解析几何-2009-2017全国高中数学联赛分类汇编
高考数学全国卷分类汇编(解析几何)

2010-2017新课标全国卷分类汇编(解读几何)1.(2017课标全国Ⅰ,理10)已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .10【答案】A【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性)cos AF P AF θ⋅+=∴同理1cos PAF θ=-,1cos P BF θ=+,∴22221cos sin P PAB θθ==-又DE 与AB 垂直,即DE 的倾斜角为π2θ+2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24y x =,即2P =.∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ21616sin 2θ=≥,当π4θ=取等号,即AB DE +最小值为16,故选A2.(2017课标全国Ⅰ,理15)已知双曲线2222:x y C a b-,(0a >,0b >)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,若60MAN ∠=︒,则C 的离心率为_______.【解析】如图,OA a =,AN AM b ==∵60MAN ∠=︒,∴AP =,OP =∴tan AP OP θ==又∵tan b aθ=b a =,解得223a b =∴e ==3.(2017课标全国Ⅰ,理20)(12分)已知椭圆C :22221x y a b+=()0a b >>,四点()111P ,,()201P ,,31P ⎛- ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P 又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点 将()23011P P ⎛- ⎝⎭,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b = ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,221121A A P A P B y y k k m m m----+=+==- 得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,联立22440y kx bx y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-=122814kb x x k -+=+,21224414b x x k -⋅=+,则22121211P A P By y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.∴直线l 的方程为21y kx k =--当2x =时,1y =-,所以l 过定点()21-,.4.(2017课标全国Ⅱ,理9)若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .332 【答案】A【解读】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d =,则点()2,0到直线0b x a y +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 【考点】 双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.(2017课标全国Ⅱ,理16)已知F 是抛物线x y C 8:2=的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则=FN . 【答案】6 【解读】试卷分析:如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解读式可得准线方程为2x =-,则2,4A N F F '==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,故336FN FM NM =+=+=.【考点】抛物线的定义、梯形中位线在解读几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.6.(2017课标全国Ⅱ,理20)(12分)设O 为坐标原点,动点M 在椭圆12:22=+y x C 上,过M 作x 轴的垂线,垂足为N ,点P 满足= (1)求点P 的轨迹方程; (2)设点Q 在直线3-=x 上,且1=⋅. 证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解:(1)设)(y x P ,,则)22(y x M ,,将点M 代入C 中得12222=+y x ,所以点P 的轨迹方程为222=+y x .(2)由题可知)01(,-F ,设)()3(n m P t Q ,,,-,则)1( )3(n m t ---=-=,,,, )3( )(n t m n m ---==,,,.由1=⋅得1322=-+--n tn m m ,由(1)有222=+n m ,则有033=-+tn m ,所以033 =-+=⋅tn m ,即过点P 且垂直于OQ 的直线l 过C 的左焦点F .7.(2017课标全国Ⅲ,理1)已知集合A={}22(,)1x y x y +=│,B={}(,)x y y x =│,则A ⋂B 中元素的个数为A .3B .2C .1D .0【答案】B【解读】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故AB 表示两直线与圆的交点,由图可知交点的个数为2,即AB 元素的个数为2,故选B.8.(2017课标全国Ⅲ,理5)已知双曲线C 22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为A. 221810x y -=B. 22145x y -=C. 22154x y -=D. 22143x y -=【答案】B【解读】∵双曲线的一条渐近线方程为y,则b a =① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,a b =C 的方程为22145x y -=,故选B. 9.(2017课标全国Ⅲ,理10)已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为D.13【答案】A【解读】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴d a ==又∵0,0a b >>,则上式可化简为223a b = ∵222b ac =-,可得()2223a a c=-,即2223c a =∴c e a == A10.(2017课标全国Ⅲ,理12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为() A .3B.D .2【答案】A【解读】由题意,画出右图.设BD 与C 切于点E ,连接CE . 以A 为原点,AD 为x 轴正半轴, AB 为y 轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =.∴BD = ∵BD 切C 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.()A O Dxy BP gCE12||||22||||||BCDBC CDSECBD BD⋅⋅⋅====△即C.∵P在C上.∴P点的轨迹方程为224(2)(1)5x y-+-=.设P点坐标00(,)x y,可以设出P点坐标满足的参数方程如下:21xyθθ⎧=⎪⎪⎨⎪=⎪⎩而00(,)AP x y=,(0,1)AB =,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB ADλμλμμλ=+=+=∴112xμθ==+,1yλθ==+.两式相加得:112)2sin()3λμθθθϕθϕ+=+++=++=++≤(其中sinϕcosϕ=)当且仅当π2π2kθϕ=+-,k∈Z时,λμ+取得最大值3.11.(2017课标全国Ⅲ,理20)(12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B 两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.