高三物理一轮复习资料【动量守恒定律】

合集下载

2023届高考物理一轮复习练习:动量守恒定律考点题型梳理

2023届高考物理一轮复习练习:动量守恒定律考点题型梳理

动量守恒定律考点题型梳理一、 动能、动量、动量变化量1.(多选)对于一个质量不变的物体,下列说法正确的是( )A .物体的动量发生变化,其动能一定变化B .物体的动量发生变化,其动能不一定变化C .物体的动能发生变化,其动量一定变化D .物体的动能发生变化,其动量不一定变化2.(多选)对于一个质量不变的物体,下列说法正确的是( )A .物体的动量发生变化,其动能一定变化B .物体的动量发生变化,其动能不一定变化C .物体的动能发生变化,其动量一定变化D .物体的动能发生变化,其动量不一定变化3.(多选)质量为m 的物体以初速度v 0开始做平抛运动,不计空气阻力,经过时间t ,下降的高度为h ,速度变为v ,此时物体仍未落地,在这段时间内物体动量变化量的大小可能是(重力加速度为g )( )A .m (v -v 0)B .mgtC .m v 2-v 02D .m 2gh4.如图所示,PQS 是固定于竖直平面内的光滑的14圆弧轨道,圆心O 在S 的正上方.在O 和P 两点各有一质量为m 的小物块a 和b ,从同一时刻开始,a 自由下落,b 沿圆弧下滑.以下说法正确的是( )A .a 比b 先到达S ,它们在S 点的动量不相同B .a 与b 同时到达S ,它们在S 点的动量不相同C .a 比b 先到达S ,它们在S 点的动量相同D .b 比a 先到达S ,它们在S 点的动量相同二、冲量、动量定理①冲量的计算1.下列关于冲量的说法中正确的是( )A .物体受到很大的冲力时,其冲量一定很大B .当力与位移垂直时,该力的冲量为零C .不管物体做什么运动,在相同时间内该物体重力的冲量相同D .只要力的大小恒定,在相同时间内的冲量就恒定2.一质量为2 kg 的物块在合力F 的作用下从静止开始沿直线运动,合力F 随时间t 变化的关系图像如图所示,则( )A .t =2 s 时,物块的动量大小为0B .t =3 s 时,物块的速率为1 m/sC.t=0到t=1 s时间内,合力F对物块冲量的大小为1 N·sD.t=2 s到t=3 s时间内,物块动量变化量的大小为2 kg·m/s3. (多选)一质量m=60 kg的运动员从下蹲状态竖直向上跳起,经t=0.2 s以大小v=1 m/s的速度离开地面,重力加速度g=10 m/s2.在这0.2 s内()A.地面对运动员的冲量大小为180 N·sB.地面对运动员的冲量大小为60 N·sC.地面对运动员做的功为零D.地面对运动员做的功为30 J②动量定理的应用4. 行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。

备考2025届高考物理一轮复习讲义第七章动量守恒定律第2讲动量守恒定律及应用考点3人船模型

备考2025届高考物理一轮复习讲义第七章动量守恒定律第2讲动量守恒定律及应用考点3人船模型

考点3 人船模型1.人船模型问题如图所示,两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.2.人船模型的特点(1)两物体满意动量守恒定律:m1v1-m2v2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x1 x2=v1v2=m2m1.(3)应用x1x2=v1v2=m2m1时要留意:v1、v2和x1、x2一般都是相对地面而言的.3.“人船模型”的拓展研透高考明确方向6.[人船模型]有一只小船停靠在湖边码头,小船又窄又长.一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停岸,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d,然后用卷尺测出船长L.已知他的自身质量为m,水的阻力不计,则船的质量为(B)A.m(L+d)d B.m(L-d)dC.mLd D.m(L+d)L解析设船的质量为M,人走动的时候船的平均速度为v,人的平均速度为v',人从船尾走到船头用时为t,人的位移为L-d,船的位移为d,所以v=dt ,v'=L−dt.以船后退的方向为正方向,依据动量守恒定律有Mv-mv'=0,可得M dt =m(L−d)t,小船的质量为M=m(L−d)d,故B正确.7.[“人船模型”的拓展/2024云南曲靖模拟/多选]如图所示,一半圆槽滑块的质量为M,半圆槽半径为R,滑块静止在光滑水平桌面上,一质量为m的小型机器人(可视为质点)置于半圆槽的A端,在无线遥控器限制下,小型机器人从半圆槽A端移动到B端.下列说法正确的是(CD)A.小型机器人与滑块组成的系统动量守恒B.滑块运动的距离为MRM+mC.滑块与小型机器人运动的水平距离之和为2RD.小型机器人运动的位移是滑块的Mm倍解析小型机器人和滑块组成的系统只在水平方向动量守恒,A错误;小型机器人从A端移动到B端的过程中,由水平方向动量守恒得mx1=Mx2,依据位移关系有x1+x2=2R,可得小型机器人和滑块移动的距离分别为x1=2MRM+m ,x2=2mRM+m,即小型机器人运动的位移与滑块运动的位移之比为x1x2=Mm,故B错误,C、D正确.。

