′+m2v2′,看碰撞前、后动量是否相等。
三、实验器材方案一:利用气垫导轨完成一维碰撞实验气垫导轨、光电计时器、天平、滑块(两个)、重物、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥。
方案二:利用长木板上两车碰撞完成一维碰撞实验光滑长木板、打点计时器、纸带、小车(两个)、天平、撞针、橡皮泥。
方案三:利用斜槽滚球完成一维碰撞实验斜槽、小球(两个)、天平、复写纸、白纸等。
四、实验过程方案一:利用气垫导轨完成一维碰撞实验1.测质量:用天平测出滑块质量。
2.安装:正确安装好气垫导轨,如图所示。
3.实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块质量;②改变滑块的初速度大小和方向)。
4.验证:一维碰撞中的动量守恒。
方案二:利用长木板上两车碰撞完成一维碰撞实验1.测质量:用天平测出两小车的质量。
2.安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥,如图所示。
3.实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一个整体运动。
4.测速度:通过纸带上两计数点间的距离及时间,由v=ΔxΔt算出速度。
5.改变条件:改变碰撞条件,重复实验。
6.验证:一维碰撞中的动量守恒。
方案三:利用斜槽滚球完成一维碰撞实验7.测质量:用天平测出两小球的质量,并选定质量大的小球为入射小球。
8.安装:安装实验装置,如图所示。
2025年高考物理一轮总复习(提升版)实验八验证动量守恒定律

。
高中总复习·物理(提升版)
三步稳解题
(1)分析实验目的:验证对心碰撞过程中的动量守恒定律。
(2)确定实验原理:碰撞后瞬间甲和乙的合动量如果与碰撞前瞬间
甲的动量相等,则甲、乙碰撞过程中动量是守恒的。
(3)制定数据处理方案:本实验没有直接测量碰撞前后硬币的速
度,而是测量出了硬币的滑动距离,通过动能定理表示出速
度,验证是否满足m1v0=m1v1+m2v2。
答案:(1)一元
意一条即可)
(2) 20
2
(3)
1
(4)见解析(任
高中总复习·物理(提升版)
解析:(1)要使两硬币碰后都向右运动,硬币甲的质量应大于
硬币乙的质量,由于一元硬币的质量大于一角硬币的质量,所
以甲选用的是一元硬币。
(2)设碰撞前甲到O点时速度的大小为v0,甲从O点到停止处P
m1 0 =m1 1 +m2 2 ,整理得
0 − 1
2
= 。
2
1
高中总复习·物理(提升版)
(4)碰撞前后甲动量变化量大小与乙动量变化量大小的比值不
是1的原因:①可能两个硬币厚度不同,两硬币重心连线与水平
面不平行;②两硬币碰撞内力不远大于外力,动量只是近似守
恒,即如果摩擦力非常大,动量只是近似守恒。
点的过程中只有摩擦力做功,由动能定理得-μm1gs0=0-
1
m10 2 ,解得v0=
2
20 。
20 ,即甲碰撞前到O点时速度的大小为
高中总复习·物理(提升版)
(3)若甲、乙碰撞过程中满足动量守恒,设甲碰撞后速度的大
小为v1,甲从O点运动到停止处M点的过程中只有摩擦力做功,
1
2023届高考物理一轮总复习练专题二 动量守恒定律

2023年高考物理总复习专题二——动量守恒定律1、如图所示,在光滑的水平地面上有一辆平板车,车的两端分别站着人A和B,A的质量为m A, B的质量为m B, m A>m B.最初人和车都处于静止状态,现在,两人同时由静止开始相向而行,A和B相对地面的速度大小相等,则车A.静止不动 B.向右运动C.向左运动 D.左右往返运动2、两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一个人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后的速率关系是A.若甲最先抛球,则一定是v甲>v乙B.若乙最后接球,则一定是v甲>v乙C.只有甲先抛球,乙最后接球,才有v甲>v乙D.无论怎样抛球和接球,都是v甲>v乙3、在光滑的地面上放有一质量为M带光滑弧形槽的小车,一质量为m的小铁块以速度v0沿水平槽口滑去,如图所示,若M=m,则铁块从右端离开车时将A.向左平抛 B.向右平抛 C.自由落体 D.无法判断4、如图,小球a、b用等长细线悬挂于同一固定点O。
让球a静止下垂,将球b向右拉起,使细线水平。
从静止释放球b,两球碰后粘在一起向左摆动,此后细线与竖直方向之间的最大偏角为60°。
