初中数学 中考数学试卷(含答案)

合集下载

【中考真题】2024年云南省中考数学试卷(附答案)

【中考真题】2024年云南省中考数学试卷(附答案)

2024年云南省中考数学试题学校:姓名:班级:考号:一、单选题1. 中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作+100米,则向南运动100米可记作()A. 100米B. -100米C. 200米D. -200米2. 某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A. 5.78x104B. 57.8x103C. 578x1023. 下列计算正确的是()A. x3+5x3=6x4B. x6+x3=x5C. a丁=a74.式子心在实数范围内有意义,则X的取值范围是()A. x>OB. x�OC. x<OD. 5780xl0 D. (ab)3 = a3 b3 D. x:::::::。

5. 某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()ID主视图左视图俯视图A. 正方体B. 圆柱6. 一个七边形的内角和等千()A. 540°B. 900°C. 圆锥D. 长方体C. 980° D. 1080°7.甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数了(单位:环)和方差s2如下表所示:甲乙丙丁X 9.9 9.5 8.2 8.5s 20.09 0.65 0.16 2.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A. 甲B. 乙C. 丙D. 丁8. 已知AF是等腰A BC 底边B C 上的高,若点F到直线A B的距离为3,则点F到直线AC 的距离为()3l2 . A B. 2 C.3 7-2 D 9. 两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A. so 1—x 2)=60 C. 80(1—x ) =60 B. 80(1-xf = 60 D. 80(1-2x ) =60 10. 按一定规律排列的代数式:2x , 3x 2 , 4x 3 , 5x 4 ,6x', L , 第n 个代数式是() A. 2x" B. (n -l)x n C. nx n+ID. (n +l )x n 11. 中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A. 爱B. 国C. 敬D. 业12. 在RtDA BC 中,?B 90?, 已知AB =3,B C =4, 则t an A 的值为() 4 3 4 3 A. 一 B. - C. — D. -5 5 3 413. 如图,C D是0的直径,点A、B 在0上.若A C=BC ,乙4.0C=36, 则LD =( )A . 9B . 18 C. 36° D. 4514. 分解因式:a 3—9a= ( )A. a (a —3)(a +3)B. a(a 2+9)C. (a —3)(a +3)D. a 2a —9)15. 某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A. 700兀平方厘米C. 1200兀平方厘米 B. 900n平方厘米D. 1600rc平方厘米二、填空题16. 若关千x 的一元二次方程x 2-2x+c=O 无实数根,则c 的取值范围是10 17. 已知点P (2,n)在反比例函数y =—的图象上,则n =.X 18. 如图,A B与C D交千点O,且AC II BD. 若OA +OC +AC 1 A C =-,则——=O B +OD +B D 2 BDDB 19. 某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:`I I I--•-------------r II '·l n注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有人.三、解答题20. 计算:70 +(勹-I 十—丿位)2—sin 306 221. 如图,在A B C 和A从少中,A B=心;,4汃E =乙CAD ,AC=AD.求证:L::::,.AB C竺L::::,.AE D./:22. 某旅行社组织游客从A地到B地的航天科技馆参观,已知A地到B地的路程为300千米,乘坐C型车比乘坐D型车少用2小时,C型车的平均速度是D型车的平均速度的3倍,求D 型车的平均速度.23. 为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活".某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆叭植物园扒科技馆C三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a'选择植物园b为b,选择科技馆C为C'记七年级年级组的选择为x,八年级年级组的选择为Y.(1)请用列表法或画树状图法中的一种方法,求(x,y)所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.如图,在四边形A B CD中,点E、F、G、H分别是各边的中点,且A B II CD, A D I I B C, 四边形E FGH是矩形.H DB F(1)求证:四边形A BCD是菱形;(2)若矩形E FGH的周长为22,四边形A B CD的面积为10,求A B的长.25. A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A型号35 a三42 b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求0、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A种型号吉祥物的4数量x(单位:个)不少千B种型号吉祥物数量的—,又不超过B种型号吉祥物数量的2倍.设3该超市销售这90个吉祥物获得的总利润为Y元,求Y的最大值.注:该超市销售每个吉祥物获得的利润等千每个吉祥物的销售价格与每个吉祥物的成本的差.326. 已知抛物线y= x2 +b x-I的对称轴是直线x=—.设m是抛物线y= x2 +b x-I与X轴交2点的横坐标,记M=矿-33109(1)求b的值;汇(2)比较M与——的大小.227. 如图,A B是0的直径,点D、F是0上异千A、B的点点C在0外,CA=CD,延长BF与C A的延长线交千点M,点N在B A的延长线上,乙AMN=乙A B M,A M-B M=A B·MN. 点H在直径A B上,LAHD=90,点E是线段DH的中点.(1)求乙吓B的度数;(2)求证:直线CM与0相切:(3)看一看,想一想,证一证:以下与线段C E、线段EB、线段C B有关的三个结论:CE+EB<CB, CE+EB=CB, CE+EB>C B, 你认为哪个正确?请说明理由.参考答案:1. B【分析】本题考查了正负数的意义,根据正负数的意义即可求解,理解正负数的意义是解题的关键【详解】解:若向北运动100米记作+100米,则向南运动100米可记作—100米,故选:B.2. A【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为axio n的形式,其中1 ::::; l a l< 10, n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为axIo n的形式,其中1::::; a < 10, n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值习10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:57800=5.78x l04,故选:A.3.D【分析】本题考查了合并同类项、幕的乘方、积的乘方、同底数幕的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幕的乘方运算法则、同底数幕的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A、x3+5x3 = 6x3, 选项计算错误,不符合题意;B、x6--;-X3 = x3'选项计算错误,不符合题意;C、(a丁=a6'选项计算错误,不符合题意;D、(ab)3= a3扩,选项计算正确,符合题意;故选:D.4. B【分析】本题主要考查了二次根式有意义的条件.根据二次根式有意义的条件,即可求解.【详解】解:?式子心飞E实数范围内有意义,: •X的取值范围是x习0.故选:B5. D【分析】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.根据长方体三视图的特点确定结果.【详解】解:根据三视图的特点:几何体的三视图都是长方形,确定该几何体为长方体.故选:D.6. B【分析】本题考查多边形的内角和,根据n边形的内角和为(n—2)180°求解,即可解题.【详解】解:一个七边形的内角和等千(7-2)x180°=900°,故选:B.7. A【分析】本题考查根据平均数和方差作决策,重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲,...中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲,故选:A.8. C【分析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.由等腰三角形”三线合一“得到AF平分乙B A C,再角平分线的性质定理即可求解.【详解】解:如图,ABl门\CF·: AF是等腰A BC底边B C上的高,: • AF平分乙B AC,:.点F到直线A B,AC的距离相等,点F到直线AB的距离为3,:.点F到直线AC的距离为3.故选: C.9. B【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x,利用现在生产1千克甲种药品的成本=两年前生产l千克甲种药品的成本年x(l—平均下降率)2' 即可得出关千的一元二次方程.【详解】解:甲种药品成本的年平均下降率为x,根据题意可得80(1—x)2=60,故选: B.10. D【分析】本题考查了数列的规律变化,根据数列找到变化规律即可求解,仔细观察和总结规律是解题的关键.【详解】解:?按一定规律排列的代数式:2x , 3x2 , 4x3 , 5x4 , 6x', L ,:.第n个代数式是(n+l)x n,故选: D.11. D【分析】本题主要考查轴对称图形的定义,根据轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,)进行逐一判断即可.【详解】解:A、图形不是轴对称图形,不符合题意;B、图形不是轴对称图形,不符合题意;C、图形不是轴对称图形,不符合题意;D、图形是轴对称图形,符合题意;故选: D.12. C【分析】根据三角函数的定义求解即可.【详解】解:..? B 90?, A B=3, B C=4,B C 4:t an A=—=-,AB 3故选: C.【点睛】本题考查了三角函数的求法,解题关键是理解三角函数的意义,明确是直角三角形中哪两条边的比.13. B【分析】本题考查了弧弦圆心角的关系,圆周角定理,连接O B,由AC=B C可得乙BOC=LAOC =36°, 进而由圆周角定理即可求解,掌握圆的有关性质是解题的关键.【详解】解:连接OB,·:A C=B C,:乙BOC=乙AOC=36°,1:乙D=—乙BOC=l8°,2故选:B.夕.·,..('14. A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将a3—9a先提取公因式,再运用平方差公式分解即可.【详解】解:a3-9a=a忨-9)=a(a+3)(a-3),故选:A.15. C【分析】本题考查了圆锥的侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公式计算即可求解,掌握圆锥侧面积计算公式是解题的关键.【详解】解:圆锥的底面圆周长为2兀x30=6伽厘米,1:.圆锥的侧面积为—x60兀x40= 120伽平方厘米,2故选:c.16. c >l ll<c【分析】利用判别式的意义得到L1=(-2) 2-4c<O , 然后解不等式即可.【详解】解:根据题意得L1=(-2) 2-4c<O ,解得c >l.故答案为:c>l .【点睛】本题考查了根的判别式,一元二次方程a x 2+b x+c =O (ai-0)的根与L1=b 2-4ac 有如下关系:当L1>0时,方程有两个不相等的实数根;当L1=0时,方程有两个相等的实数根;当L1<0时,方程无实数根.17. 510 【分析】本题考查反比例函数图象上点的坐标特征,将点P(2,n)代入y =—求值,即可解X题.【详解】解:10 10 点P(2,n)在反比例函数y =—的图象上,X :. n =—=5, 2故答案为:5.1 18. —/0.5 2【分析】本题考查相似三角形的判定和性质,证明DACQc.nD.BDO, 根据相似三角形周长之比等千相似比,即可解题.【详解】解:AC II BD, :. ACCJ_n BDO ,. AC OA +OC +AC 1 ==- .. BD O B +OD +BD 2' 故答案为:—2·19. 120【分析】本题考查了条形统计图和扇形统计图,用1000乘以12%即可求解,看懂统计图是解题的关键.【详解】解:该校喜欢跳绳的学生大约有1000x12%= 120人,故答案为:120.20. 2【分析】本题考查了实数的混合运算,掌握零指数幕,负整指数幕,特殊角的三角函数值,二次根式的性质,绝对值化简是解题的关键.根据相关运算法则分别进行计算,再进行加减运算,即可解题.【详解】解:70 +尸)+ _ _!_ -(匐-sin30,6 21 1=1+6+——5——=2.2 221. 见解析,【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利用"S AS"证明6.ABC竺6.AED,即可解决问题.【详解】证明:LBAE=八CAD,:. LBAE+LEAC=乙CAD+LEAC,即LBAC=LEAD,在A BC和6AED中,』�!;:�乙EAD,AC=A D:. A BC竺AED(S AS).22. D型车的平均速度为l OOkm/h【分析】本题考查分式方程的应用,设D型车的平均速度为xkm/h,则C型车的平均速度是3xkm/h,根据'乘坐C型车比乘坐D型车少用2小时,”建立方程求解,并检验,即可解题.【详解】解:设D型车的平均速度为xkm/h,则C型车的平均速度是3xkm/h,根据题意可俨300 300如——-——=2,X 3x整理得,6x=600,解得x=lOO,经检验x=lOO是该方程的解,答:D型车的平均速度为lOOkm/h.23. (1)见解析2-3 )2 ( 【分析】本题考查利用列表法或画树状图求概率,解题的关键在千根据题意列表或画树状图.(1)根据题意列出表格(或画出树状图)即可解题;(2)根据概率=所求情况数与总情况数之比.山表格(或树状图),得到共有6个等可能的结果,该校七年级年级组、八年级年级组选择的研学基地互不相同的情况有4种,再由概率公式求解即可.【详解】(1)解:由题意可列表如下:ab a (a,a )(b ,a ) b (a ,b) (b ,b ) C(a,c) (b ,c) 由表格可知,(x ,y)所有可能出现的结果总数为以上6种;(2)解:由表格可知,该校七年级年级组、八年级年级组选择的研学基地互不相同的情况有4种,:. p (七年级年级组、八年级年级组选择的研学基地互不相同)=—=—.4 2 6 324. (1)见解析(2)吓【分析】(1)连接BD ,AC, 证明四边形AB CD 是平行四边形,再利用三角形中位线定理得到G FI I BD , HG /I AC, 利用矩形的性质得到BD ..l AC,即可证明四边形A BCD 是菱形;11 (2)利用三角形中位线定理和菱形性质得到—BD+—AC=O A +O B=ll ,利用lx 面积公式2 2 得到20A-O B=10,再利用完全平方公式结合勾股定理进行变形求解即可得到A B .【详解】(1)解:连接BD,AC,HBA B I I CD, A D I I B C, F...四边形A B CD是平行四边形,四边形AB CD中,点E、F、G、H分别是各边的中点,:.GF I I BD, HG/I AC,四边形EF GH是矩形,:.HG上GF,:. BD上AC,...四边形A B CD是菱形;(2)解:四边形A B CD中,点E、F、G、H分别是各边的中点,1 1:.GF=EH=—BD, HG=EF=-AC,2 2矩形EFGH的周长为22,:. BD+AC=22,四边形A B CD是菱形,1 1即-BD+-AC=OA+OB=l l,2 2四边形A B CD的面积为10,1:. —BD-AC=lO, 即20A-OB=l0,2(OA+OB)2 = OA2 +20A-OB+OB2 =121,:. OA2 + OB2 = 121—10=111,:. AB=✓O矿+OB2=吓·【点睛】本题考查了平行四边形性质和判定,矩形的性质和判定,三角形中位线定理,菱形的性质和判定,菱形面积公式,勾股定理,完全平方公式,熟练掌握相关性质是解题的关键.25. (l)t�40b=50(2)564【分析】本题考查了一次函数、一元一次不等式、二元一次方程组的应用,根据题意正确列出方程和函数解析式是解题的关键.(1)根据'购买8个A 种型号吉祥物和7个B 种型号吉祥物,则一共需要670元;购买4个A 种型号吉祥物和5个B 种型号吉祥物,则一共需要410元”建立二元一次方程组求解,即可解题;4 (2)根据“且购买A 种型号吉祥物的数量X (单位:个)不少千B 种型号吉祥物数量的—,3360 又不超过B 种型号吉祥物数量的2倍.“建立不等式求解,得到—-:<:::;x :<:::;60,再根据总利润=A 种型号吉祥物利润+B 种型号吉祥物利润建立关系式,最后根据一次函数的性质即可得到Y的最大值.【详解】(I )解:由题知,{8a +7b =670 4a +5b =410a =40 解得{b �so'(2)解:购买A 种型号吉祥物的数量X 个,则购买B 种型号吉祥物的数量(90-x)个,4 且购买A 种型号吉祥物的数量X(单位:个)不少千B 种型号吉祥物数量的-,34 .'. X 2—(90-x), 3解得X 2360 7 A 种型号吉祥物的数量又不超过B 种型号吉祥物数量的2倍..'. X :s; 2(90—x ),解得x �60,即360 �x �60,由题知,y =(40-35)x+(50-42)(90-x ),整理得y =—3x +720,Y随X 的增大而减小,.'.当x =52时,Y的最大值为y =—3x52+720 = 564.26. (l )b =-33+汇而(2)当M=时,M>; 当M=3—而2 2 2时,b【分析】(1)由对称轴为直线x=-—直接求解;2a M<而3+而扣(2)当M=时,M>当M=3-扣扣—;时,M<—·2 2 2 23 【详解】(1)解:?抛物线y= x2 +b x-l的对称轴是直线x=—,2. .. b 32x l 2:. b=-3;,(2)解:·:m是抛物线y= x2 +bx-l与X轴交点的横坐标,• 2..m -3m-I=O,• 2..m—I=3m,• 4 2 2• • m -2m +I=9m ,• 4 2• • m =l lm -I,而矿=3m+l代入得:m4 =11(3m+l)-1=2=33m+10,:.戒=m-m4 = (33m+ I O)m=33m2 + lOm= 33(3m+ 1)+ lOm= 109m+33, :. M = 旷-33109m+33-33= =m,109 109·: m2-3m-1= 0,解得:m=3士J百2'当M=m=3+扣2时,:. M > ;2当M=m=3-而2时,:. M < 扣2M-=而3+而扣3-=—>0M-2 2 2 2扣3-扣扣3-2而= -= <0,2 2 2 2【点睛】本题考查了二次函数的对称轴公式,与x轴交点问题,解一元二次方程,无理数的大小比较,解题的关键是对旷进行降次处理.27. (1)90°(2)见解析(3)CE+EB=CB, 理由见解析【分析】(1)直接利用直径所对的圆周角是直角,即可得出结果;(2)证明A BM(/)AMN, 得到4从N=L ll从B,根据平角的定义,得到LMAN = L MAB = 90°, 即可得证;(3)连接O A,O D,BD,连接oc交A D千点G,易得O D, 圆周角定理得到LA DB=90°,推出O G II BD, 进而得到LAOC=LABD,根据三角函数推出LH B E=LABC,得到B,E,C 三点共线,即可得出结果.【详解】(1)解:·:AB是0的直径,点F是0上异千A、B的点,:. 虚B=90°;(2)证明:·;A M·BM=A B·MN,. AM M N..A B B M又?乙AMN=乙A B M,:. AB M(/) AMN,:. 乙A M B=乙N,LMAN=L.A, 衄·.·LMAN+LMAB=l80°,.·.LMAN = L MA B = 90°,:.O A.l_C A,·: O A是半径,:.直线C M与0相切;(3)我认为:CE+EB=C B正确,理由如下:连接O A,O D,BD,连接oc交A D千点G,如图,则:OA=O D,:. 点0在线段AD的中垂线上,·: CA= CD,:.点C在线段AD的中垂线上,:. OC .l_AD,:. LOG A=90°,·: AB是0的直径,.·. LADB=90°,:.乙OGA=乙ADB,:. OG II BD,:. 乙AOC=组v,• : 乙AHD=90°,:. 乙DHB=90°,DH EH: .tan乙HBD=, tan乙HBE=BH BH'·: E为DH的中点,EH I DH I: .tan乙HBE=—=—·—=—tan乙HBD,BH 2 BH 2AC AC I·; tan乙AOC=—,tan乙ABC=—且AO=—AB,AO AB' 2I AC I:. tan乙ABC=—·—=—tan LAOC,2 OA 2• : 乙AOC=缰V,: • tan乙HBE=tan乙ABC,:.乙HBE=乙ABC,:. B,E,C三点共线,:. C E+E B=C B.【点睛】本题考查圆周角定理,切线的判定,相似三角形的判定和性质,解直角三角形,熟练掌握相关知识点,并灵活运用,是解题的关键.。