备考2024届高考物理一轮复习强化训练第七章动量守恒定律专题十一动量守恒中的四类典型模型

备考2024届高考物理一轮复习强化训练第七章动量守恒定律专题十一动量守恒中的四类典型模型

专题十一 动量守恒中的四类典型模型1.[滑块+曲面/2023山东]如图所示,物块A 和木板B 置于水平地面上,固定光滑弧形轨道末端与B 的上表面所在平面相切,竖直挡板P 固定在地面上.作用在A 上的水平外力,使A 与B 以相同速度v 0向右做匀速直线运动.当B 的左端经过轨道末端时,从弧形轨道某处无初速度下滑的滑块C 恰好到达最低点,并以水平速度v 滑上B 的上表面,同时撤掉外力,此时B 右端与P 板的距离为s .已知v 0=1m/s ,v =4m/s ,m A =m C =1kg ,m B =2kg ,A 与地面间无摩擦,B 与地面间动摩擦因数μ1=0.1,C 与B 间动摩擦因数μ2=0.5,B 足够长,使得C 不会从B 上滑下.B 与P 、A 的碰撞均为弹性碰撞,不计碰撞时间,取重力加速度大小g =10m/s2.(1)求C 下滑的高度H ;(2)与P 碰撞前,若B 与C 能达到共速,且A 、B 未发生碰撞,求s 的范围;(3)若s =0.48m ,求B 与P 碰撞前,摩擦力对C 做的功W ;(4)若s =0.48m ,自C 滑上B 开始至A 、B 、C 三个物体都达到平衡状态,求这三个物体总动量的变化量Δp 的大小.答案 (1)0.8m (2)0.625m ≤s ≤2+√22m (3)-6J (4)(6+32√215)N·s解析 (1)C 下滑过程,由动能定理有m C gH =12m C v 2,解得H =0.8m(2)设C 滑上B 以后,C 的加速度大小为a C ,B 的加速度大小为a 1,B 、C 共速时间为t 1,s 的最小值为s 1,B 、C 共同的加速度大小为a 2,经过t 2时间A 追上B ,s 的最大值为s 2,则由牛顿第二定律有μ2m C g =m C a C解得a C =5m/s 2μ2m C g -μ1(m B +m C )g =m B a 1解得a 1=1m/s 2又v 0+a 1t 1=v -a C t 1解得t 1=0.5s由运动学规律有s 1=v 0t 1+12a 1t 12联立解得s 1=58m =0.625mB 、C 共速后,由牛顿第二定律得μ1(m B +m C )g =(m B +m C )a 2解得a 2=1m/s 2由运动学公式得s 2=s 1+(v 0+a 1t 1)t 2-12a 2t 22s 2=v 0(t 1+t 2)联立解得s 2=2+√22m故s 的范围为0.625m ≤s ≤2+√22m(3)由题意知s <s 1,所以B 与P 碰撞时,B 与C 未共速.设C 在B 板上滑动的时间为t 3,B 与P 相碰时C 的速度大小为v 1,则由运动学公式得s =v 0t 3+12a 1t 32解得t 3=0.4s (另一解舍去)v 1=v -a C t 3解得v 1=2m/s对物体C 从刚滑上B 到B 与P 碰撞前的过程,由动能定理有W =12m C (v 12-v 2)解得W =-6J(4)设B 与P 碰撞前瞬间的速度大小为v 2,B 与P 碰撞后瞬间的速度为v 3,B 向左运动的加速度大小为a 3,B 向左运动时间t 4与A 相遇.设A 、B 碰撞前瞬间B 的速度大小为v 4;A 、B 碰撞后瞬间,A 的速度为v 5,B 的速度为v 6,C 的速度大小为v 7,则由运动学公式得v 2=v 0+a 1t 3解得v 2=1.4m/s由于P 固定在地面上,B 与P 的碰撞为弹性碰撞,所以有v 3=v 2=1.4m/sB 与P 碰撞后向左运动的过程中,对B 由牛顿第二定律得μ2mC g +μ1(m B +m C )g =m B a 3解得a 3=4m/s 2自B 、P 碰撞后至A 、B 发生碰撞的过程,由运动学公式得s -v 0t 3=v 0t 4+v 3t 4-12a 3t 42解得t 4=3-2√25s (另一解舍去)v 