忽略空气阻力,求(1)两球a、b的质量之比;(2)两球在碰撞过程中损失的机械能与球b在碰前的最大动能之比。
5、如图所示,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平面上的O点,此时弹簧处于原长.另一质量与B相同的滑块A从P点以初速度v0向B滑行,经过时间t时,与B相碰.碰撞时间极短,碰后A、B粘在一起运动.滑块均可视为质点,与平面间的动摩擦因数均为μ,重力加速度为g.求:(1)碰后瞬间,A、B共同的速度大小;(2)若A、B压缩弹簧后恰能返回到O点并停止,求弹簧的最大压缩量;(3)整个过程中滑块B对滑块A做的功.6、如图所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C,滑块B置于A的左端(B、C可视为质点),三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg,A与B的动摩擦因数为μ=0.5;开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)并粘在一起,经过一段时间,B刚好滑至A的右端而没掉下来.求长木板A的长度.(g=10 m/s2)7、如图所示,两质量分别为M1=M2=1.0kg的木板和足够高的光滑凹槽静止放在光滑水平面上,木板和光滑凹槽接触但不粘连,凹槽左端与木板等高。
2023届高考物理一轮复习专题课件:动量守恒定律思维练习

练习
2、一光滑细杆,上套有一质量为m的光滑圆环,用不可伸长的细
线悬挂一质量为M的小木块,木块在最低点的速度v 0 ,求木块能上
升的最 大高度
解:由于水平 不受外力,物块与圆环组成的系统在水平方向动
量守恒,当木块上升到最高点时,圆环与木块有共同运动速度
大小为v,由动量守恒定律得
Ep=Mgh
Mv0=(m+M)v
向右为正方向,求:
(1)物块最后的速度;
(2)如果木板与物块间的动摩擦因素是0.2,求物块在木板上滑动的距离
解:(1)由于水平面光滑,物块与薄板组成的系统动量守恒,设共同运动速度大小为v,由动量守
恒定律得
mv0=(m+M)v
(2)由能量守恒定律可得
v=1m/s
质量为m的子弹以水平速度v0射向静止在光滑水平面上的质量为M的木块,
(D )
A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒
m
B.子弹射入木块瞬间动量守恒,故子弹射入木块后瞬间子弹和木块的共同速度为 v0
M
C.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前动能
m 2 v 02
D.子弹和木块一起上升的最大高度为
2 g ( M m) 2
第一章
动量守恒定律
专题:动量守恒定律思维练习
高二物理组
吕老师
学习目标
●1、巩固动量守恒定律
●2、体会物理问题的变题和组题
●3、体会物理思维的万变不离其宗
在光滑水平面上,有一质量M=3kg的薄板,板上有质量m=1kg的物块,物块
以v0=4m/s的初速度向右运动,薄板与物块之间存在摩擦且薄板足够长,取水平
(1)物体A、B的速度
2022年高考物理一轮复习考点归纳动量和动量守恒定律

六动量和动量守恒定律一、基本概念和规律1.物理量的比较(1)动量定理的表达式Ft=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合外力。
(2)动量定理不仅适用于恒定的力,也适用于随时间变化的力。
在这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值。
(3)应用动量定理解释两类物理现象①当物体的动量变化量一定时,力的作用时间t越短,力F就越大;力的作用时间t越长,力F就越小。
如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎。
②当作用力F一定时,力的作用时间t越长,动量变化量Δp越大;力的作用时间t越短,动量变化量Δp越小。
3.动量守恒条件的判断(1)绝对条件:系统所受外力的矢量和为零或不受外力。
这一条件告诉我们,系统动量是否守恒与系统内物体间的作用力的多少、大小以及性质无关,系统内力不会改变系统的总动量,但可以改变系统内各物体的动量,使某些物体的动量增加,另外一些物体的动量减小,而总动量保持不变。
(2)近似条件:系统所受合外力虽然不为零,但系统的内力远大于外力,如碰撞、爆炸等现象中,系统的动量可近似看成守恒。