初中中考试卷数学含答案

初中中考试卷数学含答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。

A. √2B. πC. 3.14D. -√32. 下列运算中,正确的是()。

A. (-2)² = -4B. (-3)³ = -27C. (-5)⁰ = 0D. 2⁰ = -13. 下列图形中,是轴对称图形的是()。

A. 正方形B. 长方形C. 等腰三角形D. 梯形4. 下列函数中,是反比例函数的是()。

A. y = x²B. y = 2xC. y = 3/xD. y = 2x + 35. 已知一元二次方程ax² + bx + c = 0(a ≠ 0),若 a + b + c = 0,则该方程的解是()。

A. 两个不相等的实数根B. 两个相等的实数根C. 一个实数根D. 没有实数根6. 在直角坐标系中,点P(2,3)关于y轴的对称点P'的坐标是()。

A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)7. 若 a、b、c 是等差数列的前三项,且 a + b + c = 12,a + c = 8,则 b 的值是()。

A. 2B. 4C. 6D. 88. 下列不等式中,正确的是()。

A. 2x > 4,x > 2B. 3x < 6,x < 2C. 4x ≤ 8,x ≤ 2D. 5x ≥ 10,x ≥ 29. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数是()。

A. 75°B. 90°C. 105°D. 120°10. 已知 a、b、c 是等比数列的前三项,且 a + b + c = 12,ab = 8,则 c 的值是()。

A. 1B. 2C. 4D. 8二、填空题(每题3分,共30分)11. (3/4)² ×(2/3)³ = ______12. 2x - 3 = 7,则 x = ______13. √(16/25) = ______14. 5a - 3a = ______15. 1/2 + 1/3 = ______16. (-2)×(-3)×(-4) = ______17. 3x² + 2x - 5 = 0,x = ______18. sin 30° = ______19. 0.3 × 0.4 × 0.5 = ______20. 2 + 3i - 4 - 2i = ______三、解答题(每题10分,共40分)21. 解下列方程:(1)2x + 5 = 3x - 1(2)5x² - 3x - 2 = 022. 已知函数 y = -2x + 3,求:(1)当 x = 2 时,y 的值;(2)函数的增减性。

初中中考数学试卷及答案

初中中考数学试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 0.5B. -2.3C. √2D. 1/3答案:C2. 若a=3,b=-1,则下列各式正确的是()A. a+b=2B. a-b=2C. ab=-3D. a/b=-1答案:A3. 在下列函数中,y与x成反比例关系的是()A. y=x+1B. y=2xC. y=3/xD. y=2x+1答案:C4. 已知等腰三角形底边长为6,腰长为8,则其周长为()A. 18B. 20C. 22D. 24答案:D5. 若等差数列的前三项分别为2,5,8,则该数列的公差为()A. 1B. 2C. 3D. 4答案:B6. 下列各数中,属于正数的是()A. -1B. 0C. 1/2D. -1/2答案:C7. 若x=3,则下列各式正确的是()A. x^2=9B. x^3=27C. x^4=81D. x^5=243答案:A8. 已知平行四边形ABCD,若∠A=60°,则∠B的度数为()A. 60°B. 120°C. 180°D. 240°答案:B9. 若等比数列的首项为2,公比为1/2,则该数列的第5项为()A. 1/16B. 1/8C. 1/4D. 1/2答案:A10. 在下列图形中,面积为圆的是()A. 正方形B. 长方形C. 等腰三角形D. 圆答案:D二、填空题(每题3分,共30分)11. 已知a=5,b=-3,则a+b=_________,ab=_________。