4=v 3-a 3t 4解得v 4=(8√25-1)m/s v 7=v 1-a C t 4解得v 7=(2√2-1)m/s以向右为正方向,A 、B 发生弹性碰撞,由动量守恒定律得m A v 0-m B v 4=m A v 5+m B v 6由机械能守恒定律得12m A v 02+12m B v 42=12m A v 52+12m B v 62联立解得v 5=(1-32√215)m/s 、v 6=(1-8√215)m/s (另一组解舍去)即A 、B 碰撞后,A 以速度v 5向左运动,B 以初速度v 6向右运动经分析可得,B 、C 最终静止,A 最终以速度v 5向左运动,故自C 滑上B 开始至三物体达到平衡状态,这三个物体总动量的变化量为Δp =m A v 5-[(m A +m B )v 0+m C v ]解得|Δp |=(6+32√215)N·s2.[滑块+弹簧/2022全国乙]如图(a ),一质量为m 的物块A 与轻质弹簧连接,静止在光滑水平面上;物块B 向A 运动,t =0时与弹簧接触,到t =2t 0时与弹簧分离,第一次碰撞结束,A 、B 的v -t 图像如图(b )所示.已知从t =0到t =t 0时间内,物块A 运动的距离为0.36v 0t 0.A 、B 分离后,A 滑上粗糙斜面,然后滑下,与一直在水平面上运动的B 再次碰撞,之后A 再次滑上斜面,达到的最高点与前一次相同.斜面倾角为θ(sin θ=0.6),与水平面光滑连接.碰撞过程中弹簧始终处于弹性限度内.求(1)第一次碰撞过程中,弹簧弹性势能的最大值;(2)第一次碰撞过程中,弹簧压缩量的最大值;(3)物块A 与斜面间的动摩擦因数.图(a ) 图(b )答案 (1)0.6m v 02(2)0.768v 0t 0 (3)0.45解析 (1)水平面光滑,故在水平面上两物块碰撞过程动量守恒,从B 与弹簧接触到弹簧第一次压缩到最短过程中有m B v 1=(m B +m A )v 0其中v 1=1.2v 0可得m B=5m该过程中机械能守恒,设弹簧最大弹性势能为E p ,得E p +12(m A +m B )v 02=12m B v 12由上式得E p =0.6m v 02(2)由图像知0~t 0内物块B 与物块A 的位移差等于弹簧的最大压缩量,也就是题图中该段时间物块A 、B 图像所夹面积,物块A 在0~t 0时间内的位移S A =0.36v 0t 0,即为0~t 0内,v -t 图像中A 线与t 轴所夹面积.解法1在压缩弹簧的过程中,物块A 、B 所受弹簧弹力大小相等,方向相反,则物块A 的加速度始终是物块B 加速度的5倍,有a A =5a B若两者均做初速度为零的变速运动,则两者的位移满足S A =5S'B在图1中深灰色阴影面积为S A ,浅灰色阴影面积为S'B .最大压缩量为X =1.2v 0t 0-S A -S'B =0.768v 0t 0图1 图2解法20~t 0过程,由动量守恒定律有 mv A +5mv B =(m +5m )v 0结合运动学知识有mS A +5mS B =6mv 0t 0解得S B =1.128v 0t 0(B 在0~t 0内的位移)最大压缩量为X =S B -S A =1.128v 0t 0-0.36v 0t 0=0.768v 0t 0(3)设物块A 第一次从斜面滑到平面上时的速度为v x ,物块A (含弹簧)回到水平面,第二次与B 相互作用过程系统机械能守恒、动量守恒.则有m B v 2-m A v x =m B v 3+m A ·2v 012m B v 22+12m A v x 2=12m B v 32+12m A (2v 0)2其中v 2=0.8v 0可得v x =v 0(另一解舍去)物块A 第一次从斜面底端滑到最高点的过程,由动能定理有-mgμs cos θ-mgs sin θ=0-12m (2v 0)2物块A 第一次从最高点滑到水平面的过程,由动能定理有-mgμs cos θ+mgs sin θ=12m v 02-0由上式得μ=0.45.。