解:(1)设()()11222A x,y,B x,y,l:x my=+由222x myy x=+⎧⎨=⎩可得212240则4y my,y y--==-又()22212121212==故=224y yy yx,x,x x=4因此OA 的斜率与OB 的斜率之积为1212-4==-14y y x x 所以OA ⊥OB故坐标原点O 在圆M 上.(2)由(1)可得()2121212+=2+=++4=24y y m,x x m y y m + 故圆心M 的坐标为()2+2,m m ,圆M 的半径r =由于圆M 过点P (4,-2),因此0AP BP =,故()()()()121244220x x y y --+++= 即()()121212124+2200x x x x y y y y -++++= 由(1)可得1212=-4,=4y y x x ,所以2210m m --=,解得11或2m m ==-.当m=1时,直线l 的方程为x-y-2=0,圆心M 的坐标为(3,1),圆M ,圆M 的方程为()()223110x y -+-=当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91,-42⎛⎫ ⎪⎝⎭,圆M 的半径为4,圆M 的方程为229185++4216x y ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭12.(2016课标全国Ⅰ,理5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A ))3,1(-(B ))3,1(-(C ))3,0((D ))3,0(【解读】:222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m =∴13n -<<,故选A .13.(2016课标全国Ⅰ,理10)以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于ED ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为|||M N MN y y =- (A )2 (B )4 (C )6 (D )8【解读】:以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0A x ,2pD ⎛- ⎝,点(0A x 在抛物线22y px =上,∴082px =……①;点2pD ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②;点(0A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =, 焦点到准线的距离为4p =.故选B .14.(2016课标全国Ⅰ,理20)(本小题满分12分)设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线两点,求四边形MPNQ【解读】:⑴圆A 整理为(x BE AC Q ∥,则C =∠EBD D ∴=∠∠,则EB ⑵221:143x yC +=;设:l x 联立1l C 与椭圆:24x x =⎧⎪⎨⎪⎩圆心A 到PQ 距离d ==F所以||PQ==,()2212111||||2234MPNQmS MN PQm+⎡∴=⋅=⋅==⎣+15.(2016课标全国Ⅱ,理4)圆2228130x y x y+--+=的圆心到直线10ax y+-=的距离为1,则a=()(A)43-(B)34-(C(D)216.(2016课标全国Ⅱ,理11)已知12,F F是双曲线2222:1x yEa b-=的左,右焦点,点M在E上,1MF与x轴垂直,211sin3MF F∠=,则E的离心率为()(A(B)32(C(D)217.(2016课标全国Ⅱ,理20)(本小题满分12分)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积;(Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ);(Ⅱ).【解读】试卷分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.试卷解读:(I )设,则由题意知,当时,的方程为,.由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为. 将代入得.解得或,所以.因此的面积.(II )由题意,,.将直线的方程代入得. 由得,故.由题设,直线的方程为,故同理可得,由得,即.当时上式不成立,因此.等价于,即.由此得,或,解得.因此的取值范围是.考点:椭圆的性质,直线与椭圆的位置关系.18.(2016课标全国Ⅲ,理11)已知O为坐标原点,F是椭圆C:22221(0)x ya ba b+=>>的左焦点,,A B分别为C的左,右顶点.P为C上一点,且PF x⊥轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()(A)13(B)12(C)23(D)34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba 或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .19.(2016课标全国Ⅲ,理16)已知直线l :30mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若AB =||CD =__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解读几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.20.(2016课标全国Ⅲ,理20)(本小题满分12分)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解读;(Ⅱ)21y x =-.试卷解读:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分(Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=,所以AR FQ . ......5分(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE ABk k =可得)1(12≠-=+x x yb a .而y ba =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解读几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.21.(2015课标全国Ⅰ,理5)已知00(,)M x y 是双曲线22:12x C y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是(A)((B)( (C)((D)( 答案:A解读:由条件知F1(-,0),F2(,0),=(--x0,-y0),=(-x0,-y0),-3<0.①又=1,=2+2.代入①得,∴-<y0<22.(2015课标全国Ⅰ,理14)一个圆经过椭圆221164x y+=的三个顶点,且圆心在x轴的正半轴上,则该圆的规范方程为答案:+y2=解读:由条件知圆经过椭圆的三个顶点分别为(4,0),(0,2),(0,-2),设圆心为(a,0)(a>0),所以=4-a,解得a=,故圆心为,此时半径r=4-,因此该圆的规范方程是+y2=23.(2015课标全国Ⅰ,理20)在直角坐标系xOy中,曲线2:4xC y=与直线:(0)l y kx a a=+>交于,M N两点。
第04讲+概率统计-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第04讲:概率统计
1、(2009一试8)某车站每天8
00~900∶∶,900~1000∶∶都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为
一旅客820∶【答案】27
【解析】旅客候车的分布列为
候车时间的数学期望为10305070902723361218
⨯+⨯+⨯+⨯+⨯=
2、(2010一试6)两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是 .
【答案】1217
3、(2012一试8)某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是.(用最简分数表示)