(3)某一方向上的动量守恒条件:如果系统所受的外力矢量和不为零,但外力在某一方向上的矢量和为零,则系统在该方向上动量守恒。
值得注意的是,系统的总动量并不守恒。
(4)表达式①p=p′即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同。
系统总动量的求法遵循矢量运算法则。
②Δp=p′-p=0即系统总动量的变化量为零。
③Δp1=-Δp2即对由两部分组成的系统,在相互作用前后两部分的动量变化等值反向。
4.关于碰撞问题(1)弹性碰撞:碰撞结束后,形变全部消失,动能没有损失,不仅动量守恒,而且初、末动能相等。
m1v1+m2v2=m1v1′+m2v2′12m1v 21+12m2v22=12m1v1′2+12m2v2′2v1′=(m1-m2)v1+2m2v2m1+m2v2′=(m2-m1)v2+2m1v1m1+m2若v2=0,即为“一动一静”的弹性碰撞,碰后二者速度分别为v1′=m1-m2 m1+m2v1v2′=2m1m1+m2v1如果m1=m2,则v1′=0,v2′=v1,二者速度互换;如果m1<m2,则v1′<0,m1被反弹;如果m1≫m2,则v1′≈v1,速度几乎不变,v2′≈2v1。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。
质量m1=0.40kg的物块A从斜槽上端距水平木板高度h=0. 80m处下滑,并与放在水平木板左端的质量m2=0.20kg的物块B相碰,相碰后物块B滑行x=4.0m到木板的C点停止运动,物块A滑到木板的D点停止运动。
已知物块B与木板间的动摩擦因数=0.20,重力加速度g=10m/s2,求:(1) 物块A沿斜槽滑下与物块B碰撞前瞬间的速度大小;(2) 滑动摩擦力对物块B做的功;(3) 物块A与物块B碰撞过程中损失的机械能。
【答案】(1)v0=4.0m/s(2)W=-1.6J(3)E=0.80J【解析】试题分析:①设物块A滑到斜面底端与物块B碰撞前时的速度大小为v0,根据机械能守恒定律有m1gh=12m12v (1分)v02gh,解得:v0=4.0 m/s(1分)②设物块B受到的滑动摩擦力为f,摩擦力做功为W,则f=μm2g(1分)W=-μm2gx解得:W=-1.6 J(1分)③设物块A与物块B碰撞后的速度为v1,物块B受到碰撞后的速度为v,碰撞损失的机械能为E,根据动能定理有-μm2gx=0-12m2v2解得:v=4.0 m/s(1分)根据动量守恒定律m1v0=m1v1+m2v(1分)解得:v1=2.0 m/s(1分)能量守恒12m12v=12m121v+12m2v2+E(1分)解得:E=0.80 J(1分)考点:考查了机械能守恒,动量守恒定律2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
专题06 动量守恒定律——高考物理复习核心考点归纳识记

高考一轮复习知识考点归纳 专题06 动量守恒定律【基本概念、规律】动量及动量守恒定律第1节 动量及动量定理第2节 动量守恒定律第3节 动量守恒定律的应用实验 验证动量守恒定律(1)定义:力与力作用时间的乘积.(2)公式:I=Ft ;公式适用范围:恒力冲量;(3)量性:矢量,方向与作用力方向一致;动量及动量定理冲量动量动量定理(1)定义:物体质量与速度的乘积;(2)表达式:p=mv ;(3)量性:矢量,方向与速度方向一致;(4)物理意义:反映物体运动状态(1)内容:物体合外力冲量等于物体动量变化量;(2)表达式:F ·Δt =Δp =p ′-p . (3)注意:动量定理表达式为矢量式【重要考点归纳】考点一 动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F 应理解为变力在作用时间内的平均值.2.动量定理的表达式F ·Δt =Δp 是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F 是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt 越短,力F 就越大,力的作用时间Δt 越长,力F 就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F 一定时,力的作用时间Δt 越长,动量变化量Δp 越大,力的作用时间Δt 越短,动量变化量Δp 越小4.