2025届高三物理一轮复习动量守恒定律及其应用(40张PPT)

2025届高三物理一轮复习动量守恒定律及其应用(40张PPT)
答案 CD
1.碰撞:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。2.碰撞的特点:在碰撞现象中,一般都满足内力_______外力,可认为相互碰撞的物体组成的系统动量守恒。
考点2 碰撞问题
远大于
动量是否守恒
机械能是否守恒
弹性碰撞
守恒
_______
非完全弹性碰撞
守恒
有损失
完全非弹性碰撞
答案 D
考向3 用数学归纳法解决多次碰撞问题【典例6】 (多选)(2022·全国卷Ⅱ)水平冰面上有一固定的竖直挡板,一滑冰运动员面对挡板静止在冰面上,他把一质量为4.0 kg的静止物块以大小为5.0 m/s的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡板弹性碰撞,速度反向,追上运动员时,运动员又把物块推向挡板,使其再一次以大小为5.0 m/s的速度与挡板弹性碰撞。总共经过8次这样推物块后,运动员退行速度的大小大于5.0 m/s,反弹的物块不能再追上运动员。不计冰面的摩擦力,该运动员的质量可能为( )A.48 kg B.53 kg C.58 kg D.63 kg
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
考向1 碰撞的可能性【典例4】 (多选)A、B两球在光滑水平面上沿同一直线、同一方向运动,A球的动量是6 kg·m/s,B球的动量是4 kg·m/s,已知mA=1 kg,mB=2 kg,当A追上B并发生碰撞后,A、B两球速度的可能值是( )A.vA'=3 m/s vB'=3.5 m/s B.vA'=2 m/s vB'=4 m/sC.vA'=5 m/s vB'=2.5 m/s D.vA'=-3 m/s vB'=6.5 m/s

物理第一轮考纲知识复习之动量守恒定律

物理第一轮考纲知识复习之动量守恒定律

物理第一轮考纲知识复习之动量守恒定律一、动量1、动量:运动物体的质量和速度的乘积叫做动量.P=mv是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量(状态量),计算物体此时的动量应取这一时刻的瞬时速度。

是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。

单位是kg?m/s;2、动量和动能的区别和联系① 动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。

即动量相同而质量不同的物体,其动能不同;动能相同而质量不同的物体其动量不同。

② 动量是矢量,而动能是标量。

因此,物体的动量变化时,其动能不一定变化;而物体的动能变化时,其动量一定变化。

③ 因动量是矢量,故引起动量变化的原因也是矢量,即物体受到外力的冲量;动能是标量,引起动能变化的原因亦是标量,即外力对物体做功。

④ 动量和动能都与物体的质量和速度有关,两者从不同的角度描述了运动物体的特性,且二者大小间存在关系式:P2=2mEk3、动量的变化及其计算方法动量的变化是指物体末态的动量减去初态的动量,是矢量,对应于某一过程(或某一段时间),是一个非常重要的物理量,其计算方法:(1)ΔP=Pt一P0,主要计算P0、Pt在一条直线上的情况。

(2)利用动量定理ΔP=F?t,通常用来解决P0、Pt;不在一条直线上或F为恒力的情况。

二、冲量1、冲量:力和力的作用时间的乘积叫做该力的冲量.是矢量,如果在力的作用时间内,力的方向不变,则力的方向就是冲量的方向;冲量的合成与分解,按平行四边形法则与三角形法则.冲量不仅由力的决定,还由力的作用时间决定。