答案:2,-1512. 若等差数列的前三项分别为3,6,9,则该数列的公差为_________。

答案:313. 已知等比数列的首项为-2,公比为-1/2,则该数列的第4项为_________。

答案:-1/1614. 若平行四边形ABCD,若∠A=75°,则∠B的度数为_________。

答案:105°15. 若等腰三角形底边长为10,腰长为8,则其周长为_________。

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考真题数学试卷含答案解析

2024年云南省中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作()A .100米B .100-米C .200米D .200-米【答案】B【分析】本题考查了正负数的意义,根据正负数的意义即可求解,理解正负数的意义是解题的关键.【详解】解:若向北运动100米记作100+米,则向南运动100米可记作100-米,故选:B .2.某市今年参加初中学业水平考试的学生大约有57800人,57800用科学记数法可以表示为()A .45.7810⨯B .357.810⨯C .257810⨯D .578010⨯【答案】A【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:457800 5.7810=⨯,故选:A .3.下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =【答案】D【分析】本题考查了合并同类项、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算法则是解答的关键.利用合并同类项法则、幂的乘方运算法则、同底数幂的除法运算法则、积的乘方运算法则进行运算,并逐项判断即可.【详解】解:A 、33356x x x +=,选项计算错误,不符合题意;B 、633x x x ÷=,选项计算错误,不符合题意;C 、()326a a =,选项计算错误,不符合题意;D 、()333ab a b =,选项计算正确,符合题意;故选:D .4在实数范围内有意义,则x的取值范围是()A .0x >B .0x ≥C .0x <D .0x ≤5.某图书馆的一个装饰品是由几个几何体组合成的.其中一个几何体的三视图(主视图也称正视图,左视图也称侧视图)如图所示,这个几何体是()A .正方体B .圆柱C .圆锥D .长方体【答案】D【分析】本题考查了几何体的三视图,熟悉各类几何体的三视图是解决本题的关键.根据长方体三视图的特点确定结果.【详解】解:根据三视图的特点:几何体的三视图都是长方形,确定该几何体为长方体.故选:D .6.一个七边形的内角和等于()A .540︒B .900︒C .980︒D .1080︒【答案】B【分析】本题考查多边形的内角和,根据n 边形的内角和为()2180n -⋅︒求解,即可解题.【详解】解:一个七边形的内角和等于()72180900-⨯︒=︒,故选:B .7.甲、乙、丙、丁四名运动员参加射击项目选拔赛,每人10次射击成绩的平均数x 环)和方差2s 如下表所示:甲乙丙丁x9.99.58.28.52s 0.090.650.162.85根据表中数据,从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A .甲B .乙C .丙D .丁【答案】A【分析】本题考查根据平均数和方差作决策,重点考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.结合表中数据,先找出平均数最大的运动员;再根据方差的意义,找出方差最小的运动员即可.【详解】解:由表中数据可知,射击成绩的平均数最大的是甲,射击成绩方差最小的也是甲,∴中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择甲,故选:A .8.已知AF 是等腰ABC 底边BC 上的高,若点F 到直线AB 的距离为3,则点F 到直线AC 的距离为()A .32B .2C .3D .72【答案】C【分析】本题考查了等腰三角形的性质,角平分线的性质定理,熟练掌握知识点是解题的关键.由等腰三角形“三线合一”得到AF 平分BAC ∠,再角平分线的性质定理即可求解.【详解】解:如图,∵AF 是等腰ABC 底边BC 上的高,∴AF 平分BAC ∠,∴点F 到直线AB ,AC 的距离相等,∵点F 到直线AB 的距离为3,∴点F 到直线AC 的距离为3.故选:C .9.两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是()A .()280160x -=B .()280160x -=C .()80160x -=D .()801260x -=【答案】B【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x ,利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本年⨯(1-平均下降率)2,即可得出关于的一元二次方程.【详解】解: 甲种药品成本的年平均下降率为x ,根据题意可得()280160x -=,故选:B .10.按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,第n 个代数式是()A .2nx B .()1nn x-C .1n nx +D .()1nn x+【答案】D【分析】本题考查了数列的规律变化,根据数列找到变化规律即可求解,仔细观察和总结规律是解题的关键.【详解】解:∵按一定规律排列的代数式:2x ,23x ,34x ,45x ,56x ,L ,∴第n 个代数式是()1nn x +,11.中华文明,源远流长;中华汉字,寓意深广.下列四个选项中,是轴对称图形的为()A .爱B .国C .敬D .业【答案】D【分析】本题主要考查轴对称图形的定义,根据轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,)进行逐一判断即可.【详解】解:A 、图形不是轴对称图形,不符合题意;B 、图形不是轴对称图形,不符合题意;C 、图形不是轴对称图形,不符合题意;D 、图形是轴对称图形,符合题意;故选:D .12.在Rt ABC △中,90B Ð=°,已知34AB BC ==,,则tan A 的值为()A .45B .35C .43D .3413.如图,CD 是O 的直径,点A 、B 在O 上.若 AC BC=,36AOC ∠= ,则D ∠=()A .9B .18C .36oD .4514.分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .15.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A .700π平方厘米B .900π平方厘米C .1200π平方厘米D .1600π平方厘米【答案】C【分析】本题考查了圆锥的侧面积,先求出圆锥底面圆的周长,再根据圆锥的侧面积计算公二、填空题16.若关于x 的一元二次方程220x x c -+=无实数根,则c 的取值范围是.【答案】1c >/1c<【分析】利用判别式的意义得到Δ=(-2)2-4c <0,然后解不等式即可.【详解】解:根据题意得Δ=(-2)2-4c <0,解得c >1.故答案为:c >1.【点睛】本题考查了根的判别式,一元二次方程ax 2+bx +c =0(a ≠0)的根与Δ=b 2-4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.17.已知点()2,P n 在反比例函数10y x=的图象上,则n =.18.如图,AB 与CD 交于点O ,且AC BD ∥.若12OA OC AC OB OD BD ++=++,则AC BD=.19.某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.学校数学兴趣小组为给学校提出合理的采购意见,随机抽取了该校学生100人,了解他们喜欢的体育项目,将收集的数据整理,绘制成如下统计图:注:该校每位学生被抽到的可能性相等,每位被抽样调查的学生选择且只选择一种喜欢的体育项目.若该校共有学生1000人,则该校喜欢跳绳的学生大约有人.【答案】120【分析】本题考查了条形统计图和扇形统计图,用1000乘以12%即可求解,看懂统计图是解题的关键.【详解】解:该校喜欢跳绳的学生大约有100012%120⨯=人,故答案为:120.三、解答题20.计算:12117sin3062-⎛⎫++---⎪⎝⎭.21.如图,在ABC 和AED △中,AB AE =,BAE CAD ∠=∠,AC AD =.求证:ABC AED ≌△△.【答案】见解析【分析】本题考查了全等三角形的判定和性质,熟练掌握三角形全等的判定定理是解题关键.利用“SAS ”证明ABC AED ≌△△,即可解决问题.【详解】证明: BAE CAD ∠=∠,∴BAE EAC CAD EAC ∠+∠=∠+∠,即BAC EAD ∠=∠,在ABC 和AED △中,AB AEBAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC AED ≌.22.某旅行社组织游客从A 地到B 地的航天科技馆参观,已知A 地到B 地的路程为300千米,乘坐C 型车比乘坐D 型车少用2小时,C 型车的平均速度是D 型车的平均速度的3倍,求D 型车的平均速度.【答案】D 型车的平均速度为100km /h【分析】本题考查分式方程的应用,设D 型车的平均速度为km /h x ,则C 型车的平均速度23.为使学生更加了解云南,热爱家乡,热爱祖国,体验“有一种叫云南的生活”.某校七年级年级组准备从博物馆a、植物园b两个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等;八年级年级组准备从博物馆a、植物园b、科技馆c三个研学基地中,随机选择一个基地研学,且每个基地被选到的可能性相等.记选择博物馆a为a,选择植物园b为b,选择科技馆c为c,记七年级年级组的选择为x,八年级年级组的选择为y.(1)请用列表法或画树状图法中的一种方法,求(),x y所有可能出现的结果总数;(2)求该校七年级年级组、八年级年级组选择的研学基地互不相同的概率P.24.如图,在四边形ABCD 中,点E 、F 、G 、H 分别是各边的中点,且AB CD ∥,AD BC ∥,四边形EFGH 是矩形.(1)求证:四边形ABCD 是菱形;(2)若矩形EFGH 的周长为22,四边形ABCD 的面积为10,求AB 的长. ∴四边形ABCD 是平行四边形,四边形ABCD 中,点E 、25.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见下表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的43,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.注:该超市销售每个吉祥物获得的利润等于每个吉祥物的销售价格与每个吉祥物的成本的差.26.已知抛物线21y x bx =+-的对称轴是直线2x =.设m 是抛物线21y x bx =+-与x 轴交点的横坐标,记533109m M -=.(1)求b 的值;(2)比较M27.如图,AB 是O 的直径,点D 、F 是O 上异于A 、B 的点.点C 在O 外,CA CD =,延长BF 与CA 的延长线交于点M ,点N 在BA 的延长线上,AMN ABM ∠∠=,AM BM AB MN ⋅=⋅.点H 在直径AB 上,90AHD ∠= ,点E 是线段DH 的中点.(1)求AFB ∠的度数;(2)求证:直线CM 与O 相切:(3)看一看,想一想,证一证:以下与线段CE 、线段EB 、线段CB 有关的三个结论:CE EB CB +<,CE EB CB +=,CE EB CB +>,你认为哪个正确?请说明理由.【答案】(1)90︒(2)见解析(3)CE EB CB +=,理由见解析∴点O在线段AD的中垂线上,=,∵CA CD∴点C在线段AD的中垂线上,⊥,∴OC AD。

2024年吉林省中考数学试题(含解析)

2024年吉林省中考数学试题(含解析)