【答案】61243
【解析】用k P 表示第k 周用A 种密码的概率,则第k 周末用A 种密码的概率为。
第08讲+解析几何-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第08讲:解析几何
1、(2009一试2)已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为.
【答案】[]36,
【解析】设()9A a a -,
,则圆心M 到直线AC 的距离sin45d AM =︒,由直线AC 与圆M 相交,得
d .解得36a ≤≤.
2、(2009一试5)椭圆22
221x y a b
+=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为. 【答案】22
222a b a b
+ 【解析】设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭,. 由P ,Q 在椭圆上,有
222221
cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ②
①+②得222211
11a b OP OQ +=+.于是当OP OQ =OP OQ 达到最小值22
222a b a b +.
3、(2010一试3)双曲线12
2=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是.
【答案】9800
4、(2011一试7)直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,。
全国高中数学联赛分类汇编 专题 解析几何

1、(2000一试3)已知点A 为双曲线x 2-y 2=1的左顶点,点B 和点C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的面积是 ( ) (A)33 (B) 233 (C) 33 (D) 633、(2002一试2)若实数x, y 满足(x+5)2+(y12)2=142,则x 2+y 2的最小值为( )(A ) 2 (B) 1 (C) 3 (D) 2 【答案】B【解析】利用圆的知识结合数形结合分析解答,22x y +表示圆上的点(x,y )到原点的距离。
4、(2002一试4)直线134=+yx 椭圆191622=+y x 相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个【答案】B5、(2003一试2)设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是()A. B. C. D.【答案】B6、(2003一试3)过抛物线y2=8(x+2)的焦点F作倾斜角为60°的直线,若此直线与抛物线交于A、B两点,弦AB的中垂线与x轴交于点P,则线段PF的长等于()(A)163(B)83(C)1633 (D) 8 3【答案】A【解析】抛物线的焦点为原点(0,0),弦AB所在直线方程为y=3x,弦的中点在y=pk=43上,即AB中点为(43,43),中垂线方程为y=-33(x-43)+43,令y=0,得点P的坐标为163.∴PF=163.选A.7、(2004一试2)已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ≠∅,则b 的取值范围是 ( )A .[-62,62]B .(-62,62)C .(-233,233]D .[-233,233] 【答案】A【解析】点(0,b )在椭圆内或椭圆上,⇒2b 2≤3,⇒b ∈[-62,62].选A .8、(2005一试5)方程13cos 2cos 3sin 2sin 22=-+-y x 表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线 【答案】C9、(2007一试5)设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )【答案】A【解析】设圆O 1和圆O 2的半径分别是r 1、r 2,|O 1O 2|=2c ,则一般地,圆P 的圆心轨迹是焦点为O 1、O 2,且离心率分别是212r r c +和||221r r c -的圆锥曲线(当r 1=r 2时,O 1O 2的中垂线是轨迹的一部份,当c=0时,轨迹是两个同心圆)。
全国高中数学联赛分类汇编 专题 解析几何

1、(2000一试3)已知点A 为双曲线x 2-y 2=1的左顶点,点B 和点C 在双曲线的右分支上,△ABC 是等边三角形,则△ABC 的面积是 ( ) (A)33 (B) 233 (C) 33 (D) 633、(2002一试2)若实数x, y 满足(x+5)2+(y12)2=142,则x 2+y 2的最小值为( )(A ) 2 (B) 1 (C) 3 (D) 2 【答案】B【解析】利用圆的知识结合数形结合分析解答,22x y +表示圆上的点(x,y )到原点的距离。
4、(2002一试4)直线134=+yx 椭圆191622=+y x 相交于A ,B 两点,该圆上点P ,使得⊿PAB 面积等于3,这样的点P 共有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个【答案】B5、(2003一试2)设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab的图形是()A. B. C. D.【答案】B6、(2003一试3)过抛物线y2=8(x+2)的焦点F作倾斜角为60°的直线,若此直线与抛物线交于A、B两点,弦AB的中垂线与x轴交于点P,则线段PF的长等于()(A)163(B)83(C)1633 (D) 8 3【答案】A【解析】抛物线的焦点为原点(0,0),弦AB所在直线方程为y=3x,弦的中点在y=pk=43上,即AB中点为(43,43),中垂线方程为y=-33(x-43)+43,令y=0,得点P的坐标为163.∴PF=163.选A.7、(2004一试2)已知M={(x ,y )|x 2+2y 2=3},N={(x ,y )|y=mx+b }.若对于所有的m ∈R ,均有M ∩N ≠∅,则b 的取值范围是 ( )A .[-62,62]B .(-62,62)C .(-233,233]D .[-233,233] 【答案】A【解析】点(0,b )在椭圆内或椭圆上,⇒2b 2≤3,⇒b ∈[-62,62].选A .8、(2005一试5)方程13cos 2cos 3sin 2sin 22=-+-y x 表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线 【答案】C9、(2007一试5)设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )【答案】A【解析】设圆O 1和圆O 2的半径分别是r 1、r 2,|O 1O 2|=2c ,则一般地,圆P 的圆心轨迹是焦点为O 1、O 2,且离心率分别是212r r c +和||221r r c -的圆锥曲线(当r 1=r 2时,O 1O 2的中垂线是轨迹的一部份,当c=0时,轨迹是两个同心圆)。
2010-2017高考数学全国卷分类汇编(解析几何)

2010-2017新课标全国卷分类汇编(解析几何)1.(2017课标全国Ⅰ,理10)已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .10【答案】A 【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴 易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性)cos AF P AF θ⋅+=∴同理1cos P AF θ=-,1cos P BF θ=+,∴22221cos sin P PAB θθ==- 又DE 与AB 垂直,即DE 的倾斜角为π2θ+2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24y x =,即2P =. ∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ 21616sin 2θ=≥,当π4θ=取等号,即AB DE +最小值为16,故选A2.(2017课标全国Ⅰ,理15)已知双曲线2222:x y C a b-,(0a >,0b >)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,若60MAN ∠=︒,则C 的离心率为_______.