而力和时间都跟参照物的选择无关,所以力的冲量也与参照物的选择无关。

单位是N?s;2、冲量的计算方法(1)I= F?t.采用定义式直接计算、主要解决恒力的冲量计算问题。

I=Ft(2)利用动量定理Ft=ΔP.主要解决变力的冲量计算问题,但要注意上式中F为合外力(或某一方向上的合外力)。

2025年高考物理一轮复习(新人教版)第7章第2讲 动量守恒定律及应用

2025年高考物理一轮复习(新人教版)第7章第2讲 动量守恒定律及应用

碰撞问题
梳理 必备知识
1.碰撞 碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力 很大 的 现象. 2.特点 在碰撞现象中,一般都满足内力 远大于 外力,可认为相互碰撞的系统 动量守恒.
3.分类
弹性碰撞 非弹性碰撞 完全非弹性碰撞
动量是否守恒 守恒 _守__恒__ 守恒
机械能是否守恒 _守__恒__ 有损失
相对性 各物体的速度必须是相对同一参考系的速度(一般是相对于地面)
动量是一个瞬时量,表达式中的p1、p2、…应是系统中各物体 同时性 在相互作用前同一时刻的动量,p1′、p2′、…应是系统中各
物体在相互作用后同一时刻的动量
系统性
研究的对象是相互作用的两个或多个物体组成的系统
动量守恒定律不仅适用于低速宏观物体组成的系统,还适用 普适性
2.反冲运动的三点说明 作用 反冲运动是系统内两物体之间的作用力和反作用力产生的效果 原理 动量 反冲运动中系统不受外力或内力 远大于 外力,所以反冲运动 守恒 遵循动量守恒定律 机械能 反冲运动中,由于有其他形式的能转化为机械能,所以系统的 增加 总机械能增加
判断 正误
1.发射炮弹,炮身后退;园林喷灌装置一边喷水一边旋转均属于
考向2 反冲运动
例5 (2023·河南省模拟)发射导弹过程可以简化为:将静止的质量为
M(含燃料)的导弹点火升空,在极短时间内以相对地面的速度v0竖直向下 喷出质量为m的炽热气体,忽略喷气过程中重力和空气阻力的影响,则
喷气结束时导弹获得的速度大小是
A.Mm v0
B.Mm v0
M C.M-m v0
√m
爆炸、反冲运动和人船模型
梳理 必备知识
1.爆炸现象的三个规律 动量 爆炸物体间的相互作用力远远大于受到的外力,所以在爆炸过 守恒 程中,系统的总动量_守__恒__ 动能 在爆炸过程中,有其他形式的能量(如化学能)转化为机械能, 增加 所以系统的机械能增加 位置 爆炸的时间极短,因而作用过程中物体产生的位移 很小 ,可 不变 以认为爆炸后各部分仍然从爆炸前的位置以新的动量开始运动

2025届高三物理一轮复习实验8验证动量守恒定律(52张PPT)

2025届高三物理一轮复习实验8验证动量守恒定律(52张PPT)