吉林省2024年初中学业水平考试数学试题数学试卷共7页,包括六道大题,共26道小题,全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.若()3-⨯ 的运算结果为正数,则W 内的数字可以为()A.2 B.1 C.0 D.1-2.长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为()A.102.0410⨯ B.92.0410⨯ C.820.410⨯ D.100.20410⨯3.葫芦在我国古代被看作吉祥之物.下图是—个工艺葫芦的示意图,关于它的三视图说法正确的是()A.主视图与左视图相同B.主视图与俯视图相同C.左视图与俯视图相同D.主视图、左视图与俯视图都相同4.下列方程中,有两个相等实数根的是()A.()221x -=- B.()220x -=C.()221x -= D.()222x -=5.如图,在平面直角坐标系中,点A 的坐标为()4,0-,点C 的坐标为()0,2.以OA OC ,为边作矩形OABC ,若将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',则点B '的坐标为()A.()4,2--B.()4,2-C.()2,4D.()4,26.如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是()A.50︒B.100︒C.130︒D.150︒二、填空题:本题共4小题,每小题5分,共20分.7.当分式11x +的值为正数时,写出一个满足条件的x 的值为______.8.因式分解:a 2﹣3a=_______.9.不等式组2030x x ->⎧⎨-<⎩的解集为______.10.如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是______.11.正六边形的每个内角等于______________°.12.如图,正方形ABCD 的对角线AC BD ,相交于点O ,点E 是OA 的中点,点F 是OD 上一点.连接EF .若45FEO ∠=︒,则EF BC的值为______.13.图①中有一首古算诗,根据诗中的描述可以计算出红莲所在位置的湖水深度,其示意图如图②,其中AB AB '=,AB B C '⊥于点C ,0.5BC =尺,2B C '=尺.设AC 的长度为x 尺,可列方程为______.14.某新建学校因场地限制,要合理规划体育场地,小明绘制的铅球场地设计图如图所示,该场地由O 和扇形OBC 组成,,OB OC 分别与O 交于点A ,D .1m OA =,10m OB =,40AOD ∠=︒,则阴影部分的面积为______2m (结果保留π).三、解答题(每小题5分,共20分)15.先化简,再求值:()()2111a a a +-++,其中3a =16.吉林省以“绿水青山就是金山银山,冰天雪地也是金山银山”为指引,不断加大冰雪旅游的宣传力度,推出各种优惠活动,“小土豆”“小砂糖橘”等成为一道靓丽的风景线,某滑雪场为吸引游客,每天抽取一定数量的幸运游客,每名幸运游客可以从“滑雪”“滑雪圈”“雪地摩托”三个项目中随机抽取一个免费游玩.若三个项目被抽中的可能性相等,用画树状图或列表的方法,求幸运游客小明与小亮恰好抽中同一个项目的概率.17.如图,在ABCD Y 中,点O 是AB 的中点,连接CO 并延长,交DA 的延长线于点E ,求证:AE BC =.18.钢琴素有“乐器之王”的美称,键盘上白色琴键和黑色琴键共有88个,白色琴键比黑色琴键多16个.求白色琴键和黑色琴键的个数.四、解答题(每小题7分,共28分)19.图①、图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.点A ,B ,C ,D ,E ,O 均在格点上.图①中已画出四边形ABCD ,图②中已画出以OE 为半径的O ,只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中,面出四边形ABCD的一条对称轴.的切线.(2)在图②中,画出经过点E的O20.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)求这个反比例函数的解析式(不要求写出自变量R的取值范围).(2)当电阻R为3Ω时,求此时的电流I.-年全国居民人均可支配收入及其增长速度情况如图所示.21.中华人民共和国20192023根据以上信息回答下列问题:-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多多(1)20192023少元?-年全国居民人均可支配收入的中位数.(2)直接写出20192023(3)下列判断合理的是______(填序号).-年全国居民人均可支配收入里逐年上升趋势.①20192023②20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.因此这5年中,2020年全国居民人均可支配收入最低.22.图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)五、解答题(每小题8分,共16分)23.综合与实践某班同学分三个小组进行“板凳中的数学”的项目式学习研究,第一小组负责调查板凳的历史及结构特点;第二小组负责研究板凳中蕴含的数学知识:第三小组负责汇报和交流,下面是第三小组汇报的部分内容,请你阅读相关信息,并解答“建立模型”中的问题.【背景调查】图①中的板凳又叫“四脚八叉凳”,是中国传统家具,其榫卯结构体现了古人含蓄内敛的审美观.榫眼的设计很有讲究,木工一般用铅笔画出凳面的对称轴,以对称轴为基准向两边各取相同的长度,确定榫眼的位置,如图②所示.板凳的结构设计体现了数学的对称美.【收集数据】小组收集了一些板凳并进行了测量.设以对称轴为基准向两边各取相同的长度为x ,凳面的宽度为mm y ,记录如下:x16.519.823.126.429.7以对称轴为基准向两边各取相同的长度/mmy115.5132148.5165181.5凳面的宽度/mm【分析数据】如图③,小组根据表中x,y的数值,在平面直角坐标系中描出了各点.【建立模型】请你帮助小组解决下列问题:(1)观察上述各点的分布规律,它们是否在同一条直线上?如果在同一条直线上,求出这条直线所对应的函数解析式;如果不在同一条直线上,说明理由.(2)当凳面宽度为213mm时,以对称轴为基准向两边各取相同的长度是多少?24.小明在学习时发现四边形面积与对角线存在关联,下面是他的研究过程:【探究论证】(1)如图①,在ABC 中,AB BC =,BD AC ⊥,垂足为点D .若2CD =,1BD =,则ABC S = ______.(2)如图②,在菱形A B C D ''''中,4''=A C ,2B D ''=,则A B C D S ''''=菱形______.(3)如图③,在四边形EFGH 中,EG FH ⊥,垂足为点O .若5EG =,3FH =,则EFGH S =四边形______;若EG a =,FH b =,猜想EFGH S 四边形与a ,b 的关系,并证明你的猜想.【理解运用】(4)如图④,在MNK △中,3MN =,4KN =,5MK =,点P 为边MN 上一点.小明利用直尺和圆规分四步作图:(ⅰ)以点K 为圆心,适当长为半径画弧,分别交边KN ,KM 于点R ,I ;(ⅱ)以点P 为圆心,KR 长为半径画弧,交线段PM 于点I ';(ⅲ)以点I '为圆心,IR 长为半径画弧,交前一条弧于点R ',点R ',K 在MN 同侧;(ⅳ)过点P 画射线PR ',在射线PR '上截取PQ KN =,连接KP ,KQ ,MQ .请你直接写出MPKQ S 四边形的值.六、解答题(每小题10分,共20分)25.如图,在ABC 中,90C ∠=︒,30B ∠=︒,3cm AC =,AD 是ABC 的角平分线.动点P 从点A 出发,/s 的速度沿折线AD DB -向终点B 运动.过点P 作PQ AB ∥,交AC 于点Q ,以PQ 为边作等边三角形PQE ,且点C ,E 在PQ 同侧,设点P 的运动时间为()()s 0t t >,PQE V 与ABC 重合部分图形的面积为()2cm S .(1)当点P 在线段AD 上运动时,判断APQ △的形状(不必证明),并直接写出AQ 的长(用含t 的代数式表示).(2)当点E 与点C 重合时,求t 的值.(3)求S 关于t 的函数解析式,并写出自变量t 的取值范围.26.小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.参考答案一、单项选择题(每小题2分,共12分)1.【答案】D【解析】解:()326-⨯=-,()313-⨯=-,()300-⨯=,()()313-⨯-=,四个算式的运算结果中,只有3是正数,故选:D .2.【答案】B【解析】解:92040000000 2.0410⨯=故选B .3.【答案】A【解析】解:葫芦的俯视图是两个同心圆,且带有圆心,主视图和俯视图都是下面一个较大的圆,中间一个较小的圆,上面是一条线段,故选:A .4.【答案】B【解析】解:A 、()2210x -=-<,故该方程无实数解,故本选项不符合题意;B 、()220x -=,解得:122x x ==,故本选项符合题意;C 、()221x -=,21x -=±,解得123,1x x ==,故本选项不符合题意;D 、()222x -=,2x -=,解得1222x x ==-,故本选项不符合题意.故选:B .5.【答案】C【解析】解:∵点A 的坐标为()4,0-,点C 的坐标为()0,2,∴42OA OC ==,,∵四边形OABC 是矩形,∴290AB OC ABC ===︒,∠,∵将矩形OABC 绕点O 顺时针旋转90︒,得到矩形OA B C ''',∴42OA OA A B AB '''====,,90OA B ''∠=︒,∴A B y ''⊥轴,∴点B '的坐标为()2,4,故选:C .6.【答案】C【解析】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒-︒=︒,故选:C .二、填空题:本题共4小题,每小题5分,共20分.7.【答案】0(答案不唯一)【解析】解:∵分式11x +的值为正数,∴10x +>,∴1x >-,∴满足题意的x 的值可以为0,故答案为:0(答案不唯一).8.【答案】a (a ﹣3)【解析】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).9.【答案】23x <<##32x >>【解析】解:2030x x ->⎧⎨-<⎩①②解不等式①得:2x >,解不等式②得:3x <,∴原不等式组的解集为23x <<,故答案为:23x <<.10.【答案】两点之间,线段最短【解析】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.11.【答案】120【解析】解:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:7201206︒=︒,故答案为:12012.【答案】12【解析】解:∵正方形ABCD 的对角线AC BD ,相交于点O ,∴45OAD ∠=︒,AD BC =,∵点E 是OA 的中点,∴12OE OA =,∵45FEO ∠=︒,∴EF AD ∥,∴OEF OAD △∽△,∴12EF OE AD OA ==,即12EF BC =,故答案为:12.13.