2021年宁波市高中数学竞赛解析几何
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)

专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
2021年高中数学第2章平面解析几何初步2.1.6点到直线的距离课件6苏教版必修2

(2)法一:直线方程化为一般式为 y+1=0, 由点到直线的距离公式,得 d2= |20+2+11| 2=3. 法二:∵y=-1 平行于 x 轴(如图所示), ∴d2=|-1-2|=3. (3)法一:y 轴的方程为 x=0, 由点到直线的距离公式,得 d3=|1+120++002|=1. 法二:如图所示,可知 d3=|1-0|=1.
|4×4-3a-1| |15-3a| 解析 d= 42+-32 = 5 ≤3,|3a-15|≤15, ∴-15≤3a-15≤15,0≤a≤10.
解析答案
3.假设点P到直线5x-12y+13=0和直线3x-4y+5=0的距离 相等,那么点P的坐标应满足的方程是 什么?
解析 设点P的坐标为(x,y), |5x-12y+13| |3x-4y+5|
解析答案
解 假设直线l1,l2的斜率存在,设直线l1与l2的斜率为k,
由斜截式得l1的方程为y=kx+1,即kx-y+1=0;
由点斜式可得l2的方程为y=k(x-5),
即kx-y-5k=0.
在直线l1上取点A(0,1), |1+5k|
则点 A 到直线 l2 的距离 d= 1+k2=5,
∴25k2+10k+1=25k2+25,∴k=152. ∴l1的方程为12x-5y+5=0, l2的方程为12x-5y-60=0.
分析:由平面几何知识可知:过点的直线只有过AB 的中点时或平行于AB时,两点到直线距离相等。
l例3:求过点M〔-2,1〕且与A〔-1,2〕,B〔3,0〕 两点距离相等的直线的方程?
解:(1)假设L//AB,那么直线L方程为x+2y=0 (2)假设L过AB的中点N〔1,1〕,那么直 线的方程为y=1.
2021年高中数学第二章解析几何初步2.3.3空间两点间的距离公式学案北师大版必修2

3.3 空间两点间的距离公式知识点 空间两点间的距离[填一填]1.用公式计算空间两点的距离一般地,如果长方体的长、宽、高分别为a ,b ,c ,那么对角线长d =a 2+b 2+c 2. 2.空间两点间的距离公式空间中点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)之间的距离是|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2.[答一答]1.已知点P (x ,y ,z ),如果r 为定值,那么x 2+y 2+z 2=r 2表示什么图形?提示:由x 2+y 2+z 2为点P 到坐标原点的距离,结合x 2+y 2+z 2=r 2知点P 到原点的距离为定值|r |,因此r ≠0时,x 2+y 2+z 2=r 2表示以原点为球心,|r |为半径的球面;r =0时,x 2+y 2+z 2=r 2表示坐标原点.2.平面几何中线段的中点坐标公式可以推广到空间中吗?提示:可以.空间线段的中点坐标公式可以类比平面中的结论得到:已知空间中两点A (x 1,y 1,z 1),B (x 2,y 2,z 2),则AB 的中点P 的坐标为(x 1+x 22,y 1+y 22,z 1+z 22).空间两点间的距离公式的注意点(1)空间两点间的距离公式是平面上两点间距离公式的推广,它可以求空间直角坐标系下任意两点间的距离,其推导过程体现了化空间为平面的转化思想.(2)若已知两点坐标求距离,则直接代入公式即可;若已知两点间距离求参数或点的坐标时,应利用公式建立相应方程求解.类型一 空间两点间的距离公式的应用 【例1】 已知点P (1,-1,2),求: (1)P 到原点O 的距离; (2)P 到y 轴的距离; (3)P 到平面xOy 的距离.【思路探究】 (1)可直接运用两点间距离公式,(2)(3)中所求距离需要转化为两点间的距离.【解】 (1)点P (1,-1,2)到原点O 的距离为d (O ,P )=12+(-1)2+22= 6. (2)∵点P 在y 轴上的投影为P y (0,-1,0),∴P 到y 轴的距离为d (P ,P y )=(1-0)2+(-1+1)2+(2-0)2= 5.(3)∵点P 在平面xOy 上的投影为P 1(1,-1,0), ∴P 到平面xOy 的距离为d (P ,P 1)=(1-1)2+(-1+1)2+(2-0)2=2.规律方法 一个点到坐标轴的距离等于该点与其在这条坐标轴上的投影间的距离,一个点到坐标平面的距离等于该点与其在这个平面内的投影间的距离.求以下两点间的距离. (1)A (1,0,-1),B (0,1,2); (2)A (10,-1,6),B (4,1,9).解:(1)|AB |=(1-0)2+(0-1)2+(-1-2)2=11. (2)|AB |=(10-4)2+(-1-1)2+(6-9)2=49 =7.类型二 求点的坐标【例2】 (1)在x 轴上求一点P ,使它与点A (3,1,-2)的距离为41;(2)在xOy 平面内的直线x -y =1上确定一点M ,使它到点B (-1,3,1)的距离最小. 【思路探究】 根据点的位置特征,设出其坐标,利用两点间的距离公式,结合代数知识求解.【解】 (1)设点P (x,0,0).由题意,得|P A |=(x -3)2+1+4=41, 解得x =9或x =-3.所以点P 的坐标为(9,0,0)或(-3,0,0).(2)由条件,可设M (x ,x -1,0),则|MB |=(x +1)2+(x -1-3)2+(0-1)2=2⎝⎛⎭⎫x -322+272. 所以当x =32时,|MB |min =362,此时点M 的坐标为⎝⎛⎭⎫32,12,0.规律方法 利用两点间的距离公式确定点的坐标,若能巧妙地设出点的坐标,则坐标易求.例如,在x 轴上的点的坐标可设为(x,0,0),在y 轴上的点的坐标可设为(0,y,0),在xOy 平面上的点的坐标可设为(x ,y,0).设点A 在x 轴上,它到点P (0,2,3)的距离等于到点Q (0,1,-1)的距离的两倍,那么点A 的坐标是( A )A .(1,0,0)或(-1,0,0)B .(2,0,0)或(-2,0,0) C.⎝⎛⎭⎫12,0,0或⎝⎛⎭⎫-12,0,0 D.⎝⎛⎭⎫-22,0,0或⎝⎛⎭⎫22,0,0解析:设点A 的坐标为(x,0,0).根据题意有|AP |=2|AQ |,则(x -0)2+(0-2)2+(0-3)2=2(x -0)2+(0-1)2+(0+1)2,解得x =±1,故点A 的坐标为(1,0,0)或(-1,0,0). 类型三 求空间中线段的长度【例3】 长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,D 1D =3,点M 是B 1C 1的中点,点N 是AB 的中点.建立如图所示空间直角坐标系.(1)写出点D ,N ,M 的坐标; (2)求线段MD ,MN 的长度;(3)设点P 是线段DN 上的动点,求|MP |的最小值.【思路探究】 (1)D 是原点,先写出A ,B ,B 1,C 1的坐标,再由中点坐标公式得M ,N 的坐标;(2)代入公式即可;(3)设出P 的坐标,得到|MP |的表达式,转化为求二次函数的最小值.【解】 (1)∵A (2,0,0),B (2,2,0),N 是AB 的中点,∴N (2,1,0).同理可得M (1,2,3),又D 是原点,则D (0,0,0).(2)|MD |=(1-0)2+(2-0)2+(3-0)2=14, |MN |=(1-2)2+(2-1)2+(3-0)2=11.(3)点P 在xDy 平面上,设点P 的坐标为(2y ,y,0),则 |MP |=(2y -1)2+(y -2)2+(0-3)2 =5y 2-8y +14=5(y -45)2+545.∵y ∈[0,1],0<45<1,∴当y =45时,|MP |取最小值545,即3305. ∴|MP |的最小值为3305.规律方法 解决空间中的距离问题就是把点的坐标代入距离公式计算,其中确定点的坐标或合理设出点的坐标是关键.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,且E 是棱DD 1的中点,求BE ,A 1E 的长.解:以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,依题意,得B (1,0,0),E (0,1,12),A 1(0,0,1),所以|BE |=(1-0)2+(0-1)2+(0-12)2=32,|A 1E |=(0-0)2+(0-1)2+(1-12)2=52.——多维探究系列—— 建立空间直角坐标系解决几何问题【例4】 正方体ABCD -A 1B 1C 1D 1中,P 为平面A 1B 1C 1D 1的中心,求证:AP ⊥B 1P . 【思路分析】 建立空间直角坐标系,利用直角三角形中两直角边互相垂直来证明. 【精解详析】 建立如图所示的空间直角坐标系D -xyz ,设棱长为1,则A (1,0,0),B 1(1,1,1),P (12,12,1),由空间两点间的距离公式得|AP |=(1-12)2+(0-12)2+(0-1)2=62,|B 1P |=(1-12)2+(1-12)2+(1-1)2=22,|AB 1|=(1-1)2+(0-1)2+(0-1)2=2, ∴|AP |2+|B 1P |2=|AB 1|2,∴AP ⊥B 1P .【解后反思】 已知立体几何中点、线、面间的位置关系及线段长度间的数量关系,判断两条相交直线或线段垂直时,可建立适当的空间直角坐标系,构造三角形,利用空间两点间的距离公式求边长,判断该三角形为直角三角形.已知点A (0,1,0)、B (-1,0,-1)、C (2,1,1),若点P (x,0,z )满足P A ⊥AB ,P A ⊥AC ,试求点P 的坐标.解:∵P A ⊥AB ,∴△P AB 为直角三角形,∴|PB |2=|P A |2+|AB |2,即(x +1)2+(z +1)2=x 2+1+z 2+1+1+1,即x +z =1,① 又∵P A ⊥AC ,∴△P AC 为直角三角形,∴|PC |2=|P A |2+|AC |2,即(x -2)2+1+(z -1)2=x 2+1+z 2+4+0+1,即2x +z =0,②由①②得⎩⎪⎨⎪⎧x =-1,z =2,∴点P 的坐标为P (-1,0,2).一、选择题1.点A (-1,0,1)与坐标原点O 的距离是( A ) A.2 B.3 C .1 D .2 2.已知点A (2,3,5),B (-2,1,3),则|AB |等于( B ) A. 6 B .2 6 C. 2 D .2 2解析:代入两点间的距离公式得|AB |=2 6. 3.M (4,-3,5)到x 轴的距离为( B ) A .4 B.34 C .5 2 D.41解析:如图所示,MA⊥平面xOy,AB⊥x轴,则|MB|=52+(-3)2=34.二、填空题4.在Rt△ABC中,∠BAC=90°,已知A(2,1,1),B(1,1,2),C(x,0,1),则x=2.解析:|AB|2=(1-2)2+(1-1)2+(2-1)2=2,|BC|2=(x-1)2+(0-1)2+(1-2)2=x2-2x+3,|AC|2=(x-2)2+(0-1)2+(1-1)2=x2-4x+5,根据题意,得|AB|2+|AC|2=|BC|2,所以2+x2-4x+5=x2-2x+3,解得x=2.5.已知点P在z轴上,且满足|PO|=1(O为坐标原点),则点P到点A(1,1,1)的距离是2或 6.解析:由题意得P(0,0,1)或P(0,0,-1),所以|P A|=2或 6.三、解答题6.已知A(1,-2,11),B(4,2,3),C(6,-1,4),试判断△ABC的形状.解:d(A,B)=(4-1)2+(2+2)2+(3-11)2=89,d(A,C)=(6-1)2+(-1+2)2+(4-11)2=75,d(B,C)=(6-4)2+(-1-2)2+(4-3)2=14.∴d2(A,B)=d2(A,C)+d2(B,C),且d(A,B),d(A,C),d(B,C)两两不等.∴△ABC 为直角三角形.。
高中数学奥林匹克小丛书解析几何

《探究高中数学奥林匹克小丛书解析几何》1. 引言在数学领域,解析几何一直是一个具有挑战性而又精彩的研究领域。
而在高中数学奥林匹克中,解析几何更是成为了考察学生深度思维和创造性解题能力的重要一环。
对高中数学奥林匹克小丛书解析几何的深入探究具有重要意义。
2. 解析几何的基础知识在探究高中数学奥林匹克小丛书解析几何之前,我们先来了解一下解析几何的基础知识。
解析几何是一门研究几何图形的位置、形状和大小关系的数学学科,它将几何图形和代数符号相结合,使得几何问题可以用代数的方法进行分析和解决。
在解析几何中,我们通常会涉及到直线、圆和其他曲线的方程、距离、角度等概念,并通过代数方法进行推导和证明。
对于解析几何的学习,需要具备扎实的代数知识和几何直观。
3. 高中数学奥林匹克小丛书解析几何的价值掌握高中数学奥林匹克小丛书解析几何,对于学生来说具有重要的意义。
解析几何的学习可以培养学生的逻辑思维能力和问题解决能力,另解析几何的知识点往往是高考和数学竞赛的重点考察内容,能够帮助学生在竞赛中取得更好的成绩。
高中数学奥林匹克小丛书的解析几何部分,往往囊括了一些高阶的难题和深度思考题,对于学生的数学素养提升也具有重要的促进作用。
深入探究高中数学奥林匹克小丛书解析几何是非常有价值的。
4. 深度解析高中数学奥林匹克小丛书解析几何在深度解析高中数学奥林匹克小丛书解析几何的过程中,我们可以从几何基本概念的深入理解、解析几何与数学竞赛的关系以及高中数学奥林匹克小丛书中不同题型的解析等多个角度进行探讨。
我们可以通过几何基本概念的深入理解,来揭示解析几何背后的数学本质和思想方法。
以直线、圆和曲线的方程、性质等基础知识为切入点,通过反复训练和复习,建立起对几何图形特征和代数表达的深刻理解。
我们可以就解析几何与数学竞赛的关系展开讨论。
解析几何是高中数学竞赛中的必考内容,通过对于高中数学奥林匹克小丛书解析几何部分的逐题解析和归纳总结,可以更加清晰地了解数学竞赛中解析几何题型的特点和解题技巧。
2021年全国高中数学联赛浙江赛区预赛试题 含解析