第六章
动量守恒定律
实验8 验证动量守恒定律
1.理解动量守恒定律成立的条件,会利用不同案例验证动量守恒定律。 2.知道在不同实验案例中要测量的物理量,会进行数据处理及误差分析。
实验储备·归纳
实验类型·突破
【典例1】 某同学利用打点计时器和气垫导轨做验证动量守恒定律的实验,气垫导轨装置如图甲所示,所用的气垫导轨装置由导轨、滑块、弹射架等组成。在空腔导轨的两个工作面上均匀分布着一定数量的小孔,向导轨空腔内不断通入压缩空气,空气会从小孔中喷出,使滑块稳定地漂浮在导轨上,这样就大大减小了因滑块和导轨之间的摩擦而引起的误差。
⑥先________________________,然后________________,让滑块带动纸带一起运动。⑦取下纸带,重复步骤④⑤⑥,选出较理想的纸带如图乙所示。⑧测得滑块1(包括撞针)的质量为310 g,滑块2(包括橡皮泥)的质量为 205 g。
(1)试着完善实验步骤⑥的内容。(2)已知打点计时器每隔0.02 s打一个点,计算可知两滑块相互作用前质量与速度的乘积之和为________kg·m/s;两滑块相互作用以后质量与速度的乘积之和为________kg·m/s。(均保留3位有效数字)(3)试说明(2)问中两结果不完全相等的主要原因是________________________________________。
(1)(多选)关于本实验,下列说法正确的是________(填选项字母)。A.实验时,斜槽轨道末端的切线必须水平B.必须测量斜槽轨道末端到水平地面的高度HC.同一组实验中小球a必须从同一位置由静止释放D.必须测量入射小球的释放点到斜槽轨道末端的高度h(2)经测定,小球a的质量m1=45.0 g,小球b的质量m2=7.5 g,小球落地点的平均位置距O点的距离如图乙所示。根据实验所给数据,可判断两小球在斜槽末端的碰撞________(填“遵守”或“不遵守”)动量守恒定律,其依据是_________________。

第15讲 动量 动量守恒定律(教师版) 2025届高考物理一轮复习考点精讲精练(全国通用)

第15讲 动量 动量守恒定律(教师版) 2025届高考物理一轮复习考点精讲精练(全国通用)

1.理解动量、动量的变化量、动量定理的概念.2.知道动量守恒的条件.3.会利用动量守恒定律分析碰撞、反冲等相互作用问题.考点一 动量、冲量、动量定理的理解与应用[例题1](2024•河南一模)质量相等的A.相同时间内,速度变化量可能不同B.同一时刻,速度变化快慢可能不同C.抛出后下降到同一高度时,动能一定相同A .12mv 2l r 2B .12mv 2r l 2【解答】解:取栅栏中相邻两根小细杆A ,B ,板心C 从位于杆A 正上方到位于B 杆的正上方。