【答案】()22220.5x x +=+【解析】解:设AC 的长度为x 尺,则0.5AB AB x '==+,∵AB B C '⊥,由勾股定理得:222AC B C AB ''+=,∴()22220.5x x +=+,故答案为:()22220.5x x +=+.14.【答案】11π【解析】解:由题意得:()224010111360S ππ-==阴影,故答案为:11π.三、解答题(每小题5分,共20分)15.【答案】22a ,6【解析】解:原式2211a a =-++22a =,当a =原式22=⨯6=.16.【答案】13【解析】解:将“滑雪”“滑雪圈”“雪地摩托”三个项目分别记为事件A 、B 、C ,可画树状图为:由树状图可知共有9种等可能的结果数,小明与小亮恰好抽中同一个项目的结果数有3种,∴幸运游客小明与小亮恰好抽中同一个项目的概率3193P ==.17.【答案】证明见解析【解析】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,∴OAE OBC OCB E ==∠∠,∠∠,∵点O 是AB 的中点,∴OA OB =,∴()AAS AOE BOC △≌△,∴AE BC =.18.【答案】白色琴键52个,黑色琴键36个【解析】解:设黑色琴键x 个,则白色琴键()16x +个,由题意得:()1688x x ++=,解得:36x =,∴黑色琴键由:361652+=(个),答:白色琴键52个,黑色琴键36个.四、解答题(每小题7分,共28分)19.【答案】(1)见解析(2)见解析【解析】【小问1详解】解:如图所示,取格点E 、F ,作直线EF ,则直线EF 即为所求;易证明四边形ABCD 是矩形,且E 、F 分别为AB CD ,的中点;【小问2详解】解:如图所示,取格点G H 、,作直线GH ,则直线GH 即为所求;易证明四边形OGTH 是正方形,点E 为正方形OGTH 的中心,则OE GH ⊥.20.【答案】(1)36I R =(2)12A【解析】【小问1详解】解:设这个反比例函数的解析式为()0U I U R=≠,把()94,代入()0U I U R=≠中得:()409U U =≠,解得36U =,∴这个反比例函数的解析式为36I R =;【小问2详解】解:在36I R =中,当3R =Ω时,3612A 3I ==,∴此时的电流I 为12A .21.【答案】(1)8485元(2)35128元(3)①【解析】【小问1详解】解:39218307338485-=元,答:20192023-年全国居民人均可支配收入中,收入最高的一年比收入最低的一年多8485元.【小问2详解】解:20192023-年这五年的全国居民人均可支配收入分别为30733元,32189元,35128元,36883元,39218元,∴20192023-年全国居民人均可支配收入的中位数为35128元;【小问3详解】解:由统计图可知20192023-年全国居民人均可支配收入里逐年上升趋势,故①正确;由统计图可知20192023-年全国居民人均可支配收入实际增长速度最慢的年份是2020年.但这5年中,2019年全国居民人均可支配收入最低,故②错误;故答案为:①.22.【答案】218.3m【解析】解:延长DC 交AE 于点G ,由题意得873m AB DG ==,90DGA ∠=︒在Rt GAD 中,45EAD ∠=︒,∴873tan DGAG DG EAD ===∠,在Rt GAC △中,37EAC ∠=︒,∴tan 8730.75654.75CG AG EAC =⋅∠=⨯=,∴873654.75218.3m CD DG CG =-=-≈,答:吉塔的高度CD 约为218.3m .五、解答题(每小题8分,共16分)23.【答案】(1)在同一条直线上,函数解析式为:533y x =+(2)36mm 【解析】【小问1详解】解:设函数解析式为:()0y kx b k =+≠,∵当16.5,115.5x y ==,23.1,148.5x y ==,∴16.5115.523.1148.5k b k b +=⎧⎨+=⎩,解得:533k b =⎧⎨=⎩,∴函数解析式为:533y x =+,经检验其余点均在直线533y x =+上,∴函数解析式为533y x =+,这些点在同一条直线上;【小问2详解】解:把213y =代入533y x =+得:533213x +=,解得:36x =,∴当凳面宽度为213mm 时,以对称轴为基准向两边各取相同的长度为36mm .24.【答案】(1)2,(2)4,(3)152,12EFGH ab S =四边形,证明见详解,(4)10【解析】(1)∵在ABC 中,AB BC =,BD AC ⊥,2CD =,∴2AD CD ==,∴4AC =,∴122ABC S AC BD =⨯⨯=V ,故答案为:2;(2)∵在菱形A B C D ''''中,4''=A C ,2B D ''=,∴142A B C D S B D A C ''''''''=⨯⨯=菱形,故答案为:4;(3)∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形,∵5EG =,3FH =,∴11522EFGH S EG FH =⨯⨯=四边形,故答案为:152,猜想:12EFGH ab S =四边形,证明:∵EG FH ⊥,∴12EFG S EG FO =⨯⨯ ,12EHG S EG HO =⨯⨯ ,∵EFG EHG EFGH S S S =+ 四边形,∴()111222EFGH S EG FO EG HO EG FO HO =⨯⨯+⨯⨯=⨯⨯+四边形,∴()1122EFGH S EG FO HO EG FH =⨯⨯+=⨯⨯四边形,∵EG a =,FH b =,∴12EFGH ab S =四边形;(4)根据尺规作图可知:QPM MKN ∠=∠,∵在MNK △中,3MN =,4KN =,5MK =,∴222MK KN MN =+,∴MNK △是直角三角形,且90MNK ∠=︒,∴90NMK MKN ∠+∠=︒,∵QPM MKN ∠=∠,∴90NMK QPM ∠+∠=︒,∴MK PQ ⊥,∵4PQ KN ==,5MK =,∴根据(3)的结论有:1102MPKQ S MK PQ =⨯⨯=四边形.六、解答题(每小题10分,共20分)25.【答案】(1)等腰三角形,AQ t =(2)32t =(3)()22233,04232421,242S t t S t S t t ⎧=<≤⎪⎪⎪⎪=-+-<<⎨⎪⎪=-≤<⎪⎪⎩【解析】【小问1详解】解:过点Q 作QH AD ⊥于点H,由题意得:AP =∵90C ∠=︒,30B ∠=︒,∴60BAC ∠=︒,∵AD 平分BAC ∠,∴30PAQ BAD ∠=∠=︒,∵PQ AB ∥,∴30APQ BAD ∠=∠=︒,∴PAQ APQ =∠∠,∴QA QP =,∴APQ △为等腰三角形,∵QH AP ⊥,∴1322HA AP t ==,∴在Rt AHQ △中,cos AH AQ t PAQ ==∠;【小问2详解】解:如图,∵PQE V 为等边三角形,∴QE QP =,由(1)得QA QP =,∴QE QA =,即223AE AQ t ===,∴32t =;【小问3详解】解:当点P 在AD 上,点E 在AC 上,重合部分为PQE V ,过点P 作PG QE ⊥于点G ,∵30PAQ ∠=︒,∴1322PG AP t ==,∵PQE V 是等边三角形,∴QE PQ AQ t ===,∴21324S QE PG t =⋅=,由(2)知当点E 与点C 重合时,32t =,∴233042S t t ⎛⎫=<≤ ⎪⎝⎭;当点P 在AD 上,点E 在AC 延长线上时,记PE 与AC 交于点F ,此时重合部分为四边形FPQC ,如图,∵PQE V 是等边三角形,∴60E ∠=︒,而23CE AE AC t =-=-,∴)tan 23CF CE E t =⋅∠=-,∴())()2113232323222FCE S CE CF t t t =⋅=--=- ,∴()22223424PQE FCE S S S t t t =-=--=-+- ,当点P 与点D 重合时,在Rt ADC 中,cos AC AD AP DAC ====∠,∴2t =,∴23242S t ⎫=-+-<<⎪⎭;当点P 在DB 上,重合部分为PQC △,如图,∵30DAC ∠=︒90DCA ∠=︒,由上知3DC =,∴23AD =∴此时33PD t =-,∴)3331PC CD PD t t =+=-=-,∵PQE V 是等边三角形,∴60PQE ∠=︒,∴31tan 3PC QC t PQC ===-∠,∴()213122S QC PC t =⋅=-,∵30B BAD ∠=∠=︒,∴3DA DB ==,∴当点P 与点B 33t AD DB =+=解得:4t =,∴()()231242S t t =-≤<,综上所述:()2223,0427*******,242S t S t t S t t ⎧=<≤⎪⎪⎪⎪=-+-<<⎨⎪⎪=-≤<⎪⎪⎩.26.【答案】(1)1,1,2k a b ===-(2)Ⅰ:0x ≤或1x ≥;Ⅱ:2t <或11t ≥;Ⅲ:10m -≤≤或12m ≤≤【解析】【小问1详解】解:∵20x =-<,∴将2x =-,1y =代入3y kx =+,得:231k -+=,解得:1k =,∵20,30x x =>=>,∴将2,3x y ==,3,6x y ==代入23y ax bx =++得:42339336a b a b ++=⎧⎨++=⎩,解得:12a b =⎧⎨=-⎩;【小问2详解】解:Ⅰ,∵1,1,2k a b ===-,∴一次函数解析式为:3y x =+,二次函数解析式为:223y x x =-+当0x >时,223y x x =-+,对称为直线1x =,开口向上,∴1x ≥时,y 随着x 的增大而增大;当0x ≤时,3y x =+,10k =>,∴0x ≤时,y 随着x 的增大而增大,综上,x 的取值范围:0x ≤或1x ≥;Ⅱ,∵230ax bx t ++-=,∴23ax bx t ++=,在04x <<时无解,∴问题转化为抛物线223y x x =-+与直线y t =在04x <<时无交点,∵对于223y x x =-+,当1x =时,2y =∴顶点为()1,2,如图:∴当2t =时,抛物线223y x x =-+与直线y t =在04x <<时正好一个交点,∴当2t <时,抛物线223y x x =-+与直线y t =在04x <<时没有交点;当4x =,168311y =-+=,∴当11t =时,抛物线223y x x =-+与直线y t =在04x <≤时正好一个交点,∴当11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,∴当2t <或11t ≥时,抛物线223y x x =-+与直线y t =在04x <<时没有交点,即:当2t <或11t ≥时,关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解;Ⅲ:∵,1P Q x m x m ==-+,∴()1122m m +-+=,∴点P 、Q 关于直线12x =对称,当1x =,1232y =-+=最小值,当0x =时,3y =最大值,∵当图像对应函数的最大值与最小值均不随m 的变化而变化,而当2x =时,3y =,=1x -时,2y =,∴①当12m >,如图:由题意得:11012m m -≤-+≤⎧⎨≤≤⎩,∴12m ≤≤;②当12m <,如图:由题意得:10112m m -≤≤⎧⎨≤-+≤⎩,∴10m -≤≤,综上:10m -≤≤或12m ≤≤.。