【解析】如图,OA a =,AN AM b ==∵60MAN ∠=︒,∴AP =,OP =∴tan AP OP θ==又∵tan b aθ=b a =,解得223a b =∴e ==3.(2017课标全国Ⅰ,理20)(12分)已知椭圆C :22221x y a b+=()0a b >>,四点()111P ,,()201P ,,31P ⎛- ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P 又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点 将()23011P P ⎛- ⎝⎭,,代入椭圆方程得 222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b = ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,, 221121A A P A P B y y k k m m m----+=+==- 得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,联立22440y kx b x y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-= 122814kb x x k -+=+,21224414b x x k -⋅=+,则22121211P A P By y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.∴直线l 的方程为21y kx k =--当2x =时,1y =-,所以l 过定点()21-,.4.(2017课标全国Ⅱ,理9)若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .332 【答案】A【解析】由几何关系可得,双曲线()222210,0x y a b a b-=>>的渐近线方程为0bx ay ±=,圆心()2,0到渐近线距离为d =,则点()2,0到直线0b x a y +=的距离为2bd c=== 即2224()3c a c -=,整理可得224c a =,双曲线的离心率2e ===.故选A . 【考点】 双曲线的离心率;直线与圆的位置关系,点到直线的距离公式【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式ce a=;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).5.(2017课标全国Ⅱ,理16)已知F 是抛物线x y C 8:2=的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则=FN . 【答案】6 【解析】试题分析:如图所示,不妨设点M 位于第一象限,设抛物线的准线与x 轴交于点F',作MB l ⊥与点B ,NA l ⊥与点A ,由抛物线的解析式可得准线方程为2x =-,则2,4A N F F '==,在直角梯形ANFF'中,中位线'32AN FF BM +==,由抛物线的定义有:3MF MB ==,结合题意,有3MN MF ==,故336FN FM NM =+=+=.【考点】抛物线的定义、梯形中位线在解析几何中的应用.【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化.如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题.因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化.6.(2017课标全国Ⅱ,理20)(12分)设O 为坐标原点,动点M 在椭圆12:22=+y x C 上,过M 作x 轴的垂线,垂足为N ,点P 满足= (1)求点P 的轨迹方程; (2)设点Q 在直线3-=x 上,且1=⋅. 证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .解:(1)设)(y x P ,,则)22(y x M ,,将点M 代入C 中得12222=+y x ,所以点P 的轨迹方程为222=+y x .(2)由题可知)01(,-F ,设)()3(n m P t Q ,,,-,则)1( )3(n m PF t OQ ---=-=,,,, )3( )(n t m n m ---==,,,.由1=⋅得1322=-+--n tn m m ,由(1)有222=+n m ,则有033=-+tn m ,所以033 =-+=⋅tn m PF OQ ,即过点P 且垂直于OQ 的直线l 过C 的左焦点F .7.(2017课标全国Ⅲ,理1)已知集合A={}22(,)1x y x y +=│ ,B={}(,)x y y x =│,则A ⋂B 中元素的个数为A .3B .2C .1D .0【答案】B【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故AB 表示两直线与圆的交点,由图可知交点的个数为2,即AB 元素的个数为2,故选B.8.(2017课标全国Ⅲ,理5)已知双曲线C 22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y += 有公共焦点,则C 的方程为A. 221810x y -=B. 22145x y -=C. 22154x y -=D. 22143x y -=【答案】B【解析】∵双曲线的一条渐近线方程为y ,则b a =① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==②由①②解得2,a b =C 的方程为22145x y -=,故选B. 9.(2017课标全国Ⅲ,理10)已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为D.13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴d a ==又∵0,0a b >>,则上式可化简为223a b = ∵222b ac =-,可得()2223a a c=-,即2223c a =∴c e a == A10.(2017课标全国Ⅲ,理12)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为() A .3B.CD .2【答案】A【解析】由题意,画出右图.设BD 与C 切于点E ,连接CE . 以A 为原点,AD 为x 轴正半轴, AB 为y 轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =.∴BD = ∵BD 切C 于点E .∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.12||||22||||||BCD BC CD S EC BD BD ⋅⋅⋅====△即C. ∵P 在C 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=. 设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:0021x y θθ⎧=⎪⎪⎨⎪=⎪⎩而00(,)AP x y =,(0,1)AB =,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=∴0112x μθ==+,01y λθ==+. 两式相加得:112)2sin()3λμθθθϕθϕ+=+++=++=++≤(其中sin ϕcos ϕ=) 当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.()A O Dxy BP gCE11.(2017课标全国Ⅲ,理20)(12分)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆. (1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的方程. 解:(1)设()()11222A x ,y ,B x ,y ,l :x my =+由222x my y x=+⎧⎨=⎩可得212240则4y my ,y y --==- 又()22212121212==故=224y y y y x ,x ,x x =4因此OA 的斜率与OB 的斜率之积为1212-4==-14y y x x 所以OA ⊥OB故坐标原点O 在圆M 上.