圆板绕杆定轴转动惯量为:I 杆=I C +mr 2=32mr 2C 位于A 正上方时圆板运动为:E k =12I 杆(v r )2=34mv 2C 到达A 、B 杆连线中点正上方瞬间,速度为v ′,动能为:34mv ′2=E k +mgr (1―cos θ2)+T •l 2将圆板与B 杆完全非弹性碰撞后瞬间,绕B 杆转动角速度记为ωB ,根据角动量守恒有:I B ωB =I C ωC +rmv 0′ωC =v′r,v 0′=v ′cos α可得:32mr 2ωB =12mr 2⋅v′r +rmv ′cos θ=12mrv′+mrv ′cos θ=mv ′(12+cos θ)则有:ωB r =23v′(12+cosθ)此时圆盘的动能E k=12I B ω2B =34mv ′2⋅49(12+cos )2C 杆转到B 杆正上方时,速度又增加v ,由机械能定理有:34mv 2=12I B ω2B ―mgr (1﹣cos θ2)+12Tl联立以上各式,消去34mv 2可得:34mv 2=34mv 2•49(12+cosθ)2+mgr •(1﹣cos θ2)⋅49(12+cosθ)2+12Tl ⋅49(12+cosθ)2―mgr (1﹣cos θ2)+12Tl取近似值:(12+cosθ)2=(32―12θ2)2=94―32θ2又有:1―cos θ2=18θ2,θ=lr代入上式,并忽略高阶小量得:T =12mv 2⋅lr2,故A 正确,BCD 错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三物理一轮复习资料【动量守恒定律】
[考点分析]
1.命题特点:动量守恒定律是高中物理的基本知识.考查频率较大,单独考查时以选择题为主,难度中等偏下.多数情况和能量、电场、磁场知识综合考查,难度较高.
2.思想方法:守恒思想、图象法、全过程法和分段法等.
[知能必备]
1.动量守恒条件的理解
(1)理想守恒:不受外力或所受外力的矢量和为零.
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.
(3)某一方向守恒:如果系统在某一方向上所受外力的矢量和为零,则系统在这方向上动量守恒.
2.动量守恒定律的表达式
p =p ′
Δp =0
m 1v 1+m 2v 2=m 1v 1′+m 2v 2′
[真题再练]
1. (多选)水平冰面上有一固定的竖直挡板,一滑冰运动员面对挡板静止在冰面上,他把一质量为4.0 kg 的静止物块以大小为5.0 m/s 的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡板弹性碰撞,速度反向,追上运动员时,运动员又把物块推向挡板,使其再一次以大小为5.0 m/s 的速度与挡板弹性碰撞.总共经过8次这样推物块后,运动员退行速度的大小大于5.0 m/s ,反弹的物块不能再追上运动员.不计冰面的摩擦力,该运动员的质量可能为( )
A .48 kg
B .53 kg
C .58 kg
D .63 kg
解析:BC 设运动员和物块的质量分别为m 、m 0,规定运动员运动的方向为正方向,运动员开始时静止,第一次将物块推出后,运动员和物块的速度大小分别为v 1、v 0,则根
据动量守恒定律0=m v 1-m 0v 0,解得v 1=m 0m
v 0,物块与弹性挡板撞击后,运动方向与运动员同向,当运动员再次推出物块m v 1+m 0v 0=m v 2-m 0v 0,解得v 2=3m 0m v 0
,第3次推出后m v 2+m 0v 0=m v 3-m 0v 0, 解得v 3=5m 0m v 0
,依次类推,第8次推出后,运动员的速度v 8=15m 0m v 0, 根据题意可知v 8=15m 0m v 0
>5 m/s, 解得m <60 kg ,第7次运动员的速度一定小于5
m/s ,则v 7=13m 0m v 0
<5 m/s, 解得m >52 kg ,综上所述,运动员的质量满足52 kg<m <60 kg ,AD 错误,BC 正确.
2.(经典高考题)如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面 3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h =0.3 m(h 小于斜面体的高度).已知小孩与滑板的总质量为m 1=30 kg ,冰块的质量为m 2=10 kg ,小孩与滑板始终无相对运动.取重力加速度的大小g =10 m/s 2.
(1)求斜面体的质量;
(2)通过计算判断,冰块与斜面体分离后能否追上小孩?
解析:(1)规定向右为速度正方向.冰块在斜面体上运动到最大高度时两者达到共同速度,设此共同速度为v, 斜面体的质量为m 3.由水平方向动量守恒和机械能守恒定律得
m 2v 20=(m 2+m 3)v ①
12m 2v 220=12(m 2
+m 3)v 2+m 2gh ② 式中v 20=-3 m/s 为冰块推出时的速度.联立①②式并代入题给数据得
m 3=20 kg ③
(2)设小孩推出冰块后的速度为v 1,由动量守恒定律有
m 1v 1+m 2v 20=0④
代入数据得v 1=1 m/s ⑤
设冰块与斜面体分离后的速度分别为v 2和v 3,由动量守恒和机械能守恒定律有
m 2v 20=m 2v 2+m 3v 3⑥
12m 2v 220=12m 2v 22+12