应用动量定理解题的一般步骤 (1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段. (2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力. (3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二 动量守恒定律与碰撞 1.动量守恒定律的不同表达形式守恒条件:(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.动量守恒定律动量守恒定律动量守恒应用1.碰撞 物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点 在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.动量守恒定律的表达式:m 1v 1+m 2v 2=m 1v ′1+m 2v ′2或Δp 1=-Δp 2.1.爆炸3.反冲 人船模型(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(4)Δp=0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(2)动能不增加,即E k1+E k2≥E′k1+E′k2或p212m1+p222m2≥p′212m1+p′222m2.(3)速度要合理.①碰前两物体同向,则v后>v前;碰后,原来在前的物体速度一定增大,且v′前≥v′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m1v21=12m1v′21+12m2v′22②由①②得v′1=m1-m2v1m1+m2v′2=2m1v1m1+m2结论:①当m1=m2时,v′1=0,v′2=v1,两球碰撞后交换了速度.②当m1>m2时,v′1>0,v′2>0,碰撞后两球都向前运动.③当m1<m2时,v′1<0,v′2>0,碰撞后质量小的球被反弹回来.(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三爆炸和反冲人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等.3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1=-m2v2得m1x1=-m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.实验:验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v=ΔxΔt算出速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案四:利用斜槽上滚下的小球验证动量守恒定律(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照如图所示安装实验装置,调整固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM+m2ON,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差范围内,碰撞系统的动量守恒.【思想方法与技巧】动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量守恒定律考点题型梳理一、 动能、动量、动量变化量1.(多选)对于一个质量不变的物体,下列说法正确的是( )A .物体的动量发生变化,其动能一定变化B .物体的动量发生变化,其动能不一定变化C .物体的动能发生变化,其动量一定变化D .物体的动能发生变化,其动量不一定变化2.(多选)对于一个质量不变的物体,下列说法正确的是( )A .物体的动量发生变化,其动能一定变化B .物体的动量发生变化,其动能不一定变化C .物体的动能发生变化,其动量一定变化D .物体的动能发生变化,其动量不一定变化3.(多选)质量为m 的物体以初速度v 0开始做平抛运动,不计空气阻力,经过时间t ,下降的高度为h ,速度变为v ,此时物体仍未落地,在这段时间内物体动量变化量的大小可能是(重力加速度为g )( )A .m (v -v 0)B .mgtC .m v 2-v 02D .m 2gh4.