(2)由(1)可得()2121212+=2+=++4=24y y m,x x m y y m + 故圆心M 的坐标为()2+2,m m ,圆M 的半径r =由于圆M 过点P (4,-2),因此0AP BP =,故()()()()121244220x x y y --+++= 即()()121212124+2200x x x x y y y y -++++= 由(1)可得1212=-4,=4y y x x ,所以2210m m --=,解得11或2m m ==-.当m=1时,直线l 的方程为x-y-2=0,圆心M 的坐标为(3,1),圆M ,圆M 的方程为()()223110x y -+-=当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91,-42⎛⎫⎪⎝⎭,圆M 的半径为4,圆M 的方程为229185++4216x y ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭12.(2016课标全国Ⅰ,理5)已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A))3,1(-(B))3,1(-(C))3,0((D))3,0(【解析】:222213x ym n m n-=+-表示双曲线,则()()2230m n m n+->,∴223m n m-<<由双曲线性质知:()()222234c m n m n m=++-=,其中c是半焦距,∴焦距2224c m=⋅=,解得1m=∴13n-<<,故选A.13.(2016课标全国Ⅰ,理10)以抛物线C的顶点为圆心的圆交C于BA,两点,交C的准线于ED,两点,已知24=AB,52=DE,则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8【解析】:以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px=()0p>,设圆的方程为222x y r+=,如图:设(0A x,2pD⎛-⎝,点(0A x在抛物线22y px=上,∴82px=……①;点2pD⎛-⎝在圆222x y r+=上,∴2252pr⎛⎫+=⎪⎝⎭……②;点(0A x在圆222x y r+=上,∴228x r+=……③;联立①②③解得:4p=,焦点到准线的距离为4p=.故选B.14.(2016课标全国Ⅰ,理20)(本小题满分12分)设圆015222=-++xyx的圆心为A,直线l过点)0,1(B且与x轴不重合,l交圆A于DC,两点,过B作AC的平行线交AD于点E.(Ⅰ)证明EBEA+为定值,并写出点E的轨迹方程;(Ⅱ)设点E的轨迹为曲线1C,直线于QP,两点,求四边形MPNQ【解析】:⑴圆A整理为()221x y++=BE ACQ∥,则C EBD=∠∠,由ACEBD D∴=∠∠,则EB ED=,AE∴+F||MN =⑵ 221:43x y C +联立l 与椭圆圆心A 到所以||PQ =()2212111||||2234MPNQm S MN PQ m +⎡∴=⋅=⋅==⎣+15.(2016课标全国Ⅱ,理4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a=( )(A )43-(B )34-(C (D )216.(2016课标全国Ⅱ,理11)已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x轴垂直,211sin 3MF F ∠=,则E 的离心率为( ) (A (B )32(C (D )217.(2016课标全国Ⅱ,理20)(本小题满分12分)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积;(Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.试题解析:(I )设,则由题意知,当时,的方程为,.由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为. 将代入得.解得或,所以.因此的面积.(II )由题意,,.将直线的方程代入得. 由得,故.由题设,直线的方程为,故同理可得,由得,即.当时上式不成立,因此.等价于,即.由此得,或,解得.因此的取值范围是.考点:椭圆的性质,直线与椭圆的位置关系.18.(2016课标全国Ⅲ,理11)已知O为坐标原点,F是椭圆C:22221(0)x ya ba b+=>>的左焦点,,A B分别为C的左,右顶点.P为C上一点,且PF x⊥轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()(A)13(B)12(C)23(D)34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba 或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .19.(2016课标全国Ⅲ,理16)已知直线l :30mx y m ++=错误!未找到引用源。
第07讲 解三角形20092017全国高中数学联赛分类汇编

I T QPNMC BA ABC MN PTI I 2I 1ABCMNPQT I 2009-2017全国高中数学联赛分类汇编第07讲:解三角形1、(2012一试2)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且满足3cos cos 5a B b A c -=,则tan tan AB的值是. 【答案】42、(2013一试3)在ABC ∆中,已知sin 10sin sin A B C =,cos 10cos cos A B C =,则tan A 的值为. 【答案】11.【解析】由于()()sin cos 10sin sin cos cos 10cos 10cos A A B C B C B C A -=-=-+=,所以sin 11cos A A =,故tan 11A =.3、(2014一试7)设等边三角形ABC 的内切圆半径为2,圆心为I .若点P 满足1=PI ,则ABC ∆与APC ∆的面积之比的最大值为__________. 【答案】3+52【解析】1PI P I =由知点在以为圆心的单位圆k 上.4、(2009二试1)如图,M ,N 分别为锐角三角形ABC ∆(A B ∠<∠)的外接圆Γ上弧BC ⌒ 、AC ⌒的中点.过点C 作PC MN ∥交圆Γ于P 点,I 为ABC ∆的内心,连接PI 并延长交圆Γ于T .⑴求证:MP MT NP NT ⋅=⋅;⑵在弧AB ⌒(不含点C )上任取一点Q (Q A ≠,T ,B ),记AQC ∆,QCB △的内心分别为1I ,2I , 求证:Q ,1I ,2I ,T 四点共圆.【解析】⑴连NI ,MI .由于PC MN ∥,P ,C ,M ,N 共圆, 于是NP MI =,PM NI =.故四边形MPNI 为平行四边形.因此PMT PNT S S =△△(同底,等高).又P ,N ,T ,M 四点共圆,故180TNP PMT ∠+∠=︒,由三角形面积公式 于是PM MT PN NT ⋅=⋅.⑵因为1111NCI NCA ACI NQC QCI CI N ∠=∠+∠=∠+∠=∠, 所以1NC NI =,同理2MC MI =.由MP MT NP NT ⋅=⋅得NT MTMP NP=. 由⑴所证MP NC =,NP MC =,故12NT MTNI MI =. 又因12I NT QNT QMT I MT ∠=∠=∠=∠,有12I NT I MT ∆∆∽. 故12NTI MTI ∠=∠,从而1212I QI NQM NTM I TI ∠=∠=∠=∠.因此Q ,1I ,2I ,T 四点共圆.学/科网5、(2010二试1)如图,锐角三角形ABC 的外心为O ,K 是边BC 上一点(不是边BC 的中点),D 是线段AK 延长线上一点,直线BD 与AC 交于点N ,直线CD 与AB 交于点M .求证:若OK ⊥MN ,则A ,B ,D ,C 四点共圆.同理()()22222QK QO r KO r =-+-, 所以2222PO PK QO QK -=-,故OK ⊥PQ .由题设,OK ⊥MN ,所以PQ ∥MN ,于是AQ APQN PM=.① 由梅内劳斯(Menelaus )定理,得1NB DE AQBD EA QN⋅⋅=,② 1MC DE APCD EA PM⋅⋅=.③ 由①,②,③可得NB MC BD CD =,所以ND MDBD DC=,故△DMN ∽△DCB ,于是DMN DCB ∠=∠,所以BC ∥MN ,故OK ⊥BC ,即K 为BC 的中点,矛盾!