2021年全国高中数学联赛浙江赛区初赛试题一、填空题(每题4分,共40分)1.已知单位向量a ,b ,则2a b −的取值范围为______. 2.计算22sin 20cos 50sin 20cos50︒+︒+︒︒=______.3.设复数i z x y =+的实虚部x ,y 所形成的点(),x y 在椭圆221916x y +=上.若1ii z z −−−为实数,则复数z =______.4.对于正整数n ,若(5315)n xy x y −+−展开式经同类项合并,(,0,1,,)i jx y i j n =合并后至少有2021项,则n 的最小值为______.5.设直角坐标平面上两个区域为{}2(,)0min(2,3)M x y y x x =∈≤≤−R ∣,{}2(,)2N x y t x t =∈≤≤+R ∣,记M 与N 的公共部分面积为()f t .当01t ≤≤时,则()f t 的表达式为______. 6.设00a =,121a a ==,3n n a a =,31321(1)n n n a a a n ++==+≥,则2021a =______.7.给定实数集合A ,B ,定义运算{},,A B x x ab a b a A b B ⊗==++∈∈.设{}0,2,4,,18A =⋅⋅⋅,{}98,99,100B =,则A B ⊗中的所有元素之和为______.8.在ABC △中,30B C ∠=∠=︒,BC =,P ,Q 分别在线段AB 和AC 上,1AP =,AQ =直线AD BC ⊥于D .现将三角形ABC △沿着AD 对折,当平面ADB 与平面ADC 的二面角为60︒时,则线段PQ 的长度为______.9.已知ABC △三个顶点的坐标为()0,0A ,()7,0B ,()3,4C ,过点(6−−的直线分别与线段AC ,BC 交于P ,Q .若143PQC S =△,则CP CQ +=______. 10.设数列123n n n a a a +⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦,1n =,2,…,7这里[]x 表示不超过x 的最大整数.若88a =,则正整数1a 有______种可能的取值情况.二、解答题(共5题,11-13各10分,14、15各15分,合计60分)11.已知二次函数2()(,)f x x ax b a b =++∈R 有两个不同的零点.若()2210f x x +−=有四个不同的根1234x x x x <<<,且1x ,2x ,3x ,4x 成等差数列,求a b −的取值范围.12.设C 为椭圆22184x y +=的左焦点,直线1y kx =+与椭圆交于A ,B 两点.(1)求CA CB +的最大值;(2)若直线1y kx =+与x 轴、y 轴分别交于M ,N ,且以MN 为直径的圆与线段MN 的垂直平分线的交点在椭圆内部(包括在边界上),求实数k 的取值范围.13.设n 为给定的正整数,1a ,2a ,…,n a 为满足对每个m n ≤都有11mkk a k=≤∑的一列实数,求1nk k a =∑的最大值.14.设数集{}12,,,m P a a a =,它的平均数12mp a a a C m+++=.现将{1,2,,}S n =分成两个非空且不相交子集A ,B ,求A B C C −的最大值,并讨论取到最大值时不同的有序数对(),A B 的数目. 15.设x ,y ,0z>1=,证明4224224225552221()()()x y z y z x z y x x y z y z x z y x +++++≥+++.2021全国高中数学联赛浙江赛区初赛试题解析版1.解析:254a b a b −=−⋅,11a b −≤⋅≤,所以123a b ≤−≤.2.解析:原式21cos 401cos 4032sin 20cos10cos50224+︒−︒=︒+︒︒=+=. 3.解析:由1i 11i (1)iz z x y −−=−−+−,所以1y =,则3154x =±,所以315i 4z =+或315i 4z =−+. 4.解析:由(5315)(3)(5)n n nxy x y x y −+−=+−,共有()21n +项, 所以2(1)2021n +≥,得20211n ≥−,则min 44n =.5.解析:由图可知222135()3(1)222f t t t t t =−−−=−++.6.解析:20213673267332241224112a a a a a ⨯+⨯+==+=+=+374274324224822334456a a a a a a ⨯+⨯+=+=+=+=+=+=+=.7.解析:由(1)(1)1x a b =++−, 则可知所有元素之和为(1319)30031029970+++⨯−⨯=.8.解析:依题意可知60BDC ∠=︒,又3BD CD ==3BC =,所以222222cos 22AP AQ PQ AB AC BC PAQ AP AQ AB AC +−+−∠==⋅⋅,25822=,可得5234PQ =−9.解析:如下图所示:设(622,32D −,易知AC :43y x =,BC :7y x =−, 可得32D AC D BC d d −−==则(()321423PQCCP CQ S +==△,故得424CP CQ +=.10.解析:由88a =,可得710a =或11, 可得612a =或13或14;可得515a =或16或17; 可得418a =或19或20或21; 可得322a =或23或24或25或26; 可得227a =或28或29或30或31或32;可得133a =或34或35或36或37或38或39,共7种. 11.解析:设()f x 的两个零点为s ,t ,其中s t <,则可知1x ,4x 为2210x x t +−−=的两根;2x ,3x 为2210x x s +−−=的两根, 所以14232x x x x +=+=−,141x x t =−−,231x x s =−−, 又a s t −=+,b st =,所以1(1)(1)a b s t st s t −=−−−=−++,记113x d =−,21x d =−,31x d =+,413x d =+,其中0d >,所以22123410251999a b x x x x d d ⎛⎫−=−=−≤⎪⎝⎭. 12.解析:(1)设()11,A x y ,()22,B x y , 联立221280y kx x y =+⎧⎨+−=⎩,可得()2212460k x kx ++−=, 所以122412kx x k +=−+,则()1221212CA CB x x k+=+=≤+; (2)依题意可知1,0M k ⎛⎫−⎪⎝⎭,(0,1)N , 所以圆的方程为1(1)0x x y y k ⎛⎫++−= ⎪⎝⎭,垂直平分线为11122y x k k ⎛⎫=−++ ⎪⎝⎭, 联立得21124x k ⎛⎫+= ⎪⎝⎭,所以1122x k =−−或1122x k =−+, 得1122y k =+或1122y k =−+, 则可知2113822k ⎛⎫+≤⎪⎝⎭或2113822k ⎛⎫−+≤ ⎪⎝⎭,解得k ≥或k ≤13.解析:由11121nnn n n k k kk k k k i k a a a a k k k k ======⋅=+∑∑∑∑∑ 11121112121nn n i n n n n i k k kk k kk i k k k i k i k a a a a a a k k k k k k −−=========⎛⎫=+−=+− ⎪⎝⎭∑∑∑∑∑∑∑∑∑1121nn i k k k i k a a n k k−====−∑∑∑所以11112112121n nn i n n i k k k k k k k i k k i k a a a aa n n n k k k k−−========−≤+≤−∑∑∑∑∑∑∑.14.解析:不妨设A B C C >,记{}12,,,p A a a a =,12p T a a a =+++,所以(1)2A B A B n n TT C C C C p n p +−−=−=−− 11(1)12()2n n n T n T p n p n p n p p⎛⎫⎛⎫++=+−=− ⎪ ⎪−−−⎝⎭⎝⎭,又有(21)(1)(2)2p n p T n p n p n −+≤−++−+++=,所以211222A B n n p n nC C n p −++⎛⎫−≤−= ⎪−⎝⎭当且仅当(21)2p n p T −+=时,取到等号,此时{1,,}A n p n =−+,由A ,B 非空,可知1p =,2,…,1n −,有1n −种情况,考虑对称性,则可知有序数对(),A B 的数目为22n −.15.解析:等价于1x y z ++=,证:()8445221x y z x y z +≥+∑, 由三元均值不等式有()844522x y z xy z +≥+∑ 由柯西不等式有()84444622()x y z x y xyz y x +⎛⎫=≥+ ⎪⎝⎭∏∏, 所以有()()8446653()()xy z x y xyz xyz ++≥∏∏,则可知()844522x y z x y z +≥+∑ 由柯西不等式有()()()866444444322()893x yx y x x yxyz xxy ++≥≥≥+∏∏∑∑∑∏,则有()8445221x y z x y z +≥≥+∑.。
高中数学竞赛与强基计划试题专题:解析几何

高中数学竞赛与强基计划试题专题:解析几何一、单选题1.(2020·北京·高三强基计划)从圆224x y +=上的点向椭圆22:12x C y +=引切线,两个切点间的线段称为切点弦,则椭圆C 内不与任何切点弦相交的区域面积为()A .2πB .3πC .4πD .前三个答案都不对2.(2022·北京·高三校考强基计划)内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是()A .B .CD .上述三个选项都不对3.(2020·湖北武汉·高三统考强基计划)已知直线1211::22l y x l y x =-=,,动点P 在椭圆22221(0)x y a b a b +=>>上,作1//PM l 交2l 于点M ,作2//PN l 交1l 于点N .若22PM PN +为定值,则()A .2ab =B .3ab =C .2a b =D .3a b=4.(2020·北京·高三强基计划)设直线3y x m =+与椭圆2212516x y +=交于A ,B 两点,O 为坐标原点,则OAB面积的最大值为()A .8B .10C .12D .前三个答案都不对5.(2022·贵州·高二统考竞赛)如图,1C ,2C 是离心率都为e 的椭圆,点A ,B 是分别是2C 的右顶点和上顶点,过A ,B 两点分别作1C 的切线1l ,2l .若直线1l ,2l 的斜率分别为1k ,2k ,则12k k 的值为()A .2eB .21e -C .21e -D .21e 6.(2020·湖北武汉·高三统考强基计划)过椭圆22149x y +=的中心作两条互相垂直的弦AC 和BD ,顺次连接,,,A B C D 得一四边形,则该四边形的面积可能为()A .10B .12C .14D .167.(2019·贵州·高三校联考竞赛)设椭圆C :()222210x y a b a b +=>>的左、右焦点分别为12,F F ,其焦距为2c .点322c N ⎛⎫⎪ ⎪⎝⎭在椭圆的内部,点M 是椭圆C 上的动点,且112||MF MN F +<恒成立,则椭圆C 的离心率的取值范围是()A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .⎫⎪⎪⎝⎭D .⎝⎭二、多选题8.(2022·贵州·高二统考竞赛)如图,M ,N 分别是Rt ABC △两直角边上的动点,P 是线段MN 的中点,则以下结论正确的是()A .当△AMN 的面积为定值时,点P 的轨迹为双曲线一支B .当|MN |为定值时,点P 的轨迹为一圆弧C .当||||AM AN +为定值时,点P 的轨迹为不含端点线段D .当△AMN 的周长为定值时,点P 的轨迹为抛物线9.(2020·北京·高三校考强基计划)已知A ,B 分别为双曲线2214x y -=的左、右顶点,P 为该曲线上不同于A ,B 的任意一点设,,∠=∠= PAB PBA PAB αβ的面积为S ,则()A .tan tan αβ⋅为定值B .tantan22αβ⋅为定值C .tan()S αβ⋅+为定值D .cot()S αβ⋅+为定值10.(2020·北京·高三校考强基计划)已知点(1,1),(1,0)A Q ,P 为椭圆22143x y +=上的动点,则||||PA PQ +的()A .最大值为4B .最大值为4C .最小值为4-D .最小值为4三、填空题11.(2022·江苏南京·高三强基计划)设F ,l 分别为双曲线()22411212x y --=的右焦点与右准线,椭圆Γ以F和l 为其对应的焦点及准线,过F 作一条平行于y =的直线,交椭圆Γ于A 、B 两点,若Γ的中心位于以AB 为直径的圆外,则椭圆离心率e 的范围为___________.12.(2018·山东·高三竞赛)若直线65280x y --=交椭圆22221x ya b+=(0a b >>,且2a 、b 为整数)于点A 、C .设()0,B b 为椭圆的上顶点,而ABC 的重心为椭圆的右焦点2F ,则椭圆的方程为______.13.(2022·新疆·高二竞赛)设z 为复数,若方程2297--=z z 表示一条圆锥曲线,则此曲线的离心率=e ___________.14.(2021·全国·高三竞赛)已知集合{}22(,)|||||,0,(,)|1,044x y A x y x y t t B x y m m ⎧⎫=+>=+≤<<⎨⎩≤⎬⎭满足B A ⊆,若P 为集合B 的边界线C 上任意一点,12F F 、为曲线C 的焦点,I 为12PF F △的内心,直线1IF 和2IF 的斜率分别为12k k 、,且1213k k ⋅=-则t 的最小值为________.15.(2021·全国·高三竞赛)已知ABCD Y 的四个顶点均在双曲线2214y x -=上,点(0,1)P 在边AB 上,且12AP PB =,则ABCD Y 的面积等于_______.四、解答题16.(2022·湖北武汉·高三统考强基计划)设F 为椭圆C :22194x y +=的左焦点,P 为椭圆C 上的一点(1)作正方形FPAB (F ,P ,A ,B 按逆时针排列)当P 沿着椭圆运动一周,求动点B 的轨迹方程.(2)设()3,2Q 为椭圆外一点,求PQ PF +的取值范围.17.(2018·全国·高三竞赛)一束直线12,,l l 的每条均过xOy 平面内的抛物线2:C y x =的焦点,()1i l i ≥与抛物线C 交于点i A 、i B .若1l 的斜率为1,()2i l i ≥的斜率为1+2014l 的解析式.18.(2018·福建·高三竞赛)已知1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点3P ⎛⎫ ⎪⎝⎭在椭圆C 上,且12F PF △的垂心为5,33H ⎛⎫- ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设A 为椭圆C 的左顶点,过点2F 的直线l 交椭圆C 于D 、D 两点.记直线AD 、AE 的斜率分别为1k 、2k ,若1212k k +=-,求直线l 的方程.19.(2018·江西·高三竞赛)若椭圆221259x y +=上不同的三点()11,A x y ,94,5B ⎛⎫ ⎪⎝⎭,()22,C x y 到椭圆右焦点的距离顺次成等差数列,线段AC 的中垂线l 交x 轴于点T ,求直线BT 的方程.20.(2018·湖北·高三竞赛)已知O 为坐标原点,()1,0N ,点M 为直线=1x -上的动点,MON ∠的平分线与直线MN 交于点P ,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点11,22Q ⎛⎫-- ⎪⎝⎭作斜率为k 的直线l ,若直线l 与曲线E 恰好有一个公共点,求k 的取值范围.21.(2021·全国·高三竞赛)过抛物线22y px =(p 为不等于2的质数)的焦点F ,作与x 轴不垂直的直线l 交抛物线于M 、N 两点,线段MN 的垂直平分线交MN 于P 点,交x 轴于Q 点.(1)求PQ 中点R 的轨迹L 的方程;(2)证明:L 上有无穷多个整点(横、纵坐标均为整数的点),但L 上任意整点到原点的距离均不是整数.22.(2021·全国·高三竞赛)已知椭圆22:12+=x E y 的右焦点为(c,0)F ,上顶点为M ,圆222:()(0)F x c y r r -+=>,问:椭圆E 上是否存在两点P 、Q 使得圆F 内切于三角形MPQ 若存在,求出直线PQ 的方程;若不存在,请说明理由.23.(2021·全国·高三竞赛)如图所示,()(),0P a b a b <<为抛物线2:4F y x =外一点,过P 引抛物线Γ的两条切线PA PB 、,切点分别为A 、B .在线段PA 上取两点D 、E ,使得PD AE =.若过D 、E 两点的直线12l l 、分别切抛物线Γ于M 、N 两点(异于A ).求四边形MNAB 面积的最大值.24.(2021·全国·高三竞赛)已知椭圆22122:1(0)x y C a b a b+=>>,其右焦点为F ,过F 作直线l 交椭圆1C 于A 、B 两点(l 与x 轴不重合),设线段AB 中点为D ,连结OD (O 为坐标原点),直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求椭圆1C 的离心率.25.(2018·甘肃·高三竞赛)已知椭圆2222:1x y C a b+=过点()0,2M ,且右焦点为()2,0F .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于,A B 两点,交y 轴于点P .若,PA mAF PB nBF ==,求证:m n +为定值;(3)在(2)的条件下,若点P 不在椭圆C 的内部,点Q 是点P 关于原点O 的对称点,试求三角形QAB 面积的最小值.26.(2018·山东·高三竞赛)已知圆22:4O x y +=与曲线:3C y x t =-,(),A m n ,(),B s p ,(),,,m n s p *∈N 为曲线C 上的两点,使得圆O 上任意一点到点A 的距离与到点B 的距离之比为定值()1k k >,求t 的值.27.(2022·福建·高二统考竞赛)已知椭圆C :()222210x y a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,B 为椭圆C 的上顶点,且11BA F ∆的外接圆半径为3.(1)求椭圆C 的方程;(2)设与x 不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P 、2PA 、2A Q 、1QA 的斜率分别为1k 、2k 、3k 、4k .已知()142353k k k k +=+,求2F PQ ∆面积的取值范围.28.