如图所示,PQS 是固定于竖直平面内的光滑的14圆弧轨道,圆心O 在S 的正上方.在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑.以下说法正确的是( )A .a 比b 先到达S ,它们在S 点的动量不相同B .a 与b 同时到达S ,它们在S 点的动量不相同C .a 比b 先到达S ,它们在S 点的动量相同D .b 比a 先到达S ,它们在S 点的动量相同二、冲量、动量定理①冲量的计算1.下列关于冲量的说法中正确的是( )A .物体受到很大的冲力时,其冲量一定很大B .当力与位移垂直时,该力的冲量为零C .不管物体做什么运动,在相同时间内该物体重力的冲量相同D .只要力的大小恒定,在相同时间内的冲量就恒定2.一质量为2 kg 的物块在合力F 的作用下从静止开始沿直线运动,合力F 随时间t 变化的关系图像如图所示,则( )A .t =2 s 时,物块的动量大小为0B .t =3 s 时,物块的速率为1 m/sC.t=0到t=1 s时间内,合力F对物块冲量的大小为1 N·sD.t=2 s到t=3 s时间内,物块动量变化量的大小为2 kg·m/s3. (多选)一质量m=60 kg的运动员从下蹲状态竖直向上跳起,经t=0.2 s以大小v=1 m/s的速度离开地面,重力加速度g=10 m/s2.在这0.2 s内()A.地面对运动员的冲量大小为180 N·sB.地面对运动员的冲量大小为60 N·sC.地面对运动员做的功为零D.地面对运动员做的功为30 J②动量定理的应用4. 行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。
若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是()A. 增加了司机单位面积的受力大小B. 减少了碰撞前后司机动量的变化量C. 将司机的动能全部转换成汽车的动能D. 延长了司机的受力时间并增大了司机的受力面积5. (多选)将物体水平抛出,在物体落地前(不计空气阻力)()A.动量的方向不变B.动量变化量的方向不变C.相等时间内动量的变化量相同D.相等时间内动量的变化量越来越大6. 质量为0.2 kg的小球以6 m/s、竖直向下的速度落至水平地面上,再以4 m/s的速度反向弹回.取竖直向上为正方向,g取10 m/s2.(1)求小球与地面碰撞前后动量的变化量;(2)若小球与地面的作用时间为0.2 s,求小球受到地面的平均作用力大小.7. 超强台风“山竹”的风力达到17级超强台风强度,风速60 m/s左右,对固定建筑物破坏程度巨大.请你根据所学物理知识推算固定建筑物所受风力(空气的压力)与风速(空气流动速度)大小的关系.假设某一建筑物垂直风速方向的受力面积为S,风速大小为v,空气吹到建筑物上后速度瞬间减为零,空气密度为ρ,风力F 与风速大小v 的关系式为( )A .F =ρSvB .F =ρSv 2C .F =12ρSv 3D .F =ρSv 38. 某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.③多过程中动量定理的应用9. 某消防队员从一平台上跳下,下落1 s 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.2 s ,在着地过程中地面对他双脚的平均作用力约为( )A .自身所受重力的2倍B .自身所受重力的6倍C .自身所受重力的8倍D .自身所受重力的10倍10. 一个静止在水平地面上的物体,质量为0.2 kg ,受到竖直向上的拉力F 作用,如图甲所示,F 随时间t 的变化情况如图乙所示.若g 取10 m/s 2,则下列说法正确的是( )A .0~3 s 内,物体的速度逐渐增大B .第5 s 末物体的速率为7.5 m/sC .第3 s 末物体的加速度大小为15 m/s 211.(多选)水平面上有质量相等的a 、b 两个物体,水平推力F 1、F 2分别作用在a 、b 上.一段时间后撤去推力,物体继续运动一段距离后停下.两物体的v -t 图线如图所示,图中AB∥CD.则整个过程中()A.F1的冲量等于F2的冲量B.F1的冲量小于F2的冲量C.摩擦力对a物体的冲量等于摩擦力对b物体的冲量D.合外力对a物体的冲量等于合外力对b物体的冲量三、动量守恒定律①动量守恒的判断1.下图所反映的物理过程中,系统动量守恒的是()A.只有甲和乙B.只有丙和丁C.只有甲和丙D.只有乙和丁2.