从而,,,A B D C 四点共圆. 注1:“2PK =P 的幂(关于⊙O )+K 的幂(关于⊙O )”的证明:延长PK 至点F ,使得PK KF AK KE ⋅=⋅,④则P ,E ,F ,A 四点共圆,故PFE PAE BCE ∠=∠=∠,从而E ,C ,F ,K 四点共圆,于是PK PF PE PC ⋅=⋅,⑤⑤-④,得2PK PE PC AK KE =⋅-⋅=P 的幂(关于⊙O )+K 的幂(关于⊙O ).注2:若点E 在线段AD 的延长线上,完全类似.6、(2011二试1)如图,QP,分别是圆内接四边形ABCD的对角线BDAC,的中点.若DPABPA∠=∠,证明:CQBAQB∠=∠.从而有BQACBDACBDACCDAB⋅=⋅=⋅=⋅)21(21,即CDBQACAB=.又ACDABQ∠=∠,所以△ABQ∽△ACD,所以DACQAB∠=∠.延长线段AQ与圆交于另一点F,则DAFCAB∠=∠,故⋂⋂=DFBC.又因为Q为BD的中点,所以DQFCQB∠=∠.又DQFAQB∠=∠,所以CQBAQB∠=∠.7、(2012二试1)如图,在锐角ABC∆中,,,AB AC M N>是BC边上不同的两点,使得.BAM CAN∠=∠设ABC∆和AMN∆的外心分别为12,O O,求证:12,,O O A三点共线.【解析】证明:如图.连接12,AO AO,过A点作1AO的垂线AP交BC的延长线于点P,则AP是1O的切线.因此B PAC∠=∠, 因为,BAM CAN∠=∠所以AMP B BAM PAC CAN PAN∠=∠+∠=∠+∠=∠因而AP是AMN的外接圆2O的切线, 故2.AP AO⊥所以12,,O O A三点共线.8、(2013二试1)(本题满分40分)如图,AB是圆ω的一条弦,P为弧AB内一点,E、F为线段AB上两点,满足AE EF FB==.连接PE PF、并延长,与圆ω分别相交于点C D、.求证:【证明】连接AD,BC,CF,DE.由于AE=EF=FB,从而sin=2sinBC BCE B CP BEAC ACE A CP AE⋅∠==⋅∠点到直线的距离点到直线的距离. ○1同样sin=2sinAD ADF A PD AFBD BDF B PD BF⋅∠==⋅∠点到直线的距离点到直线的距离. ○2另一方面,由于BCE BCP BDP BDF∠=∠=∠=∠,AB CACE ACP ADP ADF ∠=∠=∠=∠,故将○1,○,2两式相乘可得4BC ADAC BD⋅=⋅,即由托勒密定理故由○3,○4得3AB CD AC BD ⋅=⋅, 即EF CD AC BD ⋅=⋅.学科&网9、(2014二试2)(本题满分40分)如图,在锐角三角形ABC 中,∠BAC ≠60°,过点B,C 分别作三角形ABC 的外接圆的切线BD,CE,且满足BD=CE=BC,直线DE 与AB ,AC 的延长线分别交于点F,G ,设CF 与BD 交于点M,CE 与BG 交于点N ,证明:AM=AN.10、(2015二试3)(本题满分50分)如图,ABC ∆内接于圆,O P 为BC 上一点,点K 在线段AP 上,使得BK 平分ABC ∠,过,,K P C 三点的圆Ω与边AC 交于点D ,连结BD 交圆Ω于点E ,连结PE 并延长与边AB 交于点F ,证明:2ABC FCB ∠=∠11、(2016一试9)(本题满分16分)在ABC ∆中,已知CB CA BC BA AC AB •=•+•32.求C sin 的最大值.【解析】由数量积的定义及余弦定理知,2cos 222a c b A cb AC AB -+==•.同理得,2222b c a BC BA -+=•,2222c b a CB CA -+=•.故已知条件化为即22232c b a =+. 等号成立当且仅当5:6:3::=c b a .因此C sin 的最大值是37. 12、(2016二试2)(本题满分40分)如图所示,在△ABC 中,X,Y 是直线BC 上两点(X,B,C,Y 顺次排列),使得BX·AC=CY·AB. 设△ACX ,△ABY 的外心分别为12,O O ,直线12O O 与AB,AC 分别交于点U 、V.证明:△AUV 是等腰三角形.【证明】作∠BAC 的内角平分线交BC 于点P,设△ACX 和△ABY 的外接圆分别为1w 和2w ,由内角平分线的性质知,BP AB CP AC =,由条件可得BX ABCY AC=,从而 即CP·PX=BP·PY .故P 对圆1w 和2w 的幂相等,所以P 在1w 和2w 的根轴上.于是AP ⊥12O O ,这表明点U 、V 关于直线AP 对称,从而△AUV 是等腰三角形.13、(2017二试1)(本题满分40分)如图,在ABC ∆中,AB AC =,I 为ABC ∆的内心,以A 为圆心,AB 为半径作圆1T ,以I 为圆心,IB 为半径作圆2T ,过点B I 、的圆3T 与1T ,2T 分别交于点,P Q (不同于点B ),设IP 与BQ 交于点R .证明:BR CR ⊥. 证明:连接,,,,.IB IC IQ PB PC。
新课标全国卷:2010-2017高考数学理科(解析几何)试题汇编

新课标全国卷:2021-2021高考数学理科(解析几何)试题汇编LtD2021-2021新课标全国卷分类汇编〔解析几何〕4、〔2021•新课标Ⅰ卷〕F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C 交于A、B两点,直线l2与C交于D、E两点,那么|AB|+|DE|的最小值为〔〕A、16B、14C、12D、105、〔2021•新课标Ⅱ〕假设双曲线C:﹣=1〔a>0,b>0〕的一条渐近线被圆〔x﹣2〕2+y2=4所截得的弦长为2,那么C的离心率为〔〕A、2B、C、D、2、〔2021•新课标Ⅲ〕双曲线C:﹣=1 〔a>0,b>0〕的一条渐近线方程为y= x,且与椭圆+ =1有公共焦点,那么C的方程为〔〕A、﹣=1B、﹣=1C、﹣=1D、﹣=16、〔2021•新课标Ⅲ〕椭圆C:=1〔a>b>0〕的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,那么C的离心率为〔〕A、B、C、D、10、〔2021•新课标Ⅰ卷〕双曲线C:﹣=1〔a>0,b>0〕的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.假设∠MAN=60°,那么C的离心率为________ .11、〔2021•新课标Ⅱ〕F 是抛物线C :y 2=8x 的焦点,M是C 上一点,FM 的延长线交y 轴于点N .假设M 为FN 的中点,那么|FN|=________.19、〔2021•新课标Ⅰ卷〕椭圆C : + =1〔a >b >0〕,四点P 1〔1,1〕,P 2〔0,1〕,P 3〔﹣1, 〕,P 4〔1,〕中恰有三点在椭圆C 上.〔12分〕 (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.假设直线P 2A 与直线P 2B 的斜率的和为﹣1,证明:l 过定点.15、〔2021•新课标Ⅱ〕设O 为坐标原点,动点M 在椭圆C : +y 2=1上,过M 做x 轴的垂线,垂足为N ,点P满足 = .〔Ⅰ〕求点P 的轨迹方程;〔Ⅱ〕设点Q 在直线x=﹣3上,且 • =1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .20、〔2021•新课标Ⅲ〕抛物线C :y 2=2x ,过点〔2,0〕的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.〔Ⅰ〕证明:坐标原点O 在圆M 上;〔Ⅱ〕设圆M 过点P 〔4,﹣2〕,求直线l 与圆M 的方程.2021新课标1卷〔5〕方程132222=--+n m y n m x 错误!未指定书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009-2017全国高中数学联赛分类汇编第08讲:解析几何1、(2009一试2)已知直线:90L x y +-=和圆22:228810M x y x y +---=,点A 在直线L 上,B ,C 为圆M 上两点,在ABC ∆中,45BAC ∠=︒,AB 过圆心M ,则点A 横坐标范围为. 【答案】[]36,【解析】设()9A a a -,,则圆心M 到直线AC 的距离sin 45d AM =︒,由直线AC 与圆M 相交,得d 36a ≤≤.2、(2009一试5)椭圆22221x y a b+=()0a b >>上任意两点P ,Q ,若OP OQ ⊥,则乘积OP OQ ⋅的最小值为.