(2022·新疆·高二竞赛)如图,已知ABC 内接于抛物线2:=E x y ,且边,AB AC 所在直线分别与抛物线2:4=M y x 相切,F 为抛物线M 的焦点.求证:(1)边BC 所在直线与抛物线M 相切;(2)A ,C ,B ,F 四点共圆.(2021·全国·高三竞赛)已知(2,1)S 为椭圆22Γ:182x y+=上的点,对椭圆Γ上的任意两点P 、Q ,用如下办法定义它们的“和”P Q +:过点S 作一条平行于PQ (若点P 与Q 重合,则直线PQ 表示椭圆Γ在P 处的切线)的直线l 与椭圆Γ交于不同于S 的另一点,记作P Q +(若l 与椭圆Γ相切,则规定S 为P Q +).并规定n nP P P P=+++个.29.若点(0,P Q ,求P Q +、2P 以及100P 的坐标.30.在椭圆Γ上是否存在不同于S 的点P ,满足3P S =?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由.高中数学竞赛与强基计划试题专题:解析几何答案一、单选题1.(2020·北京·高三强基计划)从圆224x y +=上的点向椭圆22:12x C y +=引切线,两个切点间的线段称为切点弦,则椭圆C 内不与任何切点弦相交的区域面积为()A .2πB .3πC .4πD .前三个答案都不对【答案】A【分析】算出椭圆内与切点弦不相交的点的边界的方程,从而可求区域的面积.【详解】设圆224x y +=上一点为(2cos ,2sin )P θθ,则对应切点弦所在直线l 的方程为2cos 2sin 12xy θθ⋅+⋅=即cos 2sin 1x y θθ+=,1≥,故椭圆C 内不与任何切点弦相交的区域面积即为椭圆2241x y +=围成的面积,其面积为1ππ122⨯⨯=.2.(2022·北京·高三校考强基计划)内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是()A.B.CD .上述三个选项都不对【答案】D【分析】求出椭圆的极坐标方程,设内接于椭圆22149x y +=的菱形为ABCD ,()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭,分别求出22,OA OB ,再根据222AB OA OB =+,结合三角恒等变换化简,再根据三角函数的性质求出AB 的最大值和最小值,即可得解.【详解】解:由22149x y +=,得229436x y +=,化为极坐标方程为223645cos ρθ=+,设内接于椭圆22149x y +=的菱形为ABCD ,则OA OB ⊥,设()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭,则22123645cos OA ρθ==+,22222363645sin 45cos 2OB ρπθθ==+⎛⎫++ ⎪⎝⎭,所以2221222363645cos 45sin AB ρρθθ=+=+++2223613361325162025sin cos 36sin 24θθθ⨯⨯==+++,当2sin 20θ=时,2AB 取得最大值,即AB所以菱形的周长的最大值为当2sin 21θ=时,2AB 取得最小值,即AB 的最小值为13,所以菱形的周长的最小值为13,所以内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是1313=.3.(2020·湖北武汉·高三统考强基计划)已知直线1211::22l y x l y x =-=,,动点P 在椭圆22221(0)x y a b a b +=>>上,作1//PM l 交2l 于点M ,作2//PN l 交1l 于点N .若22PM PN +为定值,则()A .2ab =B .3ab =C .2a b =D .3a b=【答案】C【分析】根据四边形OMPN 是平行四边形,得到2222PM PN OM ON +=+为定值,然后将取特殊位置(),0P a ,()0,P b 求解.,易知由四边形OMPN 是平行四边形,所以2222PM PN OM ON +=+为定值,取点(),0P a 时,由()1212y x a y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得24a x a y ⎧=⎪⎪⎨⎪=-⎪⎩,所以,24a a M ⎛⎫- ⎪⎝⎭,由对称性得:,24a a N ⎛⎫ ⎪⎝⎭,所以22258OM ON a +=,取点()0,P b 时,由1212y x b y x ⎧=+⎪⎪⎨⎪=-⎪⎩,解得2x bb y =-⎧⎪⎨=⎪⎩,所以,2b M b ⎛⎫- ⎪⎝⎭,由对称性得:,2b N b ⎛⎫ ⎪⎝⎭,所以22252OM ON b +=,所以225582a b =,即2a b =,4.(2020·北京·高三强基计划)设直线3y x m =+与椭圆2212516x y +=交于A ,B 两点,O 为坐标原点,则OAB面积的最大值为()A .8B .10C .12D .前三个答案都不对【答案】B【分析】联立直线方程和椭圆方程后消元,利用公式可求面积的表达式,再利用基本不等式可求面积的最大值.【详解】由22312516y x m x y =+⎧⎪⎨+=⎪⎩可得22241150254000x mx m ++-=,()22222500424125400160024116000m m m ∆=-⨯-=⨯->,故m而241241AB ==,故1122ABOS AB ==△2224120210241m m+-⨯==,当且仅当m=等号成立,故OAB面积的最大值为10,5.(2022·贵州·高二统考竞赛)如图,1C,2C是离心率都为e的椭圆,点A,B是分别是2C的右顶点和上顶点,过A,B两点分别作1C的切线1l,2l.若直线1l,2l的斜率分别为1k,2k,则12k k的值为()A.2e B.21e-C.21e-D.21e【答案】C【详解】不妨设22122:1x yCa b+=,222222:x yCa bλ+=(0,1)a bλ>>>,∴,(,0)(0,)A aB bλλ,11:()l y k x aλ=-代入1C的方程得:()2222322422211120b a k x a k x a k a bλλ+-+-=,()()()23222224222111Δ240a kb a k a k a bλλ=--+-=,化简得()221221bkaλ=-.22:l y k x bλ=+代入22221x ya b+=得()22222222222220b a k x a bk x a b a bλλ+-+-=.()()()222222222222Δ240a bkb a k a b a bλλ=-+-=.化简得()222221bkaλ-=.∴422124bk ka=,∴222212221b a ck k ea a-===-,6.(2020·湖北武汉·高三统考强基计划)过椭圆22149x y+=的中心作两条互相垂直的弦AC和BD,顺次连接,,,A B C D得一四边形,则该四边形的面积可能为()A.10B.12C.14D.16【答案】B【分析】设()11,A x y,()22,B x y,设x轴正方向旋转到与向量OA 同向所转过的角为α,利用三角函数的定义表示,A B的坐标,代入椭圆方程,求得223636,OA OB关于α的函数表达式,进而得到223636OA OB关于α的函数表达式,利用三角函数恒定变形化简,然后利用三角函数的性质求得其取值范围,进而得到四边形面积的取值范围,从而做出选择.【详解】设()11,A x y ,()22,B x y ,设x 轴正方向旋转到与向量OA同向所转过的角为α,并根据题意不妨设OA 到OB 为逆时针旋转π2,则11cos ,sin .x OA y OA αα⎧=⎪⎨=⎪⎩,22cos sin ,2sin cos .2x OB OB y OB OB πααπαα⎧⎛⎫=+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+= ⎪⎪⎝⎭⎩22149x y +=,229436x y +=,2222369cos 4sin 5cos 4OA ααα=+=+, 22223694cos 5sin 4sin OBααα=+=+,2222236362516925cos sin 36sin 23636,44OA OBααα⎡⎤=+=+∈⎢⎥⎣⎦,∴36136,2OA OB ⎡⎤∈⎢⎥⎣⎦,1442,1213ABCD S OA OB ⎡⎤=∈⎢⎥⎣⎦,当4πα=时取到最小值14413,当0α=时取得最大值12.只有选项B 中的12在此范围内7.(2019·贵州·高三校联考竞赛)设椭圆C :()222210x y a b a b +=>>的左、右焦点分别为12,F F ,其焦距为2c .点322c N ⎛⎫⎪ ⎪⎝⎭在椭圆的内部,点M 是椭圆C上的动点,且112||MF MN F +<恒成立,则椭圆C 的离心率的取值范围是()A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.,121⎛⎫⎪ ⎪⎝⎭D.⎝⎭【答案】D【详解】由322c N ⎛⎫ ⎪ ⎪⎝⎭在椭圆的内部,得22229142c c a b +<,即222222924b c a c a b +<,从而422441590a a c c -+>,得到4291540e e -+>,因此()()2231340e e -->.因为0<e <1,所以3e 2-4<0,故3e 2<1,得到0e <<.又由112||MF MN F +<恒成立,即22||a MN MF +-<恒成立,等价于()2max2||a MN MF +-<,亦即22a NF +<,等价于2a ,即2a e >.e <<二、多选题8.(2022·贵州·高二统考竞赛)如图,M ,N 分别是Rt ABC △两直角边上的动点,P 是线段MN 的中点,则以下结论正确的是()A .当△AMN 的面积为定值时,点P 的轨迹为双曲线一支B .当|MN |为定值时,点P 的轨迹为一圆弧C .当||||AM AN +为定值时,点P 的轨迹为不含端点线段D .当△AMN 的周长为定值时,点P 的轨迹为抛物线【答案】ABC【详解】建立如图的直角坐标设(),P x y ,则(2,0)M x ,(0,2)N y ,0x >,0y >,对于A ,当Rt △AMN 面积为定值()20k k >时,12222x y k ⋅⋅=,∴(0)x y k k ⋅=>轨迹为双曲线一支,所以A 正确.对于B ,若2(0)MN d d =>,则222222444x y d x y d +=⋅+=,(0,0)x y >>是一圆弧,所以B 正确.对于C ,当2(0)AM AN t t +=>时,222(0,0)x y t x y +=>>,即(0,0)x y t x y +=>>为空端点线段,所以C 正确.对于D ,当Rt △AMN 的周长为定值2C 时,则222x y C ++,即(0,0)x y C x y +=>>,()C x y =-+,∴22222222x y C Cx Cy xy x y +=--+++,所以2(22)2x C y Cx C -=-,2222Cx C y x C-=-轨迹为双曲线一支,所以D 错误.9.(2020·北京·高三校考强基计划)已知A ,B 分别为双曲线2214x y -=的左、右顶点,P 为该曲线上不同于A ,B 的任意一点设,,∠=∠= PAB PBA PAB αβ的面积为S ,则()A .tan tan αβ⋅为定值B .tantan22αβ⋅为定值C .tan()S αβ⋅+为定值D .cot()S αβ⋅+为定值【答案】AC【分析】利用三角换元得到P 的坐标为2,tan ,0,cos 2P πθθθ⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭,利用斜率公式可求,αβ与θ的关系,化简后可得,αβ的关系,故可判断AB 的正误,根据面积公式可求S (用θ表示),故可判断CD 的正误.【详解】不妨设2,tan ,0,cos 2P πθθθ⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭,则tan sin tan 22(1cos )(2)cos θθαθθ==+--,tan sin tan 22(1cos )2cos θθβθθ=-=---,1||tan 2tan 2S AB θθ=⋅⋅=,因此2114tan ,tan ,221t t S t t αβ==-=-,其中tan 2t θ=.对于选项A ,1tan tan 4αβ=-为定值.对于选项B ,由于22224tantan22tan tan 1tan tan tantan 2222αβαβαβαβ=⎛⎫-++ ⎪⎝⎭,因此若tantan22αβ为定值,则tantan 22αβ+为定值,从而tan 2α和tan 2β是确定的值,矛盾,对于选项C ,D ,有()2112122tan()115122t t t t t tαβ--+==-+⋅,因此tan()S αβ⋅+是定值,cot()S αβ⋅+不是定值.10.(2020·北京·高三校考强基计划)已知点(1,1),(1,0)A Q ,P 为椭圆22143x y +=上的动点,则||||PA PQ +的()A.最大值为4B.最大值为4C.最小值为4-D.最小值为4【答案】BD【分析】利用椭圆的定义可求||||PA PQ +的最值.【详解】注意到Q 为椭圆的右焦点,设其椭圆的左焦点为(1,0)Q '-,则()()||||||44||PA PQ PA PQ PA PQ +=+-=-''+,而||PA PQ -'的取值范围是,AQ AQ ''-⎡⎤⎣⎦,即[,因此所求最大值为4,最小值为4三、填空题11.(2022·江苏南京·高三强基计划)设F ,l 分别为双曲线()22411212x y --=的右焦点与右准线,椭圆Γ以F 和l 为其对应的焦点及准线,过F作一条平行于y =的直线,交椭圆Γ于A 、B 两点,若Γ的中心位于以AB 为直径的圆外,则椭圆离心率e 的范围为___________.【答案】⎫⎪⎪⎭【详解】由双曲线方程可知其焦准距为3,则椭圆Γ的焦准距23b c=(同侧焦点和准线),如图,设椭圆中心为O,建立平面直角坐标系,设F :()222210x y a b a b+=>>,()11,A x y ,()22,B x y ,直线AB方程:)y x c =+,联立直线AB 和椭圆Γ可得:()222222223630b a x a cx a c a b +++-=,由韦达可得:212222212226+=-+33=+3a x x b a a c x x b a ⋅⎧⎪⎪⎨⎪⎪⎩,由椭圆中心O 位于以AB 为直径的圆外,则有12120OA OB x x y y ⋅=+>,结合韦达定理可得:222242222422222233330333a c a b b a c a b b b a b a b a----+=>+++,所以422441030a a c c -+<,即423e 10e 40-+<,e 1<<,12.(2018·山东·高三竞赛)若直线65280x y --=交椭圆22221x ya b+=(0a b >>,且2a 、b 为整数)于点A 、C .设()0,B b 为椭圆的上顶点,而ABC 的重心为椭圆的右焦点2F ,则椭圆的方程为______.【答案】2212016x y +=【详解】设()11,A x y ,()22,C x y ,由题意ABC 的重心为椭圆的右焦点2F ,整理得213x x c +=,21y y b +=-.由()11,A x y ,()22,C x y 在直线65280x y --=上,得到212165y y x x -=-.由()11,A x y ,()22,C x y 在椭圆()222210x y a b a b +=>>上,得到2211221x y a b +=,2222221x y a b+=.两式相减并整理得()()()()2212122121635y y y y b b a x x x x c +---==⋅+-,整理得225a bc =.①本号资料全部来源于微信公#众号:数学第六感因为()11,A x y ,()22,C x y 在直线65280x y --=上,所以有1165280x y --=,2265280x y --=.将123x x c +=,12y y b +=-代入得()635560c b ⨯---=,整理得18556c b +=.②联立①②,且注意到a 、b 为整数,解得2c =,4b =,220a =.故所求的椭圆方程为2212016x y +=.13.(2022·新疆·高二竞赛)设z 为复数,若方程2297--=z z 表示一条圆锥曲线,则此曲线的离心率=e ___________.