如图所示,两带电的金属球在绝缘的光滑水平面上沿同一直线相向运动,A带电荷量为-q,B带电荷量为+2q,下列说法正确的是()A.相碰前两球运动中动量不守恒B.相碰前两球的总动量随距离的减小而增大C.两球相碰分离后的总动量不等于相碰前的总动量,因为碰前作用力为引力,碰后为斥力D.两球相碰分离后的总动量等于相碰前的总动量,因为两球组成的系统所受合外力为零3. (多选)如图所示,小车静止放在光滑的水平面上,将系着轻绳的小球拉开一定的角度,然后同时放开小球和小车,不计空气阻力,那么在以后的过程中()A.小球向左摆动时,小车也向左运动,且系统动量守恒B.小球向左摆动时,小车向右运动,且系统在水平方向上动量守恒C.小球向左摆到最高点,小球的速度为零而小车的速度不为零D.在任意时刻,小球和小车在水平方向上的动量一定大小相等、方向相反(或者都为零)4. 如图所示,木块B与水平面间的摩擦不计,子弹A沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩弹簧至弹簧最短.将子弹射入木块到刚相对于木块静止的过程称为Ⅰ,此后木块压缩弹簧的过程称为Ⅱ,则()A .过程Ⅰ中,子弹、弹簧和木块所组成的系统机械能不守恒,动量也不守恒B .过程Ⅰ中,子弹和木块所组成的系统机械能不守恒,动量守恒C .过程Ⅱ中,子弹、弹簧和木块所组成的系统机械能守恒,动量也守恒D .过程Ⅱ中,子弹、弹簧和木块所组成的系统机械能守恒,动量不守恒5. 如图所示,质量为m 的半圆轨道小车静止在光滑的水平地面上,其水平直径AB 长度为2R ,现将质量也为m 的小球从距A 点正上方h 0高处由静止释放,然后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为034h (不计空气阻力),则( ) A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为12R C .小球离开小车后做斜上抛运动D .小球第二次能上升的最大高度001324h h h << 6. (多选)如图所示,半圆槽M 置于光滑的水平面上.现从半圆槽右端入口处静止释放一质量为m 的小球,则小球释放后,以下说法中正确的是( )A .若圆弧面光滑,则系统动量守恒B .若圆弧面光滑,则小球能滑至半圆槽左端入口处C .若圆弧面不光滑,则小球不能滑至半圆槽左端入口处,且小球到达最左端时,系统有向右的速度D .若圆弧面不光滑,则小球不能滑至半圆槽左端入口处,但小球到达最左端时,系统速度为零 ②动量守恒定律的应用7.质量为M 的小孩站在质量为m 的滑板上,小孩和滑板均处于静止状态,忽略滑板与地面间的摩擦.小孩沿水平方向跃离滑板,离开滑板时的速度大小为v ,此时滑板的速度大小为( )A.m Mv B.M m v C.m m +M v D.M m +Mv 8. 如图所示,一辆小车静止在光滑水平面上,A 、B 两人分别站在车的两端,当两人同时相向运动时( )A .若小车不动,两人速率一定相等B .若小车向左运动,A 的动量一定比B 的小C .若小车向左运动,A 的动量一定比B 的大D .若小车向右运动,A 的动量一定比B 的大9. (多选)如图,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽上高h 处由静止开始自由下滑,则( )A .在小球下滑的过程中,小球和槽组成的系统水平方向动量守恒B .在小球下滑的过程中,小球和槽之间的相互作用力对槽不做功C.被弹簧反弹后,小球能回到槽上高h处D.被弹簧反弹后,小球和槽都做速率不变的直线运动10.如图,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动11. 如图所示,在光滑的水平冰面上放置一个光滑的曲面体,曲面体的右侧与冰面相切,一个坐在冰车上的小孩手扶一球静止在冰面上.已知小孩和冰车的总质量为m1=40 kg,球的质量为m2=10 kg,曲面体的质量为m3=10 kg.某时刻小孩将球以v0=4 m/s的水平速度向曲面体推出,推出后,球沿曲面体上升(球不会越过曲面体).求:(1)推出球后,小孩和冰车的速度大小v1;(2)球在曲面体上升的最大高度h.12.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg。
开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞。
求A与C发生碰撞后瞬间A的速度大小。