【答案】22222a b a b+【解析】设()cos sin P OP OP θθ,,ππcos sin 22Q OQ OQ θθ⎛⎫⎛⎫⎛⎫±± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,.由P ,Q 在椭圆上,有222221cos sin a b OP θθ=+ ① 222221sin cos a b OQ θθ=+ ②①+②得22221111a b OP OQ+=+.于是当OP OQ =OP OQ 达到最小值22222a b a b +.3、(2010一试3)双曲线122=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是. 【答案】98004、(2011一试7)直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为. 【答案】)2,1(-或)6,9(-即0)(24)(21212212214=⋅++-+⋅++-y y t y y t x x t x x t ,即03161424=---t t t ,即0)14)(34(22=--++t t t t .显然0142≠--t t ,否则01222=-⋅-t t ,则点C 在直线012=--y x 上,从而点C 与点A 或点B 重合.所以0342=++t t ,解得3,121-=-=t t .故所求点C 的坐标为)2,1(-或)6,9(-.5、(2012一试4)抛物线22(0)y px p =>的焦点为F ,准线为l,,A B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB的中点M 在l上的投影为N ,则||||MN AB 的最大值是. 【答案】1【解析】由抛物线的定义及梯形的中位线定理得.2AF BFMN +=在AFB ∆中,由余弦定理得2222cos3AB AF BF AF BF π=+-⋅2()3AF BF AF BF =+-⋅22()3()2AF BF AF BF +≥+-22().2AF BF MN +== 当且仅当AF BF =时等号成立.故MN AB的最大值为1.6、(2013一试2)在平面直角坐标系xOy 中,点A B 、在抛物线24y x =上,满足4OA OB ⋅=-,F 是抛物 线的焦点.则OFA OFB S s ∆∆⋅=. 【答案】2.【解析】点F 坐标为()1,0.设()11,A x y ,()22,B x y ,则2114y x =,2224y x =,故()2121212121416OA OB x x y y y y y y -=⋅=+=+,即()21218016y y +=,故128y y =-.212121112224OFA OFB S S OF y OF y OF y y ∆∆⎛⎫⎛⎫⋅=⋅⋅⋅=⋅⋅= ⎪ ⎪⎝⎭⎝⎭.7、(2013一试7)若实数,x y 满足x -x 的取值范围是. 【答案】{}[]04,20.如图所示,在aOb 平面内,点(),a b 的轨迹是以()1,2为圆心,,0a b ≥的部分,即点O 与弧ACB 的并集.因此{}02,25⎡⎤⎣⎦,从而{}[]2204,20x a b =+∈.学%科网8、(2014一试6)设椭圆Γ的两个焦点是21,F F ,过点1F 的直线与Γ交于点Q P ,,若||||212F F PF =,且||4||311QF PF =,则椭圆Γ的短轴与长轴的比值为__________.【解析】11||4,||3,PF QF ==记椭圆T 的长轴,短轴的长度分别为2a,2b,焦距为212||||2,F F c ==2c,则PF 且由椭圆的定义知,12122||||||||2 4.a QF QF PF c =+=+=+PF 2121||||||||2 1.QF PF QF c =+-=+于是PF11||2||5H PF F H QH ==设为线段的中点,则,,21.F H PF ⊥且有由勾股定理知,2222222121||-||||||||QF QH F H F F F H ==-222221)5(2)2,5,7c c c a +-=-==即(解得b T =因此椭圆的短轴与长轴的比值为b a =9、(2016一试7)双曲线C 的方程为1322=-y x ,左、右焦点分别为1F 、2F ,过点2F 作直线与双曲线C 的右半支交于点P ,Q ,使得PQ F 1∠=90°,则PQ F 1∆的内切圆半径是 . 【答案】17- 【解析】10、(2017一试3)在平面直角坐标系xoy 中,椭圆C 的方程为221910x y +=,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为.【答案】2【解析】易知(3,0),F(0,1).P 3cos ),[0,],2A πθθθ∈设的坐标是(则113313cos sin )).2222=OAPF OAF OFP S S S OAPF θθθθθϕϕθ∆∆=+=⋅+⋅⋅=+=+=其中当11、(2009一试9)设直线:l y kx m =+(其中k ,m 为整数)与椭圆2211612x y +=交于不同两点A ,B ,与双曲线221412x y -=交于不同两点C ,D ,问是否存在直线l ,使得向量0AC BD +=,若存在,指出这样的直线有多少条?若不存在,请说明理由.【解析】由2211612y kx m x y =+⎧⎪⎨+=⎪⎩消去y 化简整理得()2223484480k x kmx m +++-=设()11A x y ,,()22B x y ,,则122834kmx x k+=-+ ()()()222184344480km k m ∆=-+-> ①由221412y kx m x y =+⎧⎪⎨-=⎪⎩消去y 化简整理得()22232120k x kmx m ----=设()34C x y ,,()44D x y ,,则34223kmx x k +=- ()()()2222243120km k m ∆=-+-+> ②因为0AC BD +=,所以()()42310x x x x -+-=,此时()()42310y y y y -+-=. 由1234x x x x +=+得2282343km kmk k-=+-. 所以20km =或2241343k k-=+-.由上式解得0k =或0m =.当0k =时,由①和②得m -<.因m 是整数,所以m 的值为3-,2-,1-,0,1,2,3.当0m =,由①和②得k <k 是整数,所以1k =-,0,1.于是满足条件的直线共有9条.12、(2010一试10)已知抛物线x y 62=上的两个动点1122(,)(,)A x y B x y 和,其中21x x ≠且421=+x x .线段AB 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值. 【解析】解法一:设线段AB 的中点为),(00y x M ,则 2,22210210y y y x x x +==+=, 01221221212123666y y y y y y y x x y y k AB =+=--=--=.线段AB 的垂直平分线的方程是)2(30--=-x y y y . (1)依题意,21,y y 是方程(3)的两个实根,且21y y ≠,所以22200044(212)4480y y y ∆=--=-+>,32320<<-y .AB=]4))[(91(2122120yyyyy-++=))122(44)(91(2220--+=yyy)12)(9(3222yy-+= .定点)0,5(C到线段AB的距离2229)0()25(yyCMh+=-+-==.2229)12)(9(3121yyyhABSABC+⋅-+=⋅=∆)9)(224)(9(2131222yyy+-+=32220)392249(2131yyy++-++≤7314= .当且仅当222249yy-=+,即y=A B或66((33A B-时等号成立.所以,ABC∆面积的最大值为7314.2222122112))656665(21(tt tt ttSABC--+=∆221221)5()(23+-=t ttt)5)(5)(24(23212121++-=t tt tt t3)314(23≤,所以7314≤∆ABC S , 当且仅当5)(21221+=-t t t t 且42221=+t t ,即 ,6571-=t 6572+-=t,66((33A B +或A B -时等号成立.所以,ABC ∆面积的最大值是7314.13、(2011一试11)作斜率为31的直线l 与椭圆C :143622=+y x 交于B A ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积. 【解析】(1)设直线l :m x y +=31,),(),,(2211y x B y x A . 