【答案】4【详解】令||,|3|,|3|=-=+=z a z b z c ,则27-=a bc .由复数的几何意义知222218+=+b c a .所以由前两式知2()32-=b c,即||-=b c ,故||3||3||6--+=<z z .因此z6的双曲线,14.(2021·全国·高三竞赛)已知集合{}22(,)|||||,0,(,)|1,044x y A x y x y t t B x y m m ⎧⎫=+>=+≤<<⎨⎩≤⎬⎭满足B A ⊆,若P 为集合B 的边界线C 上任意一点,12F F 、为曲线C 的焦点,I 为12PF F △的内心,直线1IF 和2IF 的斜率分别为12k k 、,且1213k k ⋅=-则t 的最小值为________.【详解】因为12F F 、为曲线C 的焦点,I 为12PF F △的内心,若曲线C 的方程为22221x y a b +=,则I 的轨迹方程为22221x y c bc c a +=⎛⎫ ⎪+⎝⎭,故有22121.3bc c a c k k ⎛⎫ ⎪+⎝⎭=-=-⋅可知::2:a b c =,所以3m =.设(2cos )P θθ为曲线C上一点,则有|2cos ||t θθ≥+恒成立,即t ≥15.(2021·全国·高三竞赛)已知ABCD Y 的四个顶点均在双曲线2214y x -=上,点(0,1)P 在边AB 上,且12AP PB =,则ABCD Y 的面积等于_______.【答案】4【分析】由对称性,知O 为平行四边形的中心,设()00,A x y ,得()002,32B x y --,将点A 、B 的坐标代入双曲线方程,求得A 、B 的坐标,利用等面积法知4ABCD AOB S S = △,代入即可求解.【详解】由平行四边形的对称性与双曲线的对称性,知O 为平行四边形的中心,由A 、B 、C 、D 四点在两支双曲线上各有两点,不妨设A 、D 在左支上,B 、C 在右支上,如图:考虑A 、B 关于双曲线中心的对称点,A B '',因为单支双曲线上不存在四点构成平行四边形,知,A C B D =''=,所以ABCD Y 的对称中心为O .设()00,A x y ,由12AP PB =,得()002,32B x y --.将点A 、B 的坐标代入双曲线方程得()22002020*******y x y x ⎧-=⎪⎪⎨-⎪-=⎪⎩,解得:00814x y ⎧=⎪⎪⎨⎪=-⎪⎩或00814x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以A B x x ⎧=⎪⎪⎨⎪=⎪⎩或A B x x ⎧=⎪⎪⎨⎪=⎪⎩.故242||21ABCDADB AOB A B S S S OP x x ===⋅-=⨯⨯YV V.四、解答题16.(2022·湖北武汉·高三统考强基计划)设F 为椭圆C :22194x y +=的左焦点,P 为椭圆C上的一点(1)作正方形FPAB (F ,P ,A ,B 按逆时针排列)当P 沿着椭圆运动一周,求动点B 的轨迹方程.(2)设()3,2Q 为椭圆外一点,求PQ PF +的取值范围.【答案】(1)((22=149x x -+.(2)【详解】(1)如图所示,将椭圆C绕其左焦点()F 逆时针旋转90 ,得到椭圆'C,注意到在正方形FPAB 中,点B 可以看成也是由点P 绕点F 逆时针旋转90 而形成的,由于点P 在椭圆C 上运动,则点B 在椭圆'C 上运动.求B 的轨迹方程,也就是求椭圆'C 的方程.注意到椭圆'C的中心坐标为(,从而'C的方程为((22=149x x +.(2)如图所示,|||||PQ PFQF +≥当且仅当,,P F Q 三点共线,即P 运动到1P 位置时,等号成立.记椭圆C 的右焦点为)E,注意到()||||=||2||=||||6PQ PF PQ a PE PQ PE ++--+,显然有||||||=PQ PE QE -≤从而||||6PQ PF +≤+,当且仅当,,P E Q 三点共线,即P 运动到2P 位置时,等号成立.||||6PQ PF ≤+≤即PQ PF+的取值范围17.(2018·全国·高三竞赛)一束直线12,,l l 的每条均过xOy 平面内的抛物线2:C y x =的焦点,()1i l i ≥与抛物线C 交于点i A 、i B .若1l 的斜率为1,()2i l i ≥的斜率为1+2014l 的解析式.【答案】((()()201520152014201411112411y x -⎛⎫=⋅- ⎪⎝⎭-【详解】易知抛物线焦点1,04P ⎛⎫⎪⎝⎭.设()1:1,2,4i i l y k x i ⎛⎫=-= ⎪⎝⎭ ,并与2y x =联立知点i A 、i B 的横坐标i A x 、i B x 满足关于x 的方程()2222120216i i i k k x k x -++=且i i A B x x ≠.则i ii i A B A B x =-=221i i k k +=.从而,当2i≥时,有1111i i k k -==+.记{}n F 满足121F F ==及递推关系21n n n F F F ++=+则{}n F 为斐波那契数列其通项公式为n nn F ⎡⎤⎛⎥=- ⎥⎝⎭⎝⎭⎦.下面证明:1i i iF k F +=对一切正整数i 成立.由2111F k F ==,知i=1时结论成立.设i=t 时结论成立.则121111111t t t t t t t t t F F F F k k F F F +++++++=+=+==即i=t+1时结论也成立.由数学归纳法知1i i iF k F +=对一切正整数i 成立.特别地,201520142014F k F =.从而,2014l的解析式为((()()201520152014201411112411y x +-⎛⎫=⋅- ⎪⎝⎭-.【注】本题亦可用不动点方法求数列{}i k 的通项.18.(2018·福建·高三竞赛)已知1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点3P ⎛⎫ ⎪⎝⎭在椭圆C 上,且12F PF △的垂心为5,33H ⎛⎫- ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设A 为椭圆C 的左顶点,过点2F 的直线l 交椭圆C 于D 、D 两点.记直线AD 、AE 的斜率分别为1k 、2k ,若1212k k +=-,求直线l 的方程.【答案】(1)22143x y +=(2)()21y x =-【详解】设()1,0F c -,()2,0F c .由12F PF的垂心为53H ⎫-⎪⎪⎝⎭,得12F H PF ⊥.所以12531F H PF k k -⋅==-,224593c -=,解得21c =.由点P ⎫⎪⎪⎝⎭在椭圆C 上,得2224119a b +=.结合2221a b c -==,解得24a =,23b =.所以椭圆C 的方程为22143x y +=.(2)由(1)知()2,0A -,()21,0F .若l 的斜率不存在,则由对称性,知120k k +=,不符合要求.若l 的存在,设为k ,则l 的方程为()1y k x =-.由()221143y k x x y ⎧=-⎪⎨+=⎪⎩,得()22224384120k x k x k +-+-=.①设()11,D x y ,()22,E x y ,则2122843k x x k +=+,212241243k x x k -=+.所以()()1212121212112222k x k x y y k k x x x x --+=+=+++++()()()12121234331122222x x k k x x x x ⎡⎤++⎛⎫=-+-=⋅-⎢⎥⎪++++⎢⎥⎝⎭⎣⎦()()221222121222834344322412824244343k x x k k k k k x x x x k k ⎡⎤⎛⎫+⎢⎥ ⎪⎡⎤+++⎝⎭⎢⎥=⋅-=⋅-⎢⎥⎢⎥-+++⎢⎥⎣⎦+⨯+⎢⎥++⎣⎦()222222238161221122412161612k k k k k k k k k k ⎡⎤++⎛⎫+⎢⎥=⋅-=⋅-=- ⎪-+++⎢⎥⎝⎭⎣⎦.又1212k k +=-,因此2k =,直线l 的方程为()21y x =-.19.(2018·江西·高三竞赛)若椭圆221259x y +=上不同的三点()11,A x y ,94,5B ⎛⎫ ⎪⎝⎭,()22,C x y 到椭圆右焦点的距离顺次成等差数列,线段AC 的中垂线l 交x 轴于点T ,求直线BT 的方程.【答案】252064x y -=【详解】用a 、b 、c 分别表示椭圆的半长轴、半短轴及半焦距之长度,则5a =,3b =,4c =,右焦点为()4,0F ,且准线方程为2a x c=,由21AFca a x c=-,22CF c a a x c=-,得1455AF x =-,2455CF x =-,根据等差性质,2AF CF BF +=,而95BF =,即12441855555x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以128x x +=.①设线段AC 的中点为D ,则其坐标为124,2y y D +⎛⎫ ⎪⎝⎭,又设点T 的坐标为()0,0T x ,则AC 的中垂线DT 的方程为()12121242y y x xy x y y +--=---.因()0,0T x 在此直线上,故有()1212012042y y x xx y y +--=---,即()221201242y y x x x --=-.②又根据A 、B 在椭圆上,得()221192525y x =-,()222292525y x =-,所以()()22121212925y y x x x x -=-+-,据①,即有()22121236225y y x x -=--.③再据②③得06425x =,即点T 的坐标为64,025T ⎛⎫⎪⎝⎭,于是直线BT 的方程为252064x y -=.20.(2018·湖北·高三竞赛)已知O 为坐标原点,()1,0N ,点M 为直线=1x -上的动点,MON ∠的平分线与直线MN 交于点P ,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点11,22Q ⎛⎫-- ⎪⎝⎭作斜率为k 的直线l ,若直线l 与曲线E 恰好有一个公共点,求k 的取值范围.【答案】(1)()201y x x =≤<(2)11,132⎧⎫+⎪⎪⎛⎤-⎨⎬⎥⎝⎦⎪⎪⎩⎭ 【详解】(1).设()(),,1,P x y M t -,易知01x ≤<.因为OP 平分MON ∠,所以OM MP PN ON==,所以)11,x x +-①)0y t y -=-.②由①②可得21y t x =-,代入①得到11x x +=-E 的方程为()201y x x =≤<.(2).记()()1,1,1,1A B -,则11,3QA QB k k ==-.直线l 的方程为1122y k x ⎛⎫+=+ ⎪⎝⎭,与抛物线方程2y x =联立,消去x 得()21102ky y k -+-=当直线l 与抛物线2y x =相切于点T 时,()1210k k ∆=--=,解得1,2k =当1k k ==T y =T 在曲线E 上;当212k k ==时,T y =,切点T 不在曲线E 上.若直线l 与曲线E 恰好有一个公共点,则有QB QA k k k <≤或k =,故所求k的取值范围为1,13⎛⎤-⋃ ⎥⎝⎦⎪⎪⎩⎭.21.(2021·全国·高三竞赛)过抛物线22y px =(p 为不等于2的质数)的焦点F ,作与x 轴不垂直的直线l 交抛物线于M 、N 两点,线段MN 的垂直平分线交MN 于P 点,交x 轴于Q 点.(1)求PQ 中点R 的轨迹L 的方程;(2)证明:L 上有无穷多个整点(横、纵坐标均为整数的点),但L 上任意整点到原点的距离均不是整数.【答案】(1)24()(0)y p x p y =-≠;(2)证明见解析.【详解】(1)抛物线22y px =的焦点为(,0)2p ,设l 的直线方程为()(0)2p y k x k =-≠.由得222y pxp y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得222221(2)04k x pk p x p k -++=.设M 、N 的横坐标分别为12x x 、,由21222pk p x x k ++=,得22122222,()2222P Px x pk p pk p p px y k k k k+++===-=,而PQ l ⊥,故PQ 的斜率为1k -,PQ 的方程为2212()2p pk py x k k k +-=--.代入0Q y =得222223222Q pk p pk px p k k ++=+=.设动点R 的坐标为(),x y ,则:21()21()22p Q P Qp x x x p k p y y y k ⎧=+=+⎪⎪⎨⎪=+=⎪⎩,因此222()4(0)p p x p y y k-==≠,故PQ 中点R 的轨迹L 的方程为24()(0)y p x p y =-≠.(2)显然对任意非零整数t ,点2((41),)p t pt +都是L 上的整点,故L 上有无穷多个整点.反设L 上有一个整点(),x y 到原点的距离为整数()0m m ≥,不妨设0,0x y >>,则:22224()x y m y p x p ⎧+=⎨=-⎩①②,因为p 是奇质数,于是|p y ,从②可推出|p x ,再由①可推出|p m .令111,,x px y py m pm ===,则有22211121141x y m y x ⎧+=⎨=-⎩③④,由③,④得2211114x x m -+=,于是2211(81)(8)17x m +-=,即()()111181881817x m x m +++-=,于是111181817,8181x m x m ++=+-=,得111x m ==,故10y =,有10y py ==,但L 上的点满足0y ≠,矛盾!因此,L 上任意点到原点的距离不为整数.22.(2021·全国·高三竞赛)已知椭圆22:12+=x E y 的右焦点为(c,0)F ,上顶点为M ,圆222:()(0)F x c y r r -+=>,问:椭圆E 上是否存在两点P 、Q 使得圆F 内切于三角形MPQ 若存在,求出直线PQ的方程;若不存在,请说明理由.【答案】存在,PQ的方程为(260x y +-+-=.【详解】假设这样的P 、Q 存在,且设()()1122,,,P x y Q x y ,由题意知(0,1),(1,0)M F ,所以直线()111:10MP y x x y x --+=.因为该直线与圆F 相切,则d r =r =,两边平方化简得()()2222111111x y r x y ⎡⎤+-=+-⎣⎦,整理得()()()()22221111111210r x ryx y -+--+-=.因为()221121x y =-,消去1x 得()()()()()2222111112111210r y r yx y -⋅-+--+-=.因为11y ≠,两边同时除以11y -,得()()()()221111211120r y r y x -⋅++---=,整理得()()221121310x ryr -+-+-=,即点P 在直线()()2221310x r y r -+-+-=上.同理,点Q 也在直线()()2221310x r y r -+-+-=上,因此直线PQ 的方程为()()2221310x r y r -+-+-=.又因为直线PQ 圆Fr=,解得r =因此直线PQ 存在且直线PQ的方程为(260x y +-+-=.23.(2021·全国·高三竞赛)如图所示,()(),0P a b a b <<为抛物线2:4F y x =外一点,过P 引抛物线Γ的两条切线PA PB 、,切点分别为A 、B .在线段PA 上取两点D 、E ,使得PD AE =.若过D 、E 两点的直线12l l 、分别切抛物线Γ于M 、N 两点(异于A ).求四边形MNAB 面积的最大值.【详解】设()()()()11220000,,,,,,,A x y B x y M x y N x y '',则直线AP 的方程为()112y y x x =+,直线BP 的方程为()222y y x x =+,故有121242y y a y y b ⎧=⎪⎪⎨+⎪=⎪⎩,同理可得1010,22E D y y y yy y '++==,又因为PD AE =,所以1E D y y b y +=+,即002y y b +'=,故12121200424AB MN y y k k x x y y b y y '-=====-++,因此//AB MN .