最新版精编初中数学中考完整题库(标准答案)
中考数学题库(含答案和解析)

中考数学题库(含答案和解析)一、选择题(本题共有10小题.每题3分.共30分)1.(3分)﹣2的绝对值等于()A.2 B.﹣2 C.D.±22.(3分)计算2a﹣a.正确的结果是()A.﹣2a3B.1 C.2 D.a3.(3分)要使分式有意义.x的取值范围满足()A.x=0 B.x≠0 C.x>0 D.x<0 4.(3分)数据5.7.8.8.9的众数是()A.5 B.7 C.8 D.9、5.(3分)如图.在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.则CD的长是()A.20 B.10 C.5 D.6.(3分)如图是七年级(1)班参加课外兴趣小组人数的扇形统计图.则表示唱歌兴趣小组人数的扇形的圆心角度数是()A.36°B.72°C.108°D.180°7.(3分)下列四个水平放置的几何体中.三视图如图所示的是()A.B.C.D.8.(3分)△ABC中的三条中位线围成的三角形周长是15cm.则△ABC的周长为()A.60cm B.45cm C.30cm D.cm 9.(3分)如图.△ABC是⊙O的内接三角形.AC是⊙O的直径.∠C =50°.∠ABC的平分线BD交⊙O于点D.则∠BAD的度数是()A.45°B.85°C.90°D.95°10.(3分)如图.已知点A(4.0).O为坐标原点.P是线段OA上任意一点(不含端点O.A).过P、O两点的二次函数y1和过P、A 两点的二次函数y2的图象开口均向下.它们的顶点分别为B、C.射线OB与AC相交于点D.当OD=AD=3时.这两个二次函数的最大值之和等于()A.B.C.3 D.4二、填空题(本题共有6小题.每题4分.共24分)11.(4分)当x=1时.代数式x+2的值是.12.(4分)因式分解:x2﹣36=.13.(4分)甲、乙两名射击运动员在一次训练中.每人各打10发子弹.根据命中环数求得方差分别是=0.6.=0.8.则运动员的成绩比较稳定.14.(4分)如图.在△ABC中.D、E分别是AB、AC上的点.点F在BC的延长线上.DE∥BC.∠A=46°.∠1=52°.则∠2=度.15.(4分)一次函数y=kx+b(k.b为常数.且k≠0)的图象如图所示.根据图象信息可求得关于x的方程kx+b=0的解为.16.(4分)如图.将正△ABC分割成m个边长为1的小正三角形和一个黑色菱形.这个黑色菱形可分割成n个边长为1的小三角形.若=.则△ABC的边长是.三、解答题(本题共有8小题.共66分)17.(6分)计算:+(﹣2)2+tan45°.18.(6分)解方程组.19.(6分)如图.已知反比例函数y=(k≠0)的图象经过点(﹣2.8).(1)求这个反比例函数的解析式;(2)若(2.y1).(4.y2)是这个反比例函数图象上的两个点.请比较y1、y2的大小.并说明理由.20.(8分)已知:如图.在▱ABCD中.点F在AB的延长线上.且BF =AB.连接FD.交BC于点E.(1)说明△DCE≌△FBE的理由;(2)若EC=3.求AD的长.21.(8分)某市开展了“雷锋精神你我传承.关爱老人从我做起”的主题活动.随机调查了本市部分老人与子女同住情况.根据收集到的数据.绘制成如下统计图表(不完整)老人与子女同住情况百分比统计表老人与子女同住情况同住不同住(子女在本市)不同住(子女在市外)其他A50%B5%根据统计图表中的信息.解答下列问题:(1)求本次调查的老人的总数及a、b的值;(2)将条形统计图补充完整;(画在答卷相对应的图上)(3)若该市共有老人约15万人.请估计该市与子女“同住”的老人总数.22.(10分)已知.如图.在梯形ABCD中.AD∥BC.DA=DC.以点D 为圆心.DA长为半径的⊙D与AB相切于A.与BC交于点F.过点D 作DE⊥BC.垂足为E.(1)求证:四边形ABED为矩形;(2)若AB=4.=.求CF的长.23.(10分)为进一步建设秀美、宜居的生态环境.某村欲购买甲、乙、丙三种树美化村庄.已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.现计划用210000元资金.购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍.恰好用完计划资金.求这三种树各能购买多少棵?(3)若又增加了10120元的购树款.在购买总棵树不变的前提下.求丙种树最多可以购买多少棵?24.(12分)如图1.已知菱形ABCD的边长为2.点A在x轴负半轴上.点B在坐标原点.点D的坐标为(﹣.3).抛物线y=ax2+b (a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2).过点B作BE⊥CD于点E.交抛物线于点F.连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t.使△ADF与△DEF相似?若存在.求出t的值;若不存在.请说明理由;②连接FC.以点F为旋转中心.将△FEC按顺时针方向旋转180°.得△FE′C′.当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时.求t的取值范围.(写出答案即可)参考答案与试题解析一、选择题(本题共有10小题.每题3分.共30分)1.【分析】根据绝对值的性质.当a是正有理数时.a的绝对值是它本身a;即可解答.【解答】解:根据绝对值的性质.|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质.①当a是正有理数时.a的绝对值是它本身a;②当a是负有理数时.a的绝对值是它的相反数﹣a;③当a是零时.a的绝对值是零.2.【分析】根据合并同类项的法则:把同类项的系数相加.所得结果作为系数.字母和字母的指数不变.进行运算即可.【解答】解:2a﹣a=a.故选:D.【点评】此题考查了同类项的合并.属于基础题.关键是掌握合并同类项的法则.3.【分析】根据分母不等于0.列式即可得解.【解答】解:根据题意得.x≠0.故选:B.【点评】本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.4.【分析】根据众数是一组数据中出现次数最多的数据解答即可.【解答】解:数据5、7、8、8、9中8出现了2次.且次数最多. 所以众数是8.故选:C.【点评】本题考查了众数的定义.熟记定义是解题的关键.需要注意.众数有时候可以不止一个.5.【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半.即可求出CD的长.【解答】解:∵在Rt△ABC中.∠ACB=90°.AB=10.CD是AB边上的中线.∴CD=AB=5.故选:C.【点评】本题考查了直角三角形斜边上的中线的性质.在直角三角形中.斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点).6.【分析】根据扇形统计图整个圆的面积表示总数(单位1).然后结合图形即可得出唱歌兴趣小组人数所占的百分比.也可求出圆心角的度数.【解答】解:唱歌所占百分数为:1﹣50%﹣30%=20%.唱歌兴趣小组人数的扇形的圆心角度数为:360°×20%=72°.故选:B.【点评】此题考查了扇形统计图.解答本题的关键是熟练扇形统计图的特点.用整个圆的面积表示总数(单位1).用圆的扇形面积表示各部分占总数的百分数.7.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看.所得到的图形.即可得出答案.【解答】解:从主视图、左视图、俯视图可以看出这个几何体的正面、左面、底面是长方形.所以这个几何体是长方体;故选:D.【点评】本题考查了由三视图判断几何体.关键是根据三视图和空间想象得出从物体正面、左面和上面看.所得到的图形.8.【分析】根据三角形的中位线平行且等于底边的一半.又相似三角形的周长的比等于相似比.问题可求.【解答】解:∵△ABC三条中位线围成的三角形与△ABC相似. ∴相似比是.∵△ABC中的三条中位线围成的三角形周长是15cm.∴△ABC的周长为30cm.故选:C.【点评】本题主要考查三角形的中位线定理.要熟记相似三角形的周长比、高、中线的比