将m x y +=31代入143622=+y x 中,化简整理得03696222=-++m mx x .上式中,分子)23)(231()23)(231(1221--++--+=x m x x m x)2(26))(22(322121--+-+=m x x m x x )2(26)3)(22(2369322----+-⋅=m m m m 0122626312322=+-+--=m m m m ,从而,0=+P B P A k k .又P 在直线l 的左上方,因此,APB ∠的角平分线是平行于y 轴的直线,所以△PAB 的内切圆的圆心在直线23=x 上.(2)若︒=∠60APB 时,结合(1)的结论可知3,3-==P B P A k k .直线PA 的方程为:)23(32-=-x y ,代入143622=+y x 中,消去y 得0)3313(18)331(69142=-+-+x x .它的两根分别是1x 和23,所以14)3313(18231-=⋅x ,即14)3313(231-=x .所以7)133(23|23|)3(1||12+=-⋅+=x PA .同理可求得7)133(23||-=PB .1||||sin 60211)1)277249PAB S PA PB ∆=⋅⋅⋅︒=⋅⋅⋅=所以.14、(2012一试11)如图5,在平面直角坐标系XOY 中,菱形ABCD 的边长为4,且6OB OD ==.(1)求证:||||OA OC ⋅为定值;(2)当点A 在半圆22(2)4x y -+=(24x ≤≤)上运动时,求点C 的轨迹.(2)设(,),(22cos ,2sin ),C x y A αα+其中(),22XMA ππαα=∠-≤≤则2XOC α∠=. 因为2222(22cos )(2sin )8(1cos )16cos,2OA αααα=++=+=所以4cos2OA α=由(1)的结论得cos5,2OC α=所以cos5.2x OC α==从而sin5tan[5,5].22y OC αα==∈-故点C 的轨迹是一条线段,其两个端点的坐标分别为(5,5),(5,5)A B - 学科/网15、(2013一试11)(本题满分20分)在平面直角坐标系xOy 中,椭圆的方程为()222210x y a b a b+=>>,12A A 、分别为椭圆的左、右顶点,12F F 、分别为椭圆的左、右焦点,P 为椭圆上不同于1A 和2A 的任意一点.若平面中两个点Q R 、满足11QA PA ⊥,22QA PA ⊥,11RF PF ⊥,22RF PF ⊥,试确定线段QR 的长度与b 的大小关系,并给出证明.【解析】令c ,则()1,0A a -,()2,0A a ,()1,0F c -,()2,0F c .设()00,P x y ,()11,Q x y ,()22,R x y ,其中2200221x y a b+=,00y ≠.由11QA PA ⊥,22QA PA ⊥可知()()1110100AQ A P x a x a y y ⋅=+++=,○1 ()()2210100A Q A P x a x a y y ⋅=--+=○2根据11RF PF ⊥,22RF PF ⊥,同理可得22000,x c R x y ⎛⎫-- ⎪⎝⎭.因此2222200000x a x c b QR y y y --=-=, 由于(]00,y b ∈,故QR b ≥(其中等号成立的充分必要条件是0y b =,即点P 为()0,b ±).16、(2014一试9)(本题满分16分)平面直角坐标系xOy 中,P 是不在x 轴上一个动点,满足条件:过P 可作抛物线x y 42=的两条切线,两切点连线P l 与PO 垂直.设直线P l 与PO ,x 轴的交点分别为R Q ,, (1)证明:R 是一个顶点. (2)求||||QR PQ 的最小值. 【解析】(1)设P 点的坐标为(a,b)(0)b ≠,易知0a ≠,记两切点A B ,的坐标为1122,),,),x y x y ((则PA PB ,的方程分别为11222()12()2yy x x yy x x =+=+()()而点P 的坐标为(a,b)同时满足(1)(2),故A ,B 的坐标均满足方程by=2(x+a)(3),故(3)就是直线AB 的方程. 直线PO 与AB 的斜率分别为22=-1,a=-2b b PO AB a b a b⊥与,由知,故 从而(3)即为2y=(2),x b-故AB 与x 轴的交点R 是定点(2,0).(2)因为a=-2,故直线PO 的斜率12.24b b PR k =-=-k ,直线的斜率设=OPR α∠,则α为锐角,且212121()()1||1824||||||tan 2||2||24b bk k PQ b b b QR k k b b α+--++====≥=--+||||PQ b QR =±当时,的最小值为17、(2015一试11)(本题满分20分)在平面直角坐标系xOy 中,12,F F 分别是椭圆2212x y +=的左,右焦点,设不经过焦点1F 的直线l 与椭圆C 交于两个不同的点,A B ,焦点2F 到直线l 的距离为d .如果直线11,,AF l BF 的斜率成等差数列,求d 的取值范围.由于点A 、B 不重合,且直线l 的斜率存在,故12,x x 是方程(1)的两个不同实根,因此有(1)的判别式 22222=4)4(21)(22)8(21)0km k m k m ∆-+-=+->(, 即2221.(2)k m +>由直线11AF l BF 、、的斜率121211y yk x x ++、、依次成等差数列, 12112212+2,,11y yk y kx m y kx m x x ==+=+++又,所以 122112)(1))(1)2(1)(1).kx m x kx m x k x x +++++=++((化简并整理得12)(2)0m k x x -++=(假如m k =,则直线L 的方程为y=kx+k,即l 经过点11,0F (-),不符合条件. 因此必有122=0x x ++,故由方程(1)及韦达定理知,12241()2,.(3)212km x x m k k k=-+==++即由22212321=2k m k k +>+()、()知,()化简得2214k k >,这等价于||2k >反之当m,k 满足(3及)||k >l 必不经过点1F (否则将导致,m k =与(3)矛盾),注意到||k >,令t =(1t ∈上式可改写为21313()().(4)222t t t t ⋅+=⋅+d=考虑到函数13()()2f t t t=⋅+在[1上单调递减,故由(4)得(1),f d f <<即d ∈ 18、(2016一试11)(本题满分20分)如图所示,在平面直角坐标系xOy 中,F 是x 轴正半轴上的一个动点.以F 为焦点,O 为顶点作抛物线C .设P 是第一象限内C 上的一点,Q 是x 轴负半轴上一点,使得PQ 为C 的切线,且|PQ |=2.圆21,C C 均与直线OP 相切于点P ,且均与轴相切.求点F 的坐标,使圆1C 与2C 的面积之和取到最小值.【解析】设抛物线C 的方程是)0(22>=p px y ,点Q 的坐标为)0)(0,(>-a a ,并设21,C C 的圆心分别为),(),,(222111y x O y x O .设直线PQ 的方程为)0(>-=m a my x ,将其与C 的方程联立,消去x 可知0222=+-pa pmy y . 因为PQ 与C 相切于点P ,所以上述方程的判别式为024422=∙-=∆pa m p ,解得pa m 2=.进而可知,点P 的坐标为)2,(),(pa a y x P P =.于是 )2(2221|0|1||2a p a pa pa y m PQ P +=∙+=-+=.由|PQ |=2可得4242=+pa a ①结合①,就有2221342a pa a y y -=+=②由21,,O P O 共线,可得212121212122y y N O M O PO P O y y y y y pa pay P P ===--=--. 化简得212122y y pa y y =+③ 令2221y y T +=,则圆21,C C 的面积之和为T π.根据题意,仅需考虑T 取到最小值的情况. 根据②、③可知,212221212212242)(y y y y pay y y y T -=-+= 22222221)2)(34()34(2)34(444aa a a a a ---=----=.学科*网 作代换21a t -=,由于024442>=-=pa a t ,所以0>t .于是4324132413)1)(13(+=+∙≥++=++=tt t t t t t T . 上式等号成立当且仅当33=t ,此时3111-=-=t a ,因此结合①得, 331333311122-=-=-=-=t t a a p从而F 的坐标为)0,331()0,2(-=p .。