直线AB 的方程为22by x a =+,直线MN 的方程为0000004y y y x y y y y '''=+++,即0022y y by x '=+,故两平行线间的距离d ',||AB ===||MN =所以00|4|1(||||))24MNABy y a S d AB MN '-=⋅+=⋅,其中0204a y y b ≤'≤,可令22004,b a A b y y X '-=-=,则:1(4MNAB S A X =-218=+3183⎛≤ ⎝⎭当22001(4)9b y y b a '-=-时取到最大值.24.(2021·全国·高三竞赛)已知椭圆22122:1(0)x y C a b a b+=>>,其右焦点为F ,过F 作直线l 交椭圆1C 于A 、B 两点(l 与x 轴不重合),设线段AB 中点为D ,连结OD (O 为坐标原点),直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求椭圆1C 的离心率.【分析】先将椭圆与直线联立,结合韦达定理表示出D 坐标,再结合直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求出2,3M ⎛ ⎝⎭再代入椭圆求出a ,进而求出离心率.【详解】不妨设椭圆1C 的半焦距1c =,则221b a =-,椭圆右焦点为(1,0)F .设:1l x ky =+,将1x ky =+,代入22221x ya b+=消去x 化简整理得()()()222222222110a k k a y a ky a -++---=.显然,方程判别式Δ0>,设()(),,,A A B B A x y B x y .由韦达定理知()2222221A B a k y y a k k a-+=--+,从而()()22222222222211122222A B D A B a k x x ax ky ky a k k a a k k a ⎛⎫-+==++=-+= ⎪ ⎪-+-+⎝⎭,()2222211D D a k x y k a k k a--==--+,于是()22222222221,a k a D a k k a a k k a ⎛⎫-- ⎪ ⎪-+-+⎝⎭.所以直线OD 的方程为()221a x y a k =--.设圆AMBN 的方程为222:0C x y Dx Ey F ++++=,直线l 直线MN 的方程为()232:(1)01a C x ky x y a k ⎛⎫--+= ⎪ ⎪-⎝⎭,由于3C 经过12C C 、的交点,且123C C C 、、均为二次曲线,则存在常数12λλ、,使得()()2222212222(1)11a x y x ky x y x y Dx Ey Fa b a k λλ⎛⎫⎛⎫--+=+-+++++ ⎪ ⎪ ⎪-⎝⎭⎝⎭,比较方程两边xy 系数知()2201a k a k -+=-,即2221a k a =-,由对称性不妨设k =.代入点D 的坐标得1,22D a ⎛- ⎪ ⎪⎝⎭,又||8||3MN OD =,得点2,3M ⎛ ⎝⎭,而M 在1C上,故22222311a a ⎛⎛⎫ ⎪ ⎝⎭⎝⎭+=-,解得a =于是1C的离心率为3c e a ==.25.(2018·甘肃·高三竞赛)已知椭圆2222:1x y C a b+=过点()0,2M ,且右焦点为()2,0F .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于,A B 两点,交y 轴于点P .若,PA mAF PB nBF ==,求证:m n +为定值;(3)在(2)的条件下,若点P 不在椭圆C 的内部,点Q 是点P 关于原点O 的对称点,试求三角形QAB 面积的最小值.【详解】(1)由题意b=2,c=2,所以28a =,椭圆C 的方程为22184x y +=.(2)设A 、B 、P 的坐标分别为()()()1122,,,,0,x y x y t .由PA mAF = 知121m x m =+,11ty m=+.又点A 在椭圆C 上,则22211184m t m m ⎛⎫⎛⎫ ⎪ ⎪++⎝⎭⎝⎭+=,整理得222840m m t +-+=.由PB nBF =,同理得到222840n n t +-+=.由于A 、B 不重合,即m n ≠,故m 、n 是二次方程222840x x t +-+=的两根,所以m+n=-4,为定值.(3)依题意,直线l 的方程为12x yt+=,即()22t y x =--,与椭圆C 的方程联立,消去y 并整理,得()2222244160t xt x t +-+-=,()()42221642416321280t t tt ∆=-+-=+>,所以221212224416,22t t x x x x t t -+=⋅=++,而1212122QAB S t x x t x x ∆=⋅⋅-=⋅-()()22222121212=4QAB S t x x t x x x x ∆⎡⎤=-+-⎣⎦()42222216166422t t tt t ⎡⎤-⎢⎥=-⎢⎥++⎣⎦()2222321282t t t +=⋅+.()2243212t ⎡⎤⎢⎥=-⎢⎥+⎣⎦由已知,点P 不在椭圆C 的内部,得2t ,即24t ,所以2QAB S ∆的最小值为82563299⨯=,故三角形QAB 面积的最小值为163.26.(2018·山东·高三竞赛)已知圆22:4O x y +=与曲线:3C y x t =-,(),A m n ,(),B s p ,(),,,m n s p *∈N 为曲线C 上的两点,使得圆O 上任意一点到点A 的距离与到点B 的距离之比为定值()1k k >,求t 的值.【答案】43t =【详解】设(),P x y 为圆O 上任意一点,则由题意知PA k PB=.即222PA k PB =,于是()()()()22222x m y n k x s y p ⎡⎤-+-=-+-⎣⎦,整理得()()()()22222222222222111k s m kp nmn k s p x y x y k k k --+-++--=---.因此点P 的轨迹是一个圆.因为(),P x y 为圆上任意一点,所以此圆与圆22:4O x y +=必为同一个圆,于是有()22201k s m k --=-,()22201k p nk --=-,()()22222241mn k s p k +-+=-,整理得20k s m -=,20k p n -=,所以()()()()()22222424222222222411m n k s p k sk p k s p ks p k k +-++-+==+=--.因为s ,*p N ∈,所以21s ≥,21p ≥,从而22242k s p =≤+.又因为1k >,所以1s p ==,22k =,2m n ==.因此将()2,2A ,()1,1B ,代入3y x t =-,得43t =.27.(2022·福建·高二统考竞赛)已知椭圆C :()222210x y a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,B 为椭圆C 的上顶点,且11BA F ∆的外接圆半径为3.(1)求椭圆C 的方程;(2)设与x 不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P 、2PA 、2A Q 、1QA 的斜率分别为1k 、2k 、3k 、4k .已知()142353k k k k +=+,求2F PQ ∆面积的取值范围.【答案】(1)2211612x y +=(2)0,2⎛ ⎝⎭【详解】(1)由椭圆C 的离心率为12,知12c a =,于是112BF a c OF ===,所以1=30F BO ∠︒,1=60BFO ∠︒,11=120BF A ∠︒,又AB ===,且11BA F ∆所以11==2sin sin1203AB BF A ∠⨯︒,解得=2c ,因此,=4a,b =所以,椭圆C 的方程为2211612x y +=.(2)如图,易知直线l 斜率不为0,设l 方程为x ty m =+,由22=++=11612x ty m x y ⎧⎪⎨⎪⎩,得()2223463480t y mty m +++-=,设()11,P x y ,()22,Q x y ,则122634mt y y t -+=+,212234834m y y t -=+,由(1)知,()14,0A -,()24,0A ,所以122211111222111134441643PA PA y y y y k k k k x x x y ⋅=⋅=⋅===-+---,同理,123434OA QA k k k k ⋅=⋅=-,因为()142353k k k k +=+,所以()2323335443k k k k --=+,()2323233543k k k k k k +-⋅=+,由l 与x 不垂直可得230k k +≠,所以23920k k =-,即22920PA QA k k ⋅=-,所以121294420y y x x ⋅=---,()()1212209440y y ty m ty m ++-+-=,于是()()()()22121292094940t y y t m y y m ++-++-=,()()()222223486920949403434m mt t t m m t t --+⋅+-⋅+-=++,整理得2340m m --=,解得1m =-或=4m ,因为P 、Q 在x 轴的两侧,所以2122348034m y y t -=<+,44m -<<,又1m =-时,直线l 与椭圆C 有两个不同的交点,因此1m =-,直线l 恒过点()1,0D -,。
【高中数学竞赛专题大全】 竞赛专题7 解析几何(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题7 解析几何 (50题竞赛真题强化训练)一、填空题1.(2021·全国·高三竞赛)已知ABCD 的四个顶点均在双曲线2214y x -=上,点(0,1)P 在边AB 上,且12AP PB =,则ABCD 的面积等于_______.【解析】 【分析】由对称性,知O 为平行四边形的中心,设()00,A x y ,得()002,32B x y --,将点A 、B 的坐标代入双曲线方程,求得A 、B 的坐标,利用等面积法知4ABCDAOB S S =△,代入即可求解.【详解】由平行四边形的对称性与双曲线的对称性,知O 为平行四边形的中心,由A 、B 、C 、D 四点在两支双曲线上各有两点,不妨设A 、D 在左支上,B 、C 在右支上, 如图:考虑A 、B 关于双曲线中心的对称点,A B '',因为单支双曲线上不存在四点构成平行四边形,知,A C B D =''=,所以ABCD 的对称中心为O .设()00,A x y ,由12AP PB =,得()002,32B x y --. 将点A 、B 的坐标代入双曲线方程得()22002020*******y x y x ⎧-=⎪⎪⎨-⎪-=⎪⎩,解得:0014x y ⎧=⎪⎪⎨⎪=-⎪⎩或0014x y ⎧=⎪⎪⎨⎪=-⎪⎩所以A B x x ⎧=⎪⎪⎨⎪=⎪⎩或A B x x ⎧=⎪⎪⎨⎪⎪⎩.故242||21ABCDADBAOBA B SSSOP x x ===⋅-=⨯=故答案为:36542.(2021·全国·高三竞赛)抛物线2Γ:2(0)y px p =>,设它的某三条切线交于A 、B 、C 三点,设ABC 的外接圆与x 轴相切,切点为(,0)D k ,则k =_______. 【答案】2p k = 【解析】 【分析】先证明A 、B 、C 、F 四点共圆,得出D 、F 重合,进而求出k . 【详解】设Γ的焦点为,02p F ⎛⎫⎪⎝⎭,下面我们证明:A 、B 、C 、F 四点共圆.设直线AB 与Γ切于()11,P x y ,直线BC 与Γ切于()22,Q x y ,直线CA 与Γ切于()33,R x y .则2(1,2,3)2i i y x i p==,于是直线AB 的方程为()11yy p x x =+,直线BC 的方程为22()yy p x x =+,直线CA 的方程为()33yy p x x =+.记i l 为直线()(1,2,3)i i yy p x x i =+=.设F 在直线AB BC CA 、、上的射影分别为123K K K 、、,于是直i FK 的方程为2i y p y x p⎛⎫=-- ⎪⎝⎭,又直线i l 方程为()(1,2,3)i i yy p x x i =+=,则直线i FK 与直线i l 交点为0,(1,2,3)2i y i ⎛⎫= ⎪⎝⎭,所以123K K K 、、均在y 轴上,故123K K K 、、三共线,由Simson 定理逆定理知:A 、B 、C 、F 四点共圆.所以D 、F 重合,于是2p k =. 3.(2021·全国·高三竞赛)设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB OF =.若在Γ的右支上存在一点A ,使得||||OA OF =且3OAB OBA ∠≥∠,则Γ离心率的取值范围为___________. 【答案】2215⎛+ ⎝⎦【详解】在平面直角坐标系xOy 中考虑问题.不妨设A 在第一象限.A 是以O 为圆心,OF 为半径的圆Ω与Γ的交点. 设Γ的左焦点为X ,则4XOA OAB OBA OBA ∠=∠+∠≥∠,122AFO XOA OBA ∠=∠≥∠,即,FAB FBA FA FB ∠≥∠≤.在Ω上取一点C ,使FC FB =,则FC FA ≥. 由双曲线的定义知2CX CF a -≤(a 是实半轴长),即 2222(2)4a CF CX c CF +≥=-(c 是半焦距).代入2c CF FB ==,得2222424c c a c ⎛⎫+≥- ⎪⎝⎭.解得22151,7e ⎛⎤+∈ ⎥ ⎝⎦. 故答案为:22151,7⎛⎤+ ⎥ ⎝⎦4.(2021·全国·高三竞赛)过椭圆221169x y +=上一点M 作圆222x y +=的两条切线,点A 、B 为切点过A 、B 的直线l 与x 轴、y 轴分别交于点P 、Q 两点,则POQ △面积的最小值为___________. 【答案】13【详解】解析:设(4cos ,3sin )M θθ,则l 的方程为(4cos )(3sin )2x y θθ+=,12,2cos 3sin P Q x y θθ==, 11123sin 23P Q S x y θ=⋅=≥,当且仅当4πθ=时等号成立,故答案为:13.5.(2021·全国·高三竞赛)设123A A A △为抛物线24y x =的内接三角形,分别过1A 、2A 、3A 作抛物线的切线1l 、2l 、3l ,设三条切线相交所成的三角形为123B B B .求123A A A △与123B B B 的面积比. 【答案】2 【解析】 【详解】推导一般情况.设222(0),,,1,2,32i i i t y px p A t i p ⎛⎫=>= ⎪⎝⎭.那么过i A 的切线方程为2222i i t x p y t p +⋅=⋅,即2:,1,2,32ii i t l yt px i =+=.联立1l 与2l 的方程:211222,2.2t yt px t yt px ⎧=+⎪⎪⎨⎪=+⎪⎩解得1212,2.2t t x p t t y ⎧=⎪⎪⎨+⎪=⎪⎩ 这表明1l 与2l 的交点3B 的坐标为12123,22t t t t B p ⎛⎫+ ⎪⎝⎭.同理,13132,22t t t t B p ⎛⎫+ ⎪⎝⎭,23231,22t t t t B p ⎛+⎫ ⎪⎭⎝.由面积公式:123123A A AB B B S S =△△2112222331212131323231211221212211222122t t pt t p t t pt t t t p t t t t pt t t t p+++=2211222233121213132323111111t t t t t t t t t t t t t t t t t t +++而222112222332222231213122313111t t t t t t t t t t t t t t t t t t =++---, ()()()()121221313132312132321311232323111t t t t t t t t t t t t t t t t t t t t t t t t t t t t t ++=+++++-++()()222312312123t t t t t t t t t t -+-+232222122331122331t t t t t t t t t t t t =++---,所以211222231212131333232111111t t t t t t t t t t t t t t t t t t +=++,从而1231232A A A B B B SS=.故答案为:2.6.(2021·全国·高三竞赛)双曲线222019x y -=,左右顶点分别为1A 、2A ,P 为双曲线右支上一点,且1210A PA ∠=︒,则12PA A ∠=___________. 