初中数学 中考数学试卷(含答案)

初中数学 中考数学试卷(含答案)

一、选择题(本题共30分,每小题3分)1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度D .线段PD 的长度 【答案】B. 【解析】试题分析:由点到直线的距离定义,即垂线段的长度可得结果故选B. 考点:点到直线的距离定义 2.若代数式4xx -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠ D .4x ≠ 【答案】D.考点:分式有意义的条件3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱 【答案】A. 【解析】试题分析:根据三棱柱的概念,将该展开图翻折起来正好是一个三棱柱.故选A.考点:三视图4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b > D .0b c +> 【答案】C.考点:实数与数轴5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B . C. D .【答案】A. 【解析】试题分析:A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误.故选A 。

考点:轴对称图形和中心对称图形的识别6.若正多边形的一个内角是150°,则该正多边形的边数是( ) A . 6 B . 12 C. 16 D .18 【答案】B. 【解析】试题分析:设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12.故选B. 考点:多边形的内角与外角7. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭的值是( )A . -3B . -1 C. 1 D .3 【答案】C.考点:代数式求值8.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》) 根据统计图提供的信息,下列推理不合理的是( )A .与2015年相比,2016年我国与东欧地区的贸易额有所增长B .2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元 D .2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多 【答案】A.考点:折线统计图9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次【答案】D.考点:函数图象10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620. 其中合理的是()A.①B.② C. ①②D.①③【答案】B.【解析】试题分析:①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.620.错误.故选B.考点;频率估计概率二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________. 【答案】π (答案不唯一). 【解析】试题分析:π∵3<x<4, ∴916x << , ∴9<x<16,故答案不唯一 π,10,11,12,13,14,15考点:无理数的估算.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________. 【答案】454353x y x y +=⎧⎨-=⎩ .考点:二元一次方程组的应用.13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .【答案】3. 【解析】试题分析:由相似三角形的面积比等于相似比的平方可求解.由M,N,分别为AC,BC 的中点,∴12CM CN AC AB == , ∴2211()()24CMN ABC S CM S AC ∆∆=== ,∵1,44CMN ABC CMN S S S ∆∆∆=== ,413ABNMABC CMN SS S ∆∆=-=-=.考点:相似三角形的性质. 14.如图,AB 为O 的直径,C D 、为O 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .【答案】25°.考点:圆周角定理15.如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .【答案】将△COD 绕点C 顺时针旋转90°,再向左平移2个单位长度得到△AOB (答案不唯一). 【解析】试题分析:观察图形即可,将△COD 绕点C 顺时针旋转90°,再向左平移2个单位长度得到△AOB ,注意是顺时针还是逆时针旋转. 考点:几何变换的类型16.下图是“作已知直角三角形的外接圆”的尺规作图过程 已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ; (3)以O 为圆心,OA 为半径作O .O 即为所求作的圆.请回答:该尺规作图的依据是 .【答案】到线段两端点距离相等的点在线段的垂直平分线上;两点确定一条直线;垂直平分线的定义;90°的圆周角所对弦为直径.不在同一条直线上的三个点确定一个圆.(答案不唯一)考点:作图-基本作图;线段垂直平分线的性质三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17. 计算:()4cos3012122+--+-【答案】3. 【解析】试题分析:利用特殊三角函数值,零指数幂,算术平方根,绝对值计算即可. 试题解析:原式=4×32+1-23+2=23+1-23+2=3 . 考点:实数的运算18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩【答案】x<2.考点:解一元一次不等式组19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D . 求证:AD BC =.【答案】见解析. 【解析】试题分析: 由等腰三角形性质及三角形内角和定理,可求出∠ABD=∠C=BDC. 再据等角对等边,及等量代换即可求解.试题解析:∵AB=AC, ∠A=36°∴∠ABC=∠C=12(180°-∠A)= 12×(180°-36°)=72°,又∵BD 平分∠ABC, ∴∠ABD=∠DBC=12∠ABC=12×72°=36°, ∠BDC=∠A+∠ABD=36°+36°=72°, ∴∠C=∠BDC, ∠A=AB ∴AD=BD=BC.考点:等腰三角形性质.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________).易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S .考点:矩形的性质,三角形面积计算.21.关于x 的一元二次方程()23220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围. 【答案】.(1)见解析,(2)k<0考点:根判别式;因式分解法解一元二次方程;解一元一次不等式组.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(23【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.试题解析:(1)证明:∵E 为AD 中点,AD=2BC,∴BC=ED, ∵AD ∥BC, ∴四边形ABCD 是平行四边形,∵AD=2BE, ∠ABD=90°,AE=DE ∴BE=ED, ∴四边形ABCD 是菱形.(2)∵AD ∥BC,AC 平分∠BAD ∴∠BAC=∠DAC=∠BCA,∴BA=BC=1, ∵AD=2BC=2,∴sin ∠ADB=12,∠ADB=30°, ∴∠DAC=30°, ∠ADC=60°.在RT △ACD 中,AD=2,CD=1,AC= 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理. 23. 如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线2y x =-交于点()3,A m .(1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0ky x x=>的图象于点N .①当1n=时,判断线段PM与PN的数量关系,并说明理由;②若PN PM≥,结合函数的图象,直接写出n的取值范围.【答案】(1)见解析.(2)0<n≤1或n≥3.【解析】试题分析:(1)先求A 点坐标,在代入kyx=,即可求出结果;(2)①令y=1,求出PM的值,令x=1求出PN的值即可;(3)过点P作平行于x轴的直线,利用图象可得出结果.试题解析:(1)∵函数kyx=(x>0)的图象与直线y=x-2交于点A(3,m)∴m=3-2=1,把A(3,1)代入kyx=得,k=3×1=3.即k的值为3,m的值为1.考点:直线、双曲线的函数图象24.如图,AB是O的一条弦,E是AB的中点,过点E作EC OA⊥于点C,过点B作O的切线交CE 的延长线于点D .(1)求证:DB DE =; (2)若12,5AB BD ==,求O 的半径.【答案】(1)见解析;(2)152【解析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)证明:∵DC ⊥OA, ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE=DB.考点:圆的性质,切线定理,三角形相似,三角函数25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)【答案】a.240,b.乙;见解析.按如下分数段整理 按如下分数段整理数据: 成绩x人数 部门 4049x ≤≤ 5059x ≤≤ 6069x ≤≤ 7079x ≤≤ 8089x ≤≤ 90100x ≤≤甲 0 0 1 11 7 1 乙1710 2a.估计乙部门生产技能优秀的员工人数为400×1240=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高; ②甲部门生产技能测试中,没有生产技能不合格的员工. 可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高. 考点:众数,中位数.26.如图,P 是AB 所对弦AB 上一动点,过点P 作PM AB ⊥交AB 于点M ,连接MB ,过点P 作PN MB ⊥于点N .已知6AB cm =,设A P 、两点间的距离为xcm ,P N 、两点间的距离为ycm .(当点P 与点A 或点B 重合时,y 的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:/x cm0 1 2 3 4 5 6/y cm0 2.0 2.3 2.1 0.9 0(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.为等腰三角形时,AP的长度约为(3)结合画出的函数图象,解决问题:当PAN____________cm.【答案】(1)1.6,(2)见解析,(3)2.2(答案不唯一)【解析】试题分析:(1)通过画图画出大致图象,估算当AP=4时,PN≈1.6;(2)见解析,(3)2.2(答案不唯一)试题解析:(1)1.6 (2)如图所示:(3)作y=x 与函数图象交点即为所求.2.2(答案不唯一)考点:函数图象,估算,近似数27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C . (1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x x x <<,结合函数的图象,求123x x x ++的取值范围.【答案】(1)y=-x+3;(2)7<123x x x ++<8. 【解析】试题分析:(1)先求A 、B 、C 的坐标,用待定系数法即可求解;(2)由于垂直于y 轴的直线l与抛物线243y x x =-+要保证123x x x <<,则P 、Q 两点必位于x 轴下方,作出二次函数与一次函数图象,找出两条临界直线,为x 轴和过顶点的直线,继而求解.(2).由2243(2)1y x x x =-+=--,∴抛物线的顶点坐标为(2,-1),对称轴为直线x=2, ∵12y y = ,∴1x +2x =4.令y=-1,y=-x+3,x=4. ∵ 123x x x <<,∴3<3x <4, 即7<123x x x ++<8, ∴ 123x x x ++的取值范围为:7<123x x x ++<8.考点:二次函数与x 轴的交点问题,待定系数法求函数解析式,二次函数的对称性. 28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.【答案】(1)试题解析:(1)∠AMQ=45°+α.理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠PAB=45°-α,∠AHM=90°,∴∠AMQ=180°-∠AHM-∠PAM=45°+α.(2)线段MB与PQ之间的数量关系:PQ=2MB.理由如下:连接AQ,过点M做ME⊥QB,∵AC⊥QP,CQ=CP,∴∠QAC=∠PAC=α,∴∠QAM=α+45°=∠AMQ,∴AP=AQ=QM,在RT△APC和RT △QME 中,MQE PAC ACP QEM AP QM ∠=⎧⎪∠=∠⎨⎪=⎩∴RT △APC ≌RT △QME, ∴PC=ME, ∴△MEB 是等腰直角三角形,∴1222PQ MB =, ∴PQ=2 MB.考点:全等三角形判定,等腰三角形性质 . 29.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当O 的半径为2时,①在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中,O 的关联点是_______________. ②点P 在直线y x =-上,若P 为O 的关联点,求点P 的横坐标的取值范围.(2)C 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C 的关联点,直接写出圆心C 的横坐标的取值范围.【答案】(1)①23,P P ,②-322≤x≤-22 或22 ≤x≤322,(2)-2≤x≤1或2≤x≤22试题解析:(1)12315,01,22OP P OP ===, 点1P 与⊙的最小距离为32 ,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12,∴⊙的关联点为2P 和3P .②根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意; ∴ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,OP=22(0)(0)1x x -+--= ,解得22x =± ,当OP=3时,由距离公式可得,OP=22(0)(0)3x x -+--= ,229x x +=,解得322x =±,∴ 点的横坐标的取值范围为-322 ≤x≤-22 或22 ≤x≤322如图2,当圆与小圆相切时,切点为D,∴CD=1 ,如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点 B 时,连接 BC ,此时 BC =3,在 Rt △OCB 中,由勾股定理得OC=23122-= , C 点坐标为 (22,0).∴ C 点的横坐标的取值范围为2≤c x ≤22 ;∴综上所述点C 32 ≤c x ≤-22 或22 ≤c x ≤322. 考点:切线,同心圆,一次函数,新定义.。

中考数学试题(word版含答案)

中考数学试题(word版含答案)