m 3v 23⑦ 联立③⑥⑦式并代入数据得v 2=1 m/s ⑧
由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.
答案:(1)20 kg (2)不能
动量守恒定律解题的基本步骤
1.明确研究对象,确定系统的组成(系统包括哪几个物体)及研究的过程.
2.进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒).
3.规定正方向,确定初、末状态动量.
4.由动量守恒定律列出方程.
5.代入数据,求出结果,必要时讨论说明.
[精选模拟]
视角1:动量守恒的判断
1.关于下列四幅图所反映的物理过程的说法正确的是()
A.甲图中子弹射入木块的过程中,子弹和木块组成的系统动量守恒,能量不守恒B.乙图中M、N两木块放在光滑的水平面上,剪断束缚M、N两木块之间的细线,在弹簧恢复原长的过程中,M、N与弹簧组成的系统动量守恒,机械能增加C.丙图中细线断裂后,木球和铁球在水中运动的过程,两球组成的系统动量守恒,机械能不守恒
D.丁图中木块沿放在光滑水平面上的斜面下滑,木块和斜面组成的系统在水平方向上动量守恒,机械能守恒
解析:C甲图中,在光滑水平面上,子弹射入木块的过程中,子弹和木块组成的系统动量守恒,机械能有损失,但是损失的机械能转化为内能,能量仍守恒,A错误;乙图中,剪断束缚M、N两木块之间的细线,在弹簧恢复原长的过程中,M、N与弹簧组成的系统动量守恒,弹簧的弹性势能转化为木块的动能,系统机械能守恒,B错误;丙图中,木球和铁球组成的系统匀速下降,说明两球所受水的浮力等于两球自身的重力,细线断裂后两球在水中运动的过程中,所受合外力为零,两球组成的系统动量守恒,由于水的浮力
对两球做功,两球组成的系统机械能不守恒,C 正确;丁图中,木块沿放在光滑水平面上的斜面下滑,木块和斜面组成的系统在水平方向上不受外力,水平方向上动量守恒,由于斜面可能不光滑,所以机械能可能有损失,D 错误.
视角2:动量守恒定律的理解及应用
2.如图所示,质量为0.5 kg 的小球在距离车底面高20 m 处以一定的初速度向左平抛,落在以7.5 m/s 速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4 kg ,设小球在落到车底前瞬间速度是25 m/s ,则当小球与小车相对静止时,小车的速度是( )
A .5 m/s
B .4 m/s
C .8.5 m/s
D .9.5 m/s
解析:A 设小球的初速度为v 0,小球抛出后做平抛运动,根据动能定理得mgh =12m v 2-12m v 20
,解得v 0=15 m/s ,小球和车作用过程中,水平方向动量守恒,规定向右为正,则有-m v 0+M v =(M +m )v ′,解得v ′=5 m/s ,A 正确.
视角3:人船模型
3.有一质量为M 的小船静止在水面上,在船头A 到船尾B 的连线上
有一点C ,AC =L 1,BC =L 2,在A 端站一质量为2m 的人,在C 点放有
质量为m 的物体(人和物体都可视为质点),现在人从A 端走到C 点将物体搬到B 端停下,若不计水对船的阻力,此过程中小船对地的位移为( )
A.2mL 1+3mL 2m +M
B .2mL 1+3mL 23m +M C.2mL 1+mL 23m +M D .mL 1+3mL 23m +M
解析:B 人、船和物体视为一系统,人从A 端到C 点过程,规定向右为正方向,系
统动量守恒.结合速度v =s t
得2ms 1-(m +M )s 2=0,人和船的速度方向相反,应用几何关系得s 1+s 2=L 1,解得s 2=2mL 13m +M
,从C 点将物体搬到B 端停下的过程,规定向右为正方向,系统动量守恒.结合速度v =s t
得(2m +m )s 1′-Ms 2′=0,同理应用几何关系得s 1′+
s 2′=L 2,解得s 2′=3mL 23m +M .总位移为s 总=s 2+s 2′=2mL 1+3mL 23m +M
,故B 正确. 视角4:某一方向的动量守恒
4.(多选)如图所示,物体A 、B 的质量分别为m 、2m ,物体B 置于水平面上,B 物体上部半圆形槽的半径为R ,将物体A (可视为质点)从圆槽右侧顶端由静止释放,一切摩擦均不计.则( )
A .A 能到达
B 圆槽的左侧最高点
B .A 运动到圆槽的最低点时A 的速率为
gR 3 C .A 运动到圆槽的最低点时B 的速率为
4gR 3
D .B 向右运动的最大位移大小为2R 3
解析:AD 运动过程不计一切摩擦,故由能量守恒可得:机械能守恒,且两物体水平方向动量守恒,那么A 可以到达B 圆槽的左侧最高点,且A 在B 圆槽的左侧最高点时,A 、B 的速度都为零,故A 正确;A 、B 整体在水平方向上合外力为零,故在水平方向上动量守恒,所以m v A -2m v B =0,即v A =2v B ,A 的水平速度向左,B 的水平速度向右;又有A 在水平方向的最大位移和B 在水平方向上的最大位移之和为2R ,故B 向右运动的最大位移大
小为23
R ,故D 正确;对A 运动到圆槽的最低点的运动过程中,对A 、B 整体应用机械能守恒可得:mgR =12m v 2A +12
·2m v 2B =3m v 2B ;所以A 运动到圆槽的最低点时B 的速率为:v B =13gR ;A 的速率为:v A =2v B = 43gR ,故B 、C 错误.。

相关文档
最新文档