【答案】40︒ 【解析】 【详解】设直线12,A P A P 的倾斜角分别为,αβ,则2019tan tan 12019αβ==, 故90αβ+=︒,而10βα-=︒,故40α=︒, 故答案为:40︒.7.(2021·全国·高三竞赛)已知双曲线2213y x -=的左右焦点为1F 、2F ,过2F 的直线与双曲线右支交于A 、B 两点,则12AF F △、12BF F △的内切圆面积之和的取值范围是__________. 【答案】102,3ππ⎡⎫⎪⎢⎣⎭【解析】 【详解】解析:令12AF F △、12BF F △的内切圆心为1I 、2I ,与x 轴切于M ,N ,则12121132F F F A F AF M F N +-===,所以M 、N 重合于双曲线右顶点.过2F 的直线与双曲线右支交于A 、B 两点,令212,33AF F ππα⎛⎫∠=∈ ⎪⎝⎭,内切圆面积和为22221210tan cot 2,223S r r ααπππππ⎛⎫⎡⎫=+=+∈ ⎪⎪⎢⎝⎭⎣⎭.故答案为:102,3ππ⎡⎫⎪⎢⎣⎭.8.(2021·全国·高三竞赛)已知双曲线22221x y a b -=的左右焦点分别为1F 、2F ,过1F 作圆222x y a +=的切线分别交双曲线的左右两支于点B 、C ,若2BC CF =,则双曲线的离心率为__________. 523+【解析】 【详解】根据题意,记12BF F θ∠=,则sin a cθ=,其中c进而由双曲线的焦半径公式和双曲线的定义,可得1112CF BF CF a -=-, 即22cos b a c aθ=+,也即22b a bc a c=⋅+,解得1ba=因此双曲线的离心率c e a ===9.(2021·浙江·高三竞赛)若正方形ABCD 的一条边在直线206y x =+上,另两个顶点在抛物线2yx 上,则该正方形的面积为______.【答案】2178或1250 【解析】 【分析】 【详解】设另一条边所在直线为y x m =+,则20x x m --=, 设两交点的横坐标12,x x,则12x x -=2428424320m m -+=, 解得272m =或156m =,所以22178S ==或1250.故答案为:2178或1250.10.(2021·浙江·高三竞赛)已知点()3,1P ,存在抛物线24x y =上相异的两点A ,B ,使得四边形PAQB 为矩形,则点Q 的轨迹方程是______.【答案】()222395402x x y ⎡⎤+⎛⎫+--+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】 【分析】 【详解】设()()1122,,,,(,)A x y B x y Q x y ,且22112211,44y x y x ==. 则由四边形PAQB 为矩形知,121231x x x y y y +=+⎧⎨+=+⎩ ,即122212311144x x xx x y +=+⎧⎪⎨+=+⎪⎩, 即122123(3)442x x x x y x x +=+⎧⎪⎨+--=⎪⎩, 且PA PB ⊥,即()()()()12120,33110PA PB x x y y ⋅=--+--=,()()121212123910x x x x y y y y -+++-++=, ()()222212121212113910164x x x x x x x x -+++-++=, 222(3)441(3)443(3)9(1)102162x y x y x y ⎡⎤+--+----++-++=⎢⎥⎣⎦,222(3)441(3)4430244x y x y x y ⎡⎤+--+--++-=⎢⎥⎣⎦,即2223(9)5402x x y ⎡⎤+⎛⎫+--+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 故点Q 的轨迹方程为2223(9)5402x x y ⎡⎤+⎛⎫+--+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.故答案为:2223(9)5402x x y ⎡⎤+⎛⎫+--+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 11.(2021·全国·高三竞赛)已知椭圆Γ的方程为22195x y +=,经过Γ的左焦点(2,0)F -,且斜率为1k (1k 存在且不为0)的直线与Γ交于A 、B 两点,设点(1,0)R ,延长AR 、BR 与Γ分别交于点C 、D .直线CD 的斜率为2k ,将2122k k 写成既约分数ab,其中a ,b 是互质的正整数,则2a b +=__________. 【答案】305 【解析】 【分析】 【详解】设()()()()11122334411,,,,,,,,:1AR x A x y B x y C x y D x y l x y y -=+代入椭圆Γ的方程, 消去x 得2112115140x x y y y y --+-=. 由韦达定理得()211311405y y y y x =-≠-, 从而13145y y x =-,代入直线AR 的方程得131595x x x -=-.类似的,242595x x x -=-,24245y y x =-.故()()121212342342145516y x y y x y y y k x x x x --+-==--.因为A 、F 、B 三点共线,所以121222y y x x =++,故()1221212y x y x y y -=-, 所以()()2211212212771616,494449y y a k k k a b x x b k -==⇒==⇒==-. 所以2305a b +=. 故答案为:305.12.(2021·全国·高三竞赛)已知集合{}22(,)|||||,0,(,)|1,044x y A x y x y t t B x y m m ⎧⎫=+>=+≤<<⎨⎩≤⎬⎭满足B A ⊆,若P 为集合B 的边界线C 上任意一点,12F F 、为曲线C 的焦点,I 为12PF F △的内心,直线1IF 和2IF 的斜率分别为12k k 、,且1213k k ⋅=-则t 的最小值为________.【解析】 【分析】 【详解】因为12F F 、为曲线C 的焦点,I 为12PF F △的内心,若曲线C 的方程为22221x y a b +=,则I 的轨迹方程为22221x y c bc c a +=⎛⎫ ⎪+⎝⎭,故有22121.3bc c a c k k ⎛⎫ ⎪+⎝⎭=-=-⋅可知::2a b c =,所以3m =.设(2cos )P θθ为曲线C上一点,则有|2cos ||t θθ≥+恒成立,即t13.(2021·全国·高三竞赛)已知1F 、2F 是椭圆2222:1(0)x y M a b a b +=>>的焦点,P 是M 上一点,12PF F △的周长是6,且41a c+的值是3,过(4,0)Q -的直线交M 于不同两点A ,B ,则QA QB ⋅的取值范围是_________.【答案】45,124⎛⎤⎥⎝⎦【解析】 【分析】 【详解】 因为12226PF F Ca c =+=,所以3a c +=.由241()(21)a c a c ⎛⎫++≥+ ⎪⎝⎭,413a c +≥,得到2,1a c ==,所以椭圆的方程为22143x y +=.(1)当直线QA 为0y =时,12QA QB =.(2)设直线QA 的方程为4x my =-,联立得22123034m y my ⎛⎫+-+= ⎪⎝⎭, 221(2)43034m m ⎛⎫∆=-⨯⨯+> ⎪⎝⎭,得2m >或2m <-.所以()2212231143m QA QB y y m +⋅=⋅=+.将2m >或2m <-代入,得出QA QB ⋅的取值范围为45,124⎛⎫⎪⎝⎭.由(1)(2)知QA QB 的取值范围为45,124⎛⎤⎥⎝⎦.故答案为:45,124⎛⎤⎥⎝⎦.14.(2021·全国·高三竞赛)已知P 、Q 分别是圆22:(4)8C x y -+=与圆22:(4)5D x y +-=上的点,O 是坐标原点,则PQ 的最小值为__________.【解析】 【分析】 【详解】由22(4)8x y -+=得22880x x y -++=,于是22222828x x y x y -++=+,从而()22221442x x y x y -++=+=等于点P 到点(2,0)M 的距离.所以PQ PQ PM MQ +=+≥,而min MQ =所以PQ15.(2021·全国·高三竞赛)半径为2的球O 放在水平桌面上,该水平桌面所在平面内的一点1A 的竖直正上方有一个点光源A .若1AA 与球O 相切,且16AA =,那么,球O 经过点光源A 照射之后,在该水平桌面上的投影的离心率为_________. 【答案】12 【解析】 【分析】 【详解】考虑过A 、1A 、O 三点的截面,设12A A 的中点为M ,如图:容易求得1228,10,213A A AA AM === 则利用圆锥曲线的定义知,投影的椭圆的长半轴长为42212232AA AA AM +⎛⎫-= ⎪⎝⎭224(23)12-=.故答案为:12.16.(2021·全国·高三竞赛)在平面直角坐标系xOy 中,若椭圆22111x yt t +=+-与双曲线1xy =相切,则t =_________. 5【解析】 【分析】 【详解】设切点为1,m m ⎛⎫⎪⎝⎭.容易求得1xy =在1,m m ⎛⎫⎪⎝⎭处的切线为()211y x m m m =--+,即220x m y m +-=.椭圆22111x y t t +=+-在1,m m ⎛⎫ ⎪⎝⎭处的切线为()1011mx y t m t +-=+-,由以上两条切线为同一条直线,知()2211121m m t m m m t ⎧⋅=⎪+⎪⎨⎪⋅=-⎪⎩,因为1t >,所以由以上方程组容易解得5t = 517.(2021·全国·高三竞赛)设双曲线22221x y a b -=的离心率为e ,过原点的直线与之交于A 、B 两点,若双曲线上存在一点C ,使得直线AC 的斜率与直线BC 的斜率之乘积恰为e ,则e 的值为__________.【解析】 【分析】 【详解】设()()sec ,tan ,sec tan ,sec ,t (n )a A a b B a b C a b ααααββ--﹐, 则222tan tan tan tan 1sec sec sec sec AC BCb b b b b k e a k a a a aβαβαβαβα-+=⨯==--+⋅,因此21e e -=,即e =. 18.(2021·全国·高三竞赛)任作椭圆22221x y a b+=的一条切线与椭圆两条对称轴分别交于点A B 、,若AB 长度的最小值为4b ,则椭圆的离心率为___________.【答案】3【解析】 【分析】 【详解】设切点为()cos ,sin P a b θθ,则切线方程为cos sin 1x y a bθθ+=. 其与x 轴、y 轴交点分别为,0,0,cos sin a b A B θθ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭, 所以()2222222222cos sin ()cos sin cos sin a b ab AB a b θθθθθθ⎛⎫⎛⎫⎛⎫=+=++≥+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以4,3,ca b b a b e a +=====. 19.(2021·全国·高三竞赛)已知S 、P (非原点)为抛物线2y x 上不同的两点,点P 处的切线与y 轴交于点R ,若SP PR ⊥,则PSRS的最小值为______________.【解析】 【分析】 【详解】设()200,P x x ,则切线方程:()002y x x x =-,交于y 轴上的点()200,2R x -,切线的垂线:()0012y x x x =--, 与抛物线联立,解点S 的坐标:2000011,22S x x x x ⎛⎫⎛⎫ ⎪--+ ⎪ ⎪⎝⎭⎝⎭, 那么011||||222SPRSSP PR x x =⋅=⋅()2200141=42x x +⋅令02t x =,则:()22114SPRtSt+=⋅()2222111133344t t tt⎛⎫+++ ⎪+⎝⎭==24t ⎛ ⎝⎭≥==最值在213t =时取到.. 20.(2019·山东·高三竞赛)△ABC中,16,9AB BC CA ===.在△ABC 外部,到点B 、C 的距离小于6的点组成的集合,所覆盖平面区域的面积是______ .【答案】54π【解析】 【详解】分别以点B 、C 为圆心,6为半径作圆,交于三角形外一点D ,连结BD 、CD ; 有5353cos ,cos 7272A BDC =∠=-,故A 、B 、D 、C 四点共圆,所以∠ABD +∠ACD =π. 又易知AB 与圆C 相离,故所求的面积为2个圆的面积去掉半个圆的面积再加上△BCD 的面积等于54π+故答案为:54π 21.(2019·重庆·高三竞赛)已知△ABC 为椭圆22194x y +=的内接三角形,且AB 过点P (1,0),则△ABC 的面积的最大值为_______ .【解析】 【详解】提示:经伸缩变换32x X y Y=⎧⎨=⎩得△A 'B 'C '内接于圆X 2+Y 2=1,A 'B '过点1,03P '⎛⎫ ⎪⎝⎭.6ABCA B C SS'''=,设O '到A 'B '的距离为t ,则10,3t A B ''=21(1)A B C S t t '''-⋅+,易知当13t =时,A B C S ''',所以S △ABC .. 22.(2019·全国·高三竞赛)在平面直角坐标系中,若以(r +1,0)为圆心、r 为半径的圆上存在一点(a ,b )满足b 2≥4a ,则r 的最小值为____________ . 【答案】4 【解析】 【分析】根据题意,求得,a r 的不等关系,结合不等式有解,即可求得r 的范围,从而求得最小值. 【详解】由条件知222(1)a r b r --+=,故22224(1)2(1)(1)a b r a r r a a =---=---. 即22(1)210a r a r --++.上述关于a 的一元二次不等式有解,故判别式2[2(1)]4(21)4(4)0r r r r --+=-, 解得r ≥4.经检验,当r =4时,(,)(3,a b =满足条件.因此r 的最小值为4. 故答案为:4.本题考圆的方程,以及一元二次不等式的有解问题,属综合中档题.23.(2019·四川·高三竞赛)双曲线22221x y a b-=的右焦点为F ,离心率为e ,过点F 且倾斜角为3π的直线与该双曲线交于点A 、B ,若AB 的中点为M ,且|FM |等于半焦距,则e =_____ .【解析】 【详解】设点()()()112200,,,,,A x y B x y M x y ,则2222112222221,1x y x y a b a b-=-=.两式相减,得()()()()12121212220x x x x y y y y a b +-+--=,所以AB的斜率为20122120b x y y k x x a y -===-又||,3FM c xFM π=∠=,所以M点的坐标为32c ⎛⎫ ⎪ ⎪⎝⎭. 所以22b a=01x =,所以c e a ===二、解答题(共0分)24.(2021·全国·高三竞赛)已知椭圆22122:1(0)x y C a b a b +=>>,其右焦点为F ,过F 作直线l 交椭圆1C 于A 、B 两点(l 与x 轴不重合),设线段AB 中点为D ,连结OD (O 为坐标原点),直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求椭圆1C 的离心率.【解析】 【分析】先将椭圆与直线联立,结合韦达定理表示出D 坐标,再结合直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求出2,3M ⎛ ⎝⎭再代入椭圆求出a ,进而【详解】不妨设椭圆1C 的半焦距1c =,则221b a =-,椭圆右焦点为(1,0)F .设:1l x ky =+,将1x ky =+,代入22221x ya b+=消去x 化简整理得()()()222222222110a kk a y a ky a -++---=.显然,方程判别式Δ0>,设()(),,,A A B B A x y B x y .由韦达定理知()2222221A B a k y y a k k a-+=--+,从而()()22222222222211122222A B D A B a k x x a x ky ky a k k a a k k a ⎛⎫-+==++=-+= ⎪ ⎪-+-+⎝⎭,()2222211D D a k x y k a k k a--==--+, 于是()22222222221,a k a D a k k a a k k a ⎛⎫-- ⎪ ⎪-+-+⎝⎭. 