初中毕业生学业考试数 学 试 卷※考试时间120分钟 试卷满分150分一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的选项填在下表中相应题号下的空格内.每小题3分,共24分)1.目前国内规划中的第一高楼上海中心大厦,总投入约14 800 000 000元.14 800 000 000元用科学记数法表示为( ) A .111.4810⨯元B .90.14810⨯元C .101.4810⨯元D .914.810⨯元2.计算23(2)a -的结果为( ) A .52a -B .68a -C .58a -D .66a -3.如图所示,已知直线AB CD ∥,125C ∠=°,45A ∠=°, 则E ∠的度数为( ) A .70° B .80° C .90° D .100°4.一个圆柱体钢块,正中央被挖去了一个长方体孔,其俯视图如图所示,则此圆柱体钢块的左.视图是( )5.数据21,21,21,25,26,27的众数、中位数分别是( ) A .21,23 B .21,21 C .23,21 D .21,256.为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为x ,根据题意所列方程为( ) A .22025x =B .20(1)25x +=C .220(1)25x +=D .220(1)20(1)25x x +++=7.如图所示,反比例函数1y 与正比例函数2y 的图象的一个交点坐标是(21)A ,,若210y y >>,则x 的取值范围在数轴上表示为( )A .B .C .D . 俯视图第4题图 EA BCD第3题图45°125°8.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )二、填空题(每小题3分,共24分) 9.分解因式:34a a -= . 10.函数33y x =+自变量x 的取值范围是 . 11.小丽想用一张半径为5cm 的扇形纸片围成一个底面半径为4cm 的圆锥,接缝忽略不计,则扇形纸片的面积是 cm 2.(结果用π表示)12.如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是 . 13.如图所示,AB 为O ⊙的直径,P 点为其半圆上一点,40POA C ∠=°,为另一半圆上任意一点(不含A B 、),则PCB ∠= 度.14.已知抛物线()经过点,且顶点在第一象限.有下列三个结论:①0a < ②0a b c ++> ③02ba->.把正确结论的序号填在横线上 .15.如图所示,在正方形网格中,图①经过 变换(填“平移”或“旋转”或“轴对称”)可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点 (填“A ”或“B ”或“C ”). 16.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .A .B .C .D .y 1 2 2 1 1- (21)A , y 2 y 1 x O垂直 A . B . C . D . 第8题图 第12题图 CB A P O 40° 第13题图O y x 第14题图1- ①② ③ 第15题图A B C三、解答题(每题8分,共16分)17.计算:012|32|(2π)+-+-.18.解方程:2111x x x -=-+.四、解答题(每题10分,共20分)19.如图所示,在Rt ABC △中,9030C A ∠=∠=°,°.(1)尺规作图:作线段AB 的垂直平分线l (保留作图痕迹,不写作法);(2)在已作的图形中,若l 分别交AB AC 、及BC 的延长线于点D E F 、、,连接BE . 求证:2EF DE =.20.某市开展了党员干部“一帮一扶贫”活动.为了解贫困群众对帮扶情况的满意程度,有关部门在该市所管辖的两个区内,分别随机抽取了若干名贫困群众进行问卷调查.根据收集的信息进行了统计,并绘制了下面尚不完整的统计图.已知在甲区所调查的贫困群众中,非常满意的人数占甲区所调查的总人数的35%.根据统计图所提供的信息解答下列问题: (1)甲区参加问卷调查的贫困群众有 人; (2)请将统计图补充完整; (3)小红说:“因为甲区有30人不满意,乙区有40人不满意,所以甲区的不满意率比乙区低.”你认为这种说法正确吗?为什么?第1个图形 第2个图形 第3个图形 第4个图形第16题图A CB 第19题图 非常满意 人数 800 600 400 200 满意 比较满意 不满意 满意程度 甲 乙第20题图420 700 760500250 3040五、解答题(每题10分,共20分)21.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选. (1)用树状图或列表法求出小明先挑选的概率; (2)你认为这个游戏公平吗?请说明理由.22.如图所示,已知AB 是半圆O 的直径,弦106CD AB AB CD ==∥,,,E 是AB 延长线上一点,103BE =.判断直线DE 与半圆O 的位置关系,并证明你的结论.六、解答题(每题10分,共20分)23.某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=°,在B 处测得A 的仰角40ABC ∠=°,在D 处测得A 的仰角85ADF ∠=°,过D 点作地面BE 的垂线,垂足为C .(1)求ADB ∠的度数; (2)求索道AB 的长.(结果保留根号)O AB ED C 第22题图A C DE F B 第23题图24.为迎接国庆六十周年,某校团委组织了“歌唱祖国”有奖征文活动,并设立了一、二、三等奖.学校计划派人根据设奖情况买50件奖品,其中二等奖件数比一等奖件数的2倍还少10件,三等奖所花钱数不超过二等奖所花钱数的1.5倍.各种奖品的单价如下表所示.如果计划一等奖买x 件,买50件奖品的总钱数是w 元. (1)求w 与x 的函数关系式及自变量x 的取值范围; (2)请你计算一下,如果购买这三种奖品所花的总钱数最少?最少是多少元?一等奖 二等奖 三等奖 单价(元) 12 10 5 E图(b ) 第25题图八、解答题(本题14分)26.如图所示,已知在直角梯形OABC 中,AB OC BC x ∥,⊥轴于点(11)(31)C A B ,,、,.动点P 从O 点出发,沿x 轴正方向以每秒1个单位长度的速度移动.过P 点作PQ 垂直于直线..OA ,垂足为Q .设P 点移动的时间为t 秒(04t <<),OPQ △与直角梯形OABC 重叠部分的面积为S .(1)求经过O A B 、、三点的抛物线解析式; (2)求S 与t 的函数关系式;2009年铁岭市初中毕业生学业考试 数学试题参考答案及评分标准注:本参考答案只给出一种或几种解法(证法),若用其他方法解答并正确,可参考此评分标准相应步骤赋分.一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案 C B B C A C D A∴3060EBA A AED BED ∠=∠=∠=∠=°,°,∴3060EBC EBA FEC ∠==∠∠=°,°. 又∵ED AB EC BC ⊥,⊥, ∴ED EC =. ······························································································· 8分 在Rt ECF △中,6030FEC EFC ∠=∴∠=°,°, ∴2EF EC =, ∴2EF ED =. ··························································································· 10分 第19题图(2)图形正确(甲区满意人数有500人) ··························································· 5分 (3)不正确. ······························································································· 6分 ∵甲区的不满意率是30 2.5%1200=,乙区的不满意率是402%70076050040=+++, ∴甲区的不满意率比乙区的不满意率高. ·························································· 10分五、(每题10分,共20分) 21.解:(1)根据题意可列表或树状图如下:第一次第二次1 2 3 4∵,∴2.······························· 2分 ∵1025533OE OB BE =+=+=. ····························· 3分 ∴35325553DF OD OD OE ===,, ∴DF ODOD OE=. ····························································································· 6分 ∵CD AB ∥,∴CDO DOE ∠=∠. ································································ 7分3) A第22题图∴90ODE OFD ∠=∠=°, ∴OD DE ⊥∴直线DE 与半圆O 相切. ············································································ 10分 法二:连接OD ,作OF CD ⊥于点F ,作DG OE ⊥于点G . ∵6CD =,∴132DF CD ==. 在Rt ODF △中,2222534OF OD DF =-=-= ·········································· 3分 ∵CD AB ∥,DG AB OF CD ⊥,⊥, ∴四边形OFDG 是矩形,∴43DG OF OG DF ====,. ∵1025533OE OB BE =+=+=,2516333GE OE OG =-=-=, ························ 5分 在Rt DGE △中,22221620433DE DG GE ⎛⎫=+=+= ⎪⎝⎭.∵2222025533⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, ∴222OD DE OE += ····················································································· 8分 ∴CD DE ⊥.∴直线DE 与半圆O 相切. ············································································ 10分 六、(每题10分,共20分) 23.(1)解:∵DC CE ⊥,∴90BCD ∠=°. 又∵10DBC ∠=°, ∴80BDC ∠=°, ····················································· 1分∵85ADF ∠=°,∴360809085105ADB ∠=---=°°°°°. ·················· 2分(2)过点D 作DG AB ⊥于点G . ······························ 3分 在Rt GDB △中,401030GBD ∠=-=°°°, ∴903060BDG ∠=-=︒°° ········································ 4分 又∵100BD =, ∴111005022GD BD ==⨯=. 3cos301005032GB BD ==⨯=°. ···························································· 6分 在Rt ADG △中,1056045GDA ∠=-=︒°° ······················································ 7分 ∴50GD GA ==, ························································································ 8分 ∴50503AB AG GB =+=+(米)································································ 9分A CDEF B 第23题图G答:索道长50+ ············································································· 10分 24.解:(1)1210(210)5[50(210)]x x x x ω=+-+--- ····································· 2分17200x =+.·········································································· 3分 由02100[50(210)]05[50(210)] 1.510(210)x x x x x x x >⎧⎪->⎪⎨--->⎪⎪---⨯-⎩≤ ························································ 5分(3)当CD CB =(2BD CD =或12CD BD =或30CAD ∠=°或90BAD ∠=°或30ADC ∠=°)时,四边形BCGE 是菱形. ················ 9分 理由:法一:由①得AEB ADC △≌△, ∴BE CD = ························································· 10分 又∵CD CB =, ∴BE CB =. ······················································ 11分 由②得四边形BCGE 是平行四边形, ∴四边形BCGE 是菱形. ······································· 12分ADCBFEG 图(b ) 第25题图法二:由①得AEB ADC △≌△, ∴BE CD =. ······························································································ 9分 又∵四边形BCGE 是菱形, ∴BE CB = ································································································ 11分 ∴CD CB =. ····························································································· 12分 法三:∵四边形BCGE 是平行四边形, ∴BE CG EG BC ∥,∥, ∴6060FBE BAC F ABC ∠=∠=∠=∠=°,° ··················································· 9分 ∴60F FBE ∠=∠=°, ∴BEF △是等边三角形. ············································································· 10分220(02)1(12)a h a h ⎧=-+⎪⎨=-+⎪⎩ 解得1343a h ⎧=-⎪⎪⎨⎪=⎪⎩································································· 3分 ∴所求抛物线解析式为214(2)33y x x =--+. ···················································· 4分 (2)分三种情况:①当02t <≤,重叠部分的面积是OPQ S △,过点A 作AF x ⊥轴于点F , ∵(11)A ,,在Rt OAF △中,1AF OF ==,45AOF ∠=°在Rt OPQ △中,OP t =,45OPQ QOP ∠=∠=°,∴cos 452PQ OQ t ===°, (3)存在 11t = ······················································································ 12分 22t = ···················································································· 14分。

中考数学试题及答案

中考数学试题及答案

中考数学试题及答案一、选择题1.下图是一个正方形,边长为10cm。

计算正方形的周长是多少? A.20cm B. 40cm C. 50cm D. 100cm2.已知正方形ABCD的边长为8cm,以A为圆心,以AD为半径画一个圆,求圆的面积是多少?A. 64π cm² B. 32π cm² C. 16π cm² D. 8π cm²3.若a:b=3:5,且a=15,则b的值是多少? A. 9 B. 25 C. 5 D. 754.小明参加马拉松比赛,他以每小时12km的速度比赛,若比赛用时3小时,他跑了多少公里? A. 36km B. 30km C. 24km D. 12km5.某天气预报显示,上午9点的温度为18℃,下午3点的温度为26℃,一天中温度的变化是多少? A. 8℃ B. 26℃ C. 44℃ D. 208℃二、填空题1.一条矩形围墙的长是12米,宽比长少2米,这条矩形围墙的宽是______米。