所以直线OD 的方程为()221a x y a k=--. 设圆AMBN 的方程为222:0C x y Dx Ey F ++++=,直线l直线MN 的方程为()232:(1)01a C x ky x y a k ⎛⎫--+= ⎪ ⎪-⎝⎭, 由于3C 经过12C C 、的交点,且123C C C 、、均为二次曲线,则存在常数12λλ、,使得()()2222212222(1)11a x y x ky x y x y Dx Ey F a b a k λλ⎛⎫⎛⎫--+=+-+++++ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 比较方程两边xy 系数知()2201a k a k -+=-,即2221a k a =-,由对称性不妨设k =.代入点D 的坐标得1,2D ⎛ ⎝⎭,又||8||3MN OD =,得点2,3M ⎛ ⎝⎭,而M 在1C 上,故222222123311a a a a ⎛⎫-⎛⎫- ⎪⎪ ⎪⎝⎭⎝⎭+=-,解得98a =, 于是1C 的离心率为223c e a ==. 25.(2021·全国·高三竞赛)已知如图椭圆221:14x C y +=的左右顶点为1A 、2A ,上下顶点为1B 、2B ,记四边形1122A B A B 的内切圆为2C .(1)求圆2C 的标准方程;(2)已知P 为椭圆1C 上任意一点,过点P 作圆2C 的切线分别交椭圆1C 于M 、N 两点,试求三角形PMN 面积的最小值.【答案】(1)2245x y +=;(2)85. 【解析】 【详解】(1)因为2A 、1B 分别为椭圆221:14x C y +=的右顶点和上顶点, 则2A ,1B 坐标分别为(2,0),(0,1),可得直线21A B 方程为:22x y +=, 则原点O 到直线21A B 的距离为2512d ==+,即圆2C 的半径5r d ==, 故圆2C 的标准方程为2245x y +=. (2)设直线PM 方程为1mx ny +=,由直线PM 与圆2C 相切,可知原点O 到直线PM 距离225d m n ==+2254m n +=,将直线PM 方程代入椭圆1C 可得222()4x y mx ny +=+, 整理即有()222448410y y n mn m x x ⎛⎫-++-= ⎪⎝⎭,则2212221241411544444y y m m x x n m --===--⎛⎫-- ⎪⎝⎭, 即1OP OM k k ⋅=-,故OP OM ⊥.同理OP ON ⊥,故M 、O 、N 三点共线,则2||||PMNOPMS SOP OM ==.设:OP y kx =代入椭圆方程可得22214x k x +=,则22414x k =+, 故()()222222241114k OP x y kxk+=+=+=+,同理()22222141414114k k OM k k ⎡⎤⎛⎫+-⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦==+⎛⎫+- ⎪⎝⎭,则 ()()22222211144544141k k OP OM k k +++=+=++, 则2251124||||OP OM OP OM =+≥,得8||||5OP OM ≥, 则85PMN S OP OM =≥△,当且仅当OP OM ==故三角形PMN 面积的最小值为85.26.(2021·全国·高三竞赛)已知椭圆22:11612x y C +=的右焦点为F .C 上两点A 、B 满足()1A B A B x x x x +=≠,且FA FB ⊥.求证:以AB 为直径的圆恒过异于点F 的一个定点.【答案】证明见解析 【解析】 【详解】设()(),,,A A B B A x y B x y ,由FA FB ⊥可得()()220A B B A x x y y --+=,结合1A B x x +=可得2A B A B x x y y +=-,而以AB 为直径的圆为:()()()()0A B A B x x x x y y y y --+--=,化简可得()2220A B x y x y y y +---+=,该圆过(1,0)-或(2,0)(舍).27.(2021·全国·高三竞赛)已知()()()111222333,,,A x y A x y A x y 、、是抛物线()220y px p =>上三个不同的动点,123A A A △有两边所在的直线与抛物线22(0)x qy q =>相切.证明:123A A A △的重心在定直线上. 【答案】证明见解析 【解析】 【详解】如图,不妨设边13A A 和23A A 所在直线与抛物线22(0)x qy q =>相切,切点分别为1T 和2T .那么切点弦12T T 所在直线方程为()33x x q y y =+.设切点1T 和2T 的坐标分别为211,2t t q ⎛⎫ ⎪⎝⎭和222,2t t q ⎛⎫ ⎪⎝⎭,则切线13A A 的斜率为1t q ,于是有31131y y t x x q -=-,即1312t py y q=+. 把切点1T 的坐标代入直线方程()33x x q y y =+中,可得213132t x t q y q ⎛⎫=+ ⎪⎝⎭,整理即22311322y t t q y p q ⎛⎫=+ ⎪⎝⎭, 再把1312t p y y q =+中的1t 代入该式,可得()223323131222y pqp q q y p y y y y ⎡⎤⋅=+⎢⎥++⎢⎥⎣⎦, 即()2233231312y p q y y y y y =+++,即()213231312y y p q y y y y -=++,可得()213132y y y y p q +=-. 同理,利用切点2T 可以推得()223232y y y y p q +=-.上面两式相减可得1230y y y ++=,所以123A A A △的重心的纵坐标恒为0,从而一定在x 轴(定直线)上.28.(2021·全国·高三竞赛)设椭圆22122:1(0)x y C a b a b +=>>,抛物线222:C x by b +=.(1)若2C 经过1C 的两个焦点,求1C 的离心率;(2)设5(0,),33,4A b Q b ⎛⎫ ⎪⎝⎭,又M 、N 为1C 与2C 不在y 轴上的两个交点,若AMN 的垂心为30,4B b ⎛⎫⎪⎝⎭,且QMN 的重心在2C 上,求椭圆1C 和抛物线2C 的方程.【答案】(1)22;(2)椭圆方程为2211643x y +=,抛物线方程为224x y +=.【解析】 【详解】(1)已知椭圆焦点(,0)c 在抛物线上,可得:22c b =,由22222a b c c =+=,有221222c e a =⇒=.(2)由题设可知M 、N 关于y 轴对称,设()11,M x y -,()()111,0N x y x >, 由AMN 的垂心为B ,有()21113004BM AN x y b y b ⎛⎫⋅=⇒-+--= ⎪⎝⎭.由点()11N x y ,在抛物线上,有2211x by b +=,解得14by =-或1y b =(舍去).故1,,,,44b b x M N ⎛⎫⎫=-- ⎪⎪⎝⎭⎝⎭,得QMN重心坐标4b ⎫⎪⎭.由QMN 的重心在抛物线上得:2234bb +=,所以112,,22b M N ⎛⎫⎫=-- ⎪⎪⎝⎭⎭,又因为M 、N 在椭圆上可得2163a =, 所以,椭圆方程为2211643x y +=,抛物线方程为224x y +=.29.(2020·浙江·高三竞赛)已知直线l 与椭圆C :22221(0)x y a b a b +=>>交于A 、B 两点,直线AB 不经过原点O .(1)求OAB 面积的最大值;(2)设M 为线段AB 的中点,延长OM 交椭圆C 于点P ,若四边形OAPB 为平行四边形,求四边形OAPB 的面积. 【答案】(1)2ab ;(2. 【解析】 【详解】解法一 当直线AB 的斜率不存在时,由对称性,设直线AB 方程为()0x n n a =<<,则y =122OABS n =⨯⨯=△2222122n n a a ab ab ⎛⎫+- ⎪⎝⎭≤=,当且仅当n =. 设直线l :()0y kx m m =+≠,()11,A x y ,()22,B x y ,联立方程22221x y a b y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得:()22222222220ba k x a kmx a m ab +++-=,判别式()()()()2222222222222222440a km b a k a m a b a b b a k m ∆=-+-=+->,则2222b a k m +>,于是AB ==原点O 到AB的距离d =1122OABS AB d ==△()()2222222222m b a k m ab ab ab b a k ++-=≤⋅=+, 当且仅当22222m b a k =+时取等号.(2)不妨设0k >,根据垂径定理得:22AB OM k k b a =-⋅,则OM 的方程为22b y x a k=-.将OM 的方程代入椭圆方程,消去y 得422222a k xb a k =+.注意O 、P 在直线AB 的两侧,所以M x =2222M M b b y x a k a k ⎛⎛⎫=-=- ⎪ ⎝⎭⎝.又点M 在直线ABk m ⎛=+ ⎝,化简得:22224b a k m +=,则22OAPB OAB S S ab ===△解法二 (1)设x x ay y b ⎧=⎪''⎪⎨⎪=⎪⎩,则221x y ''+=,OAB O A B S abS '''=△△.设原点O '到直线A B ''的距离为()()0,1d d ∈,则22122OAB O A B d d abS abS ab A B d ab '''-+''==⋅=≤=△△. (2)要四边形OAPB 为平行四边形,则四边形O A P B ''''为菱形,由(1)知12211sin1202O A B S S S ''''==⨯⨯⨯⨯︒=⇒=△.解法三 (1)设()cos ,sin A a b αα,()cos ,sin B a b ββ,则 ()1cos sin cos sin sin 222OAB ab abS a b a αββααβ=⋅-=-≤△, 当且仅当2k παβπ-=+,k Z ∈时取等号.(2)(cos cos ,sin sin )OP OA OB P a a b b αβαβ=+⇒++,则2222(cos cos )(sin sin )1a a b b a b αβαβ+++=,即22cos()1αβ+-=,移项整理得1cos()2αβ-=-,则()3sin 2αβ-=,故322OAPB OAB S S ab ==△. 30.(2021·全国·高三竞赛)如图,已知抛物线22(0)y px p =>焦点为F ,ABC 三边所在直线与抛物线分别相切,求证:ABC 外接圆过定点.【答案】证明见解析 【解析】 【详解】由对称性,及BC x ⊥轴,可猜测ABC 的外接圆过定点F .设()22,2P pt pt ,切点()2112,2M pt pt ,切点()2222,2N pt pt ,则2:22BC l t y x pt ⋅=+; 211:22AC l t y x pt ⋅=+;222:22AB l t y x pt ⋅=+.则()12122,A pt t pt pt +,()222,B ptt pt pt +,()112,C ptt pt pt +, 所以()()121222,4141CF BF t t t t k k t t tt ++==--,因此()()()()()2112212112212224141tan 2214114141BF CF BF CFt t t t t t k k tt t t CFB t t t t k k t t tt t t ++-----∠===+++⋅++--. 同时12121122tan tan 1114AC AB AB ACk k t t BAC CFB k k t t --∠===-∠+⋅+,所以180BAC BFC ∠+∠=︒,故ABC 外接圆过定点F .31.(2021·全国·高三竞赛)已知A 、B 是抛物线2:4C y x =上的两个动点,点A 在第一象限,点B 在第四象限,直线12l l 、分别过点A ,B 且与抛物线C 相切,P 为12l l 、的交点.设C 、D 为直线12l l 、与直线4x =的交点,求PCD 面积的最小值. 1283【解析】 【详解】设()22121212,,,044y y A y B y y y ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,则1l 方程为12121,2y x y l y =+方程为22212y x y y =+, 联立1l 、2l 方程可得点P 坐标为1212,42y y y y P +⎛⎫⎪⎝⎭,C 、D 的坐标分别为11814,2y y ⎛⎫+ ⎪⎝⎭、22814,2y y ⎛⎫+ ⎪⎝⎭,所以()()1212121212168181||222y y y y CD y y y y y y --⎛⎫⎛⎫=+-+=⎪ ⎪⎝⎭⎝⎭. 于是()()121212121614242PCDy y y y y y Sy y --=-⋅. 设21212(0),y y t t y y m =->-=,由()()2222121212440y y y y y y m t +=-+=-≥知2m t ≥, 当且仅当120y y +=时等号成立,所以()()()()222222222221616216161424216168PCDtmm t t t t t St t t t--⋅+⋅++=+⋅=≥=-.设()2216()8tf t t+=,则()()()()222222221621631616()88t t t t t t f t tt+⋅⋅-+-+=='.所以0t <<时,()0f t '<;t >()0f t '>, ()f t '在区间⎛ ⎝⎦上为减函数;在区间⎫+∞⎪⎪⎣⎭上为增函数.所以t =时,()f t所以当1212160,3y y y y +==-,即12y y ==PCD. 32.(2021·全国·高三竞赛)已知椭圆22223:1(0)x y C a a a+=>,点P 、Q 在椭圆C 上,满足在椭圆C 上存在一点R 到直线OP 、OQ 的距离均为12a ,证明:223a OP OQ ⋅≤.【答案】证明见解析 【解析】 【详解】设cos R a θθ⎛⎫⎪⎝⎭,1:0OP k x y -=,2:0OQ k x y -=, 则根据题意,1k 、2k 是关于k12a =的两个实根,该方程即222111cos sin 0434k k θθ⎛⎫-+-= ⎪⎝⎭, 于是2212221111sin sin 13434133cos sin 44k k θθθθ--⋅===---.OP OQ ⋅=2a =2a =2a =2a ≤223a =, 原命题得证.33.(2021·全国·高三竞赛)在平面直角坐标系xOy 中,已知抛物线2:4C y x =,焦点为F ,A 为抛物线C 上异于顶点的动点,D 为x 轴正半轴上的动点.设直线AF 、AD 分别交抛物线C 于M 、N (不同于点A ),设,AF FM AD DN λμ==.已知FA FD =,且43λμ+=,求直线MN 的方程.【答案】12(1)2y x +=--或12(1)2y x -=-.【解析】 【分析】 【详解】设()20000,,4A x y y x =,则(),M M M x y 满足()002114M M M M y y x x y x⎧=-⎪-⎨⎪=⎩, 消元得()200000411M M y y y y x x --=--, 由根与系数的关系得04M y y =-,2000044M y y y y y λ=-=-=⎛⎫- ⎪⎝⎭. 因为01DF AF x ==+,所以()02,0D x +.()00:22AD y l y x x =--+⎡⎤⎣⎦,则(),N N N x y 满足()002224N N N Ny y x x y x ⎧⎡⎤=--+⎪⎣⎦⎨⎪=⎩,得0024N x y y +=-⨯, 所以()200042N y y y x μ=-=+. 由43λμ+=,得()2200044423y y x +=+,即000423x x x +=+.解得083x =-(舍)或者01x =,所以02y =±.当001,2x y ==时,有(1,2),(9,6)M N --,则1:2(1)2MN l y x +=--.当001,2x y ==-时,有(1,2),(9,6)M N ,则1:2(1)2MN l y x -=-.