2.小明去商场买东西,他消费了100元,其中60%购买了一本书,剩下的钱他买了一件T恤,这件T恤的价格是______元。

3.已知函数y = 2x - 4,那么当x=5时,y的值是______。

4.一个矩形的面积是48平方厘米,长是6厘米,那么宽是______。

5.一块地的正方形面积是200平方米,那么它的边长是______米。

三、解答题1.现有一个蛋糕,小明吃了其中的1/4,小红吃了其中的1/3,小王吃了剩下的部分。

请问小王吃了蛋糕的几分之几?2.请计算:20 * (2 + 3) ÷ 4 - 6 = ______。

3.求方程2x + 4 = 10的解。

4.如果a + 8 = 20,求a的值。

5.简述三角形的直角边、斜边和角度之间的关系。

四、答案一、选择题:A、C、D、A、A二、填空题:10、40、6、8、14三、解答题: 1. 小王吃了蛋糕的1/2部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年中考数学试题第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.3的相反数是( )A .-3B .13-C .13D .3 【答案】A【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A. 2.如图,由四个正方体组成的几何体的左视图是( )A .B .C .D .【答案】B【解析】从左边看可以看到两个小正方形摞在一起,故选B. 3.用科学计数法表示136 000,其结果是( )A .60.13610⨯B .51.3610⨯C .313610⨯D .613610⨯ 【答案】B【解析】13600=1.36×105,故选B. 4.化简2(2)x 的结果是( )A .4xB .22xC . 24xD .4x 【答案】C【解析】(2x )2=4x 2;故选C.5.下列关于图形对称性的命题,正确的是( )A .圆既是轴对称性图形,又是中心对称图形B .正三角形既是轴对称图形,又是中心对称图形C .线段是轴对称图形,但不是中心对称图形D .菱形是中心对称图形,但不是轴对称图形 【答案】A点睛:本题主要考查中心对称图形与轴对称图形的知识,能正确地区分是解题的关键.6. 不等式组:⎩⎨⎧>+≤-0302x x 的解集是( )A .32x -<≤B .32x -≤<C . 2x ≥D .3x <- 【答案】A【解析】由①得x≤2,由②得x>-3,所以解集为:-3<x≤2,故选A.7.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是( )A .10,15B .13,15C .13,20D .15,15 【答案】D【解析】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.8.如图,AB 是O 的直径,,C D 是O 上位于AB 异侧的两点.下列四个角中,一定与ACD ∠互余的角是( )A .ADC ∠B .ABD ∠C . BAC ∠D .BAD ∠ 【答案】D【解析】∵AB 是直径,∴∠ADB=90°,∴∠BAD+∠B=90°,∵∠ACD=∠B ,∴∠BAD+∠ACD=90°,故选D.9.若直线1y kx k =++经过点(,3)m n +和(1,21)m n +-,且02k <<,则n 的值可以是( )A .3B .4C .5D .6 【答案】C10.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区 【答案】D【解析】如图,根据题意可得旋转中心O ,旋转角是90°,旋转方向为逆时针,因此可知点P 的对应点落在了4区,故选D.O点睛:本题主要考查图形的旋转,能根据题意正确地确定旋转中心、旋转方向、旋转角是解题的关键.第Ⅱ卷(共90分)二、填空题:本题共6小题,每小题4分,共24分. 11.计算023--= . 【答案】1【解析】原式=2-1=1.12. 如图,ABC ∆中,,D E 分别是,AB AC 的中点,连线DE ,若3DE =,则线段BC 的长等于 .【答案】6【解析】∵E 、F 分别是AB 、AC 的中点,∴BC=2EF=6.13.一个箱子装有除颜色外都相同的2个白球,2个黄球,1个红球.现添加同种型号的1个球,使得从中随机抽取1个球,这三种颜色的球被抽到的概率都是13,那么添加的球是 .【答案】红球(或红色的)14.已知,,A B C 是数轴上的三个点,且C 在B 的右侧.点,A B 表示的数分别是1,3,如图所示.若2BC AB =,则点C 表示的数是 .【答案】7【解析】∵AB=2,BC=2AB ,∴BC=4, 3+4=7,故点C 表示的数是7.15.两个完全相同的正五边形都有一边在直线上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD=∠ODC=180°-108°=72°,∴∠COD=36°,∴∠AOB=360°-108°-108°-36°=108°.DC16. 已知矩形ABCD 的四个顶点均在反比例函数1y x=的图象上,且点A 的横坐标是2,则矩形ABCD 的面积为 . 【答案】7.5yxDBCAO点睛:本题主要考查双曲线、矩形的对称性,双曲线关于原点对称,关于直线y=±x 对称,矩形既是轴对称图形又是中心对称图形,能根据本题的题意确定矩形的对称中心是原点,并能应用图形的对称性解决问题是关键.三、解答题 :本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17. 先化简,再求值:1)11(2-⋅-a aa ,其中12-=a . 【答案】1a+1,22 .【解析】试题分析:先通分计算括号内的,然后再利用分式的乘除法进行计算,最后代入求值即可. 试题解析:原式=()()11111a a a a a a -=+-+ ,当a=2 -1时,原式=1211-+ =22.18. 如图,点,,,B E C F 在一条直线上,,,AB DE AC DF BE CF ===.求证:A D ∠=∠.【答案】证明见解析. 【解析】19.如图,ABC ∆中,90,BAC AD BC ∠=⊥,垂足为D .求作ABC ∠的平分线,分别交,AD AD 于P ,Q 两点;并证明AP AQ =.(要求:尺规作图,保留作图痕迹,不写作法)【答案】作图见解析;证明见解析. 【解析】试题分析:按作图方法作出角平分线BQ ,然后通过利用互为余角以及等角的余角相等得到∠APQ=∠ AQP,从而证得AP=AQ.试题解析:作图如下,BQ 就是所求作的∠ABC 的平分线,P 、Q 就是所求作的点. 证明如下:∵AD ⊥BC ,∴∠ADB=90°,∴∠BPD+∠PBD=90°,∵∠BAC=90°,∴∠AQP+∠ABQ=90°,∵∠ABQ=∠PBD ,∴∠BPD=∠AQP ,∵∠BPD=∠APQ ,∴∠APQ=∠ AQP,∴AP=AQ.20.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡兔各几何.”其大意是:“有若干只鸡和兔关在同一笼子里,它们一共有35个头,94条腿.问笼中的鸡和兔各有多少只?”试用列方程(组)解应用题的方法求出问题的解.【答案】鸡有23只,兔有12只.【解析】21.如图,四边形ABCD内接于O,AB是O的直径,点P在CA的延长线上,45CAD∠=.(Ⅰ)若4AB=,求弧CD的长;(Ⅱ)若弧BC=弧AD,AD AP=,求证:PD是O的切线.【答案】(Ⅰ)CD的长=π;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)连接OC,OD,由圆周角定理可得∠COD=90°,然后利用弧长公式即可得;(Ⅱ)由BC=AD,可得∠BOC=∠AOD,从而可得∠AOD=45°,再由三角形内角和从而可得∠ODA=67.5°,由AD=AP可得∠ADP=∠APD,由∠CAD=∠ADP+∠APD,∠CAD=45°可得∠ADP=22.5°,继而可得∠ODP=90°,从而得PD是⊙O的切线.试题解析:(Ⅰ)连接OC,OD,∵∠COD=2∠CAD,∠CAD=45°,∴∠COD=90°,∵AB=4,∴OC=12AB=2,∴CD的长=902180π⨯⨯=π;22.小明在某次作业中得到如下结果:2222sin 7sin 830.120.990.9945+≈+=, 2222sin 22sin 680.370.93 1.0018+≈+=, 2222sin 29sin 610.480.870.9873+≈+=, 2222sin 37sin 530.600.80 1.0000+≈+=,222222sin 45sin 45()(122+≈+=. 据此,小明猜想:对于任意锐角α,均有22sin sin (90)1αα+-=.(Ⅰ)当30α=时,验证22sinsin (90)1αα+-=是否成立;(Ⅱ)小明的猜想是否成立?若成立,若成立,请给予证明;若不成立,请举出一个反例. 【答案】(Ⅰ)成立,证明见解析;(Ⅱ)成立,证明见解析. 【解析】试题分析:(Ⅰ)成立,当30α=时,将30°与60°的正弦值代入计算即可得证; (Ⅱ)成立,如图,△ABC 中,∠C=90°,设∠A=α,则∠B=90°-α,正确地表示这两个角的正弦并利用勾股定理即可得证.试题解析:(Ⅰ)当30α=时, 22sin sin (90)αα+-=sin 230°+sin 260°=221322⎛⎫+ ⎪⎝⎭=1344+=1,所以22sin sin(90)1αα+-=成立;(Ⅱ)小明的猜想成立.证明如下:如图,△ABC中,∠C=90°,设∠A=α,则∠B=90°-α,sin2α+sin 2(90°-α)=2222222BC AC BC AC ABAB AB AB AB+⎛⎫⎛⎫+==⎪ ⎪⎝⎭⎝⎭=123.自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:使用次数0 1 2 3 4 5(含5次以上)累计车费0 0.5 0.9 a b 1.5同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:使用次数0 1 2 3 4 5人数 5 15 10 30 25 15(Ⅰ)写出,a b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.【答案】(Ⅰ)a=1.2,b=1.4;(Ⅱ)不能获利,理由见解析;【解析】试题分析:(Ⅰ)根据调整后的收费歀:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费通过计算即可得a=1.2,b=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌共享单车的平均车费 为:1100×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.1×15)=1.1(元), 所以估计该校5000名师生一天使用A 品牌共享单车的总车费为:5000×1.1=5500(元), 因为5500<5800,故收费调整后,此运营商在该校投放A 品牌共享单车不能获利.24.如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长;(Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)324【解析】试题分析:(Ⅰ)分情况CP=CD 、PD=PC 、DP=DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由2 ,从而可得324. 试题解析:(Ⅰ)在矩形ABCD 中,AB=6,AD=8,∠ADC=90°,∴DC=AB=6, 22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况:(1)当CP=CD 时,CP=6,∴AP=AC-CP=4 ;(2)当PD=PC 时,∠PDC=∠PCD ,∵∠PCD+∠PAD=∠PDC+∠PDA=90°,∴∠PAD=∠PDA ,∴PD=PA ,∴PA=PC ,∴AP=2AC ,即AP=5;(3)当DP=DC 时,过D 作DQ ⊥AC 于Q ,则PQ=CQ ,∵S △ADC =12 AD·DC=12 AC·DQ ,∴DQ=245AD DC AC = ,∴CQ=22185DC DQ -= ,∴PC=2CQ =365 ,∴AP=AC-PC=145 . 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,点睛:本题主要考查矩形的性质、等腰三角形的判定与性质,相似三角形的判定与性质等,能正确地分情况进行讨论是判定△PCD 要等腰三角形的关键.25.已知直线m x y +=2与抛物线2y ax ax b =++有一个公共点(1,0)M ,且a b <. (Ⅰ)求抛物线顶点Q 的坐标(用含a 的代数式表示);(Ⅱ)说明直线与抛物线有两个交点;(Ⅲ)直线与抛物线的另一个交点记为N . (ⅰ)若211-≤≤-a ,求线段MN 长度的取值范围; (ⅱ)求QMN ∆面积的最小值.【答案】(Ⅰ)抛物线顶点Q 的坐标为(-12,-94a );(Ⅱ)理由见解析; (Ⅲ)(i )55≤MN≤75.(ii )△QMN 面积的最小值为279242+. 【解析】 试题分析:(Ⅰ)由抛物线过点M (1,0),可得b=-2a ,将解析式y=ax 2+ax+b=ax 2+ax-2a 配方得y=a(x+ 12)2- 94a ,从而可得抛物线顶点Q 的坐标为(- 12,- 94a ). (Ⅱ)由直线y=2x+m 经过点M (1,0),可得m=-2.由y=2x-2、y=ax 2+ax-2a ,可得ax 2+(a-2)x-2a+2=0,(*),由根的判别式可得方程(*)有两个不相等的实数根,从而可得直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,得 E (-12,-3), 从而可得△QMN 的面积S=S △QEN +S △QEM =2732748a a -- ,即27a 2+(8S-54)a+24=0,(*) 因为关于a 的方程(*)有实数根, 从而可和S≥279242+,继而得到面积的最小值. 试题解析:(Ⅰ)因为抛物线过点M (1,0),所以a+a+b=0,即b=-2a ,所以y=ax 2+ax+b=ax 2+ax-2a=a(x+12)2-94a ,所以抛物线顶点Q 的坐标为(-12,-94a ). (Ⅱ)因为直线y=2x+m 经过点M (1,0),所以0=2×1+m ,解得m=-2.把y=2x-2代入y=ax 2+ax-2a ,得ax 2+(a-2)x-2a+2=0,(*),所以△=(a-2)2-4a(-2a+2)=9a 2-12a+4由(Ⅰ)知b=-2a ,又a<b ,所以a<0,b>0,所以△>0,所以方程(*)有两个不相等的实数根,故直线与抛物线有两个交点.(ii )作直线x=-12 交直线y=2x-2于点E ,把x=-12代入y=2x-2得,y=-3,即E (-12,-3), 又因为M (1,0),N (2a -2,4a -6),且由(Ⅱ)知a<0, 所以△QMN 的面积S=S △QEN +S △QEM =()12921324a a ⎛⎫----- ⎪⎝⎭=2732748a a -- , 即27a 2+(8S-54)a+24=0,(*)因为关于a 的方程(*)有实数根,所以△=(8S-54)2-4×27×24≥0,即(8S-54)2≥(2 )2, 又因为a<0,所以S=2732748a a -- >274,所以8S-54>0,所以8S-54>0, 所以8S-2,即S≥279242+, 当S=279242+*)可得223满足题意. 故当223,423时,△QMN 面积的最小值为279242+点睛:本题考查的二次函数的综合问题,能正确地应用待定系数法、一元二次方程根的判别式、二次函数的性质等是解决本题的关键.。

相关文档
最新文档