综上,1:2(1)2MN l y x +=--或12(1)2y x -=-.34.(2021·全国·高三竞赛)已知圆Γ与抛物线2y x 交于A 、B 、C 、D 四个不同的点,且AC为圆Γ的直径,线段AC 和BD 的中点分别为M 、N ,求证:线段MN 在y 轴上的投影长度为定值.【答案】证明见解析. 【解析】 【分析】 【详解】设()()()()222211223344,,,,,,,A x x B x x C x x D x x ,则圆Γ的方程为:()()()()2213130x x x x y x y x --+--=.联立圆Γ和抛物线方程,消去y ,得()()()()222213130x x x x x x x x --+--=,即()()()()131310x x x x x x x x --+++=⎡⎤⎡⎤⎣⎦⎣⎦,从而2x 、4x 是方程()2131310x x x x x x ++++=的两根.由韦达定理知,()24132413,1x x x x x x x x +=-+=+.所以()()2222221313242413242212222x x x x x x x x x x x x +-+-++-=-=. 又22132x x +、22242x x +分别是点M 、N 的纵坐标,所以线段MN 在y 轴上的投影长度为定值1.(2021·全国·高三竞赛)已知(2,1)S 为椭圆22Γ:182x y +=上的点,对椭圆Γ上的任意两点P 、Q ,用如下办法定义它们的“和”P Q +:过点S 作一条平行于PQ (若点P 与Q 重合,则直线PQ 表示椭圆Γ在P 处的切线)的直线l 与椭圆Γ交于不同于S 的另一点,记作P Q +(若l与椭圆Γ相切,则规定S 为P Q +).并规定n nP P P P=+++个.35.若点(22,0),(0,2)P Q -,求P Q +、2P 以及100P 的坐标.36.在椭圆Γ上是否存在不同于S 的点P ,满足3P S =?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由.【答案】35.(2,1),2(2,1),100(0,2)P Q P P +---- 36.存在,311,322P ⎛⎫--- ⎪⎝⎭或311,322P ⎛⎫-+-- ⎪⎝⎭. 【解析】 【分析】(1)利用新定义数形结合直接求解P Q +、2P 以及100P 的坐标(2)利用参数方程假设存在,找出点P 、Q 对应的参数,求出P Q +对应的参数,以及2P ,3P 对应的参数,列方程直接求解.(1)根据新定义P Q +“和”的运算,画图如下:过S 做PQ 的平行线,因为12PQ OS k k ==,所以平行直线过原点,可知P+Q 的坐标与S 关于原点对称,所以(2,1)P Q +--过S 做P 处切线的平行线,可知2P 的坐标2(2,1)P -,以此类推100(0,2)P -(2) 存在.设(cos ,sin ),(cos ,sin ),(cos ,sin ),(cos ,sin )A a b B a b C a b D a b ααββγγθθ则sin sin sin sin //cos cos cos cos b b b b AB CD a a a a αβγθαβγθ--⇔=--2sin cos2sincos22222sin sin 2sin sin2222αβαβγθγθαβαβγθγθ-+-+⋅⋅⇔=-+-+⋅⋅ tantan(mod 2)22αβγθαβγθπ++⇔=⇔+≡+.而(2,1)S 对应的参数为4π,于是,若点P 、Q 对应的参数为αβ、,则P Q +对应的参数γ满足(mod 2)4πγαβπ≡+-.设(cos ,sin )P a b ϕϕ,且对应的参数为ϕ.则2P 对应的参数为2(mod 2),34P πϕπ-对应的参数为3(mod 2)2πϕπ-. 故23(mod 2)2443k ππππϕπϕ-≡⇒=+. 于是,3P 的坐标为2222cos ,2sin 4343k k ππππ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.从而,所求坐标为311,322P ⎛⎫--- ⎪⎝⎭或311,322P ⎛⎫-+-- ⎪⎝⎭.37.(2021·全国·高三竞赛)如图所示,()(),0P a b a b <<为抛物线2:4F y x =外一点,过P 引抛物线Γ的两条切线PA PB 、,切点分别为A 、B .在线段PA 上取两点D 、E ,使得PD AE =.若过D 、E 两点的直线12l l 、分别切抛物线Γ于M 、N 两点(异于A ).求四边形MNAB 面积的最大值.【解析】 【分析】 【详解】设()()()()11220000,,,,,,,A x y B x y M x y N x y '',则直线AP 的方程为()112y y x x =+, 直线BP 的方程为()222y y x x =+,故有121242y y a y y b ⎧=⎪⎪⎨+⎪=⎪⎩,同理可得1010,22E D y y y yy y '++==,又因为PD AE =,所以1E D y y b y +=+,即002y y b +'=, 故12121200424AB MN y y k k x x y y b y y '-=====-++, 因此//AB MN .直线AB 的方程为22by x a =+,直线MN 的方程为0000004y y y x y y y y '''=+++, 即0022y y by x '=+,故两平行线间的距离d ',||AB ===||MN =所以00|4|1(||||)24MNABy y a S d AB MN '-=⋅+=⋅, 其中0204a y y b ≤'≤,可令22004,b a A b y y X '-=-=,则:1(4MNAB S A X =-218=3183⎛≤ ⎝⎭= 当22001(4)9b y y b a '-=-时取到最大值.38.(2021·全国·高三竞赛)在平面直角坐标系xOy 中,椭圆T 的中心为原点O ,焦点在x(1,0)C -的直线l 与T 交于两点A 、B 满足2AC BC =.求AOB 面积的最大值以及取到最大值时T 的方程. 【答案】故ABCT 的方程为2235+=x y . 【解析】 【分析】 【详解】设2222:1(0)x y T a b a b +=>>,离心率e = 则222223,:3a b T x y a =+=. 显然,l 不与x 轴重合.若l 垂直于x 轴,则AC BC =,不满足题意.故可设:(1)l y k x =+,即:1y l x k =-,与T 联立得:22213y y a k ⎛⎫-+= ⎪⎝⎭,即22212310y y a k k ⎛⎫+-+-= ⎪⎝⎭. ①设()()1122,,,A x y B x y ,由韦达定理可得:1222221313kky y k k +==++, ② 2122113a y y k -⋅=+. ③ 若点C 在椭圆内部,则1y 、2y 异号,由2AC BC =知122y y =-,代入②知22231ky k -=+,故 12223132231AOBk SOC y y y k =⋅⋅-==+333121323k k kk=≤=+⋅.上式等号成立当且仅当13k k =,即33k =±,此时,2123,23y k y y =-==-. 上式代入③得2212221213a y y y k -⋅=-=+,即2221,536a a --==, 此时①的判别式()222414311246(15)0a k k ⎛⎫∆=-+-=-⨯⨯-> ⎪⎝⎭, ①有两实根,此时方程为2235+=x y .若点C 在椭圆外部,则1y 、2y 同号,由2AC BC =知122y y =, 代入②知()222331ky k =+,故()12221122331AOBk SOC y y y k =⋅⋅-==+ 11331821133||323||||||k k k k =≤=<⎛⎫+⋅⋅⎪⎝⎭.故ABC 面积的最大值为32,此时T 的方程为2235+=x y . 39.(2021·全国·高三竞赛)已知椭圆22:12+=x E y 的右焦点为(c,0)F ,上顶点为M ,圆222:()(0)F x c y r r -+=>,问:椭圆E 上是否存在两点P 、Q 使得圆F 内切于三角形MPQ 若存在,求出直线PQ 的方程;若不存在,请说明理由.【答案】存在,PQ 的方程为(26)6360x y ++-.【解析】 【分析】 【详解】假设这样的P 、Q 存在,且设()()1122,,,P x y Q x y ,由题意知(0,1),(1,0)M F ,所以直线()111:10MP y x x y x --+=.因为该直线与圆F 相切,则d r =r =,两边平方化简得()()2222111111x y r x y ⎡⎤+-=+-⎣⎦, 整理得()()()()22221111111210r x r y x y -+--+-=.因为()221121x y =-,消去1x 得()()()()()2222111112111210r y r y x y -⋅-+--+-=.因为11y ≠,两边同时除以11y -,得()()()()221111211120r y r y x -⋅++---=,整理得()()221121310x r y r -+-+-=, 即点P 在直线()()2221310x r y r -+-+-=上.同理,点Q 也在直线()()2221310x ry r -+-+-=上,因此直线PQ 的方程为()()2221310x r y r -+-+-=.又因为直线PQ 圆Fr=,解得r =因此直线PQ 存在且直线PQ的方程为(260x y ++-.40.(2021·全国·高三竞赛)设F 是椭圆22221(0)x y a b a b +=>>左焦点,过F 作两条相互垂直的直线,与椭圆的四个交点顺次记为A 、B 、C 、D ,设F 在四边形ABCD 的四条边上的射影分别为P 、Q 、R 、S ,求证:P 、Q 、R 、S 四点共圆. 【答案】证明见解析 【解析】 【分析】 【详解】实际上结论对一切非等轴双曲线的圆锥曲线都是成立的(对等轴双曲线则变为四点共线)为证明原结论,我们来说明F 在AB 上的射影P 在定圆上.以F 为原点重新建立平面直角坐标系,设椭圆的离心率为e ,焦准距为p ,不妨设A 在第一象限,AF 与x 轴正半轴夹角为锐角θ,B 在第二象限,于是:,1cos 1sin ep epAF BF e e θθ==-+,从而cos cos sin cos (,),(,)1cos 1cos 1sin 1sin ep ep ep ep A B e e e e θθθθθθθθ---++, 所以sin cos sin cos ,sin cos sin cos AB FP e k k eθθθθθθθθ-++==-+-+ 记FP 与x 轴的夹角为α,再记sin cos t θθ-=,则sin cos θθ+我们有cos αα==另一方面,FP ==,所以2()(22t e ep P e et +-++,不难验证它在圆22222()2e p x y e -+=-上.同理Q 、R 、S 均在此圆上,结论成立.41.(2021·全国·高三竞赛)设a 为正实数.在平面直角坐标系xOy 中,已知直线12:,:l y ax l y ax ==-,过点()2,0M -的直线l 分别与直线12l l 、交于点A B 、,其中点A 在第三象限,点B 在第二象限,点()2,0N .设直线AN 交2l 于点P ,直线BN 交1l 于点Q .若直线l PQ 、的斜率均存在,分别为12k k 、,判断12k k 是否为定值?若为定值.求出该定值;若不为定值,说明理由. 【答案】是,12k k 为定值13-. 【解析】 【分析】 【详解】由题意,直线l 的方程为1(2)y k x =+,其中1k a ≠±,联立方程1(2),,y k x y ax =+⎧⎨=⎩得11()2a k x k -=.解得112Ak x a k =-,则112A ak y a k =-.。
高中数学 第二章 平面解析几何初步 2.2.4 点到直线的距离课件 bb高一数学课件

第七页,共三十九页。
求点到直线的距离 求点 P(1,2)到下列直线的距离: (1)l1:y=x-3;(2)l2:y=-1;(3)y 轴.
12/11/2021
第八页,共三十九页。
【解】 (1)将直线方程化为一般式为 x-y-3=0, 由点到直线的距离公式,得 d1= |112-+2(--31|)2=2 2. (2)法一:直线方程化为一般式为 y+1=0, 由点到直线的距离公式,得 d2= |20+2+11| 2=3.
2 4
12/11/2021
第六页,共三十九页。
4.当点 P(x1,y1)在直线 Ax+By+C=0 上时,还适合点到直 线的距离公式吗?
解:适合.点 P 在直线 Ax+By+C=0 上,则距离 d=0,且 有 Ax1+By1+C=0, 所以 d=|Ax1+A2B+y1B+2 C|=0.
12/11/2021
12/11/2021
第十八页,共三十九页。
两平行线间距离的求法 (1)求两平行线间的距离可以转化为求点到直线的距离,也可 以应用公式. (2)应用两平行线间的距离公式 d= |CA2-2+CB1|2时,两直线方程必 须是一般形式,而且 x,y 的系数对应相等.
12/11/2021
第十九页,共三十九页。
12/11/2021
第二十七页,共三十九页。
2.求过点 P(1,2)且与原点距离最大的直线方程. 解:由题意知与 OP 垂直的直线到原点 O 的距离最大, 因为 kOP=2, 所以所求直线方程为 y-2=-12(x-1), 即 x+2y-5=0.
12/11/2021
第二十八页,共三十九页。
1.点到直线距离公式的推导用到了解析几何中的常用方法 “设而不求”,希望在今后学习中注意这种方法在解题中的 应用.公式只与直线方程中的系数有关,因而它适合任意直 线,在具体应用过程中,应将直线方程化为一般式,再套用 公式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年宁波市高中数学竞赛解析几何
一、赛事背景
2021年宁波市高中数学竞赛是宁波市教育局主办的一项重要的数学竞赛活动,旨在促进高中学生数学学科的学习和应用能力的提高,激发学生对数学的兴趣,选拔和培养数学人才。
其中,解析几何是竞赛中的一个重要组成部分,也是考察学生几何思维和分析解决问题能力的重要内容。
二、竞赛题型
解析几何作为竞赛科目的一部分,覆盖了较广泛的内容,包括点、直线、圆、三角形、四边形等几何图形的性质、定理和应用。
在竞赛中,解析几何题型通常包括如下几种类型:
1.定理证明。
通过已知的几何定理和性质,结合已知条件,推导出目标结论,或者证明目标定理。
2.应用问题。
通过几何知识,解决实际问题,如建筑测量、地图绘制、工程设计等。
3.三角形的性质和判定。
包括三角形的边长关系、角度关系、面积计算、全等、相似、共线等性质。
4.圆的性质和判定。
包括圆的圆心角、弦长关系、切线定理、圆幂定理等。
三、解题思路
解析几何作为数学竞赛中的一道难题,要求学生不仅要熟练掌握几
何学的基本概念和定理,还需要具备较强的逻辑推理能力和应用能力。
在解析几何的题目中,学生需要注意以下几点:
1.审题。
仔细阅读题目,理清题目要求和已知条件,找出关键信息。
2.图像。
根据题意,绘制几何图形,有时可以通过图像找到解题思路。
3.定理应用。
熟练掌握相关的几何定理和公式,灵活应用到解决问
题中。
4.逻辑推理。
善于运用逻辑推理,从已知条件出发,推导出未知结论。
5.反证法。
当直接证明困难时,可以尝试采用反证法进行推理。
四、解析几何典型题目
以下列举了一些典型的解析几何竞赛题目,供参赛选手练习和思考: 1.已知△ABC中,AB=AC,点D在BC边上,使得AD是△ABC的高,求证:AD=CD。
2.已知△ABC中,内角A=60°,AB=3cm,AC=2√3cm,求BC的长度。
3.已知点P到圆心的距离为5cm,点P到圆上任意一点的距离为
4cm,求圆的半径。
五、解题技巧
解析几何题目的解题技巧,主要包括以下几个方面:
1.巧用辅助线。
在解决几何问题时,可以尝试引入一些辅助线、辅助点,使得问题变得更加清晰,易于解决。
2.灵活运用相似三角形。
相似三角形是解决几何问题的常用技巧,可以通过相似三角形的性质来求解未知量。
3.应用轴对称性。
对称性是几何图形中常见的性质,利用轴对称性可以简化问题的求解过程。
4.变形和化简。
对于复杂的几何问题,可以尝试对问题进行变形和化简,使得问题变得更容易解决。
六、总结
解析几何作为高中数学竞赛中的重要内容,不仅要求学生熟练掌握几何知识和定理,还要求学生具备较强的逻辑推理能力和解决实际问题的能力。
在竞赛中,通过大量的练习和思考,相信学生们将能够更好地应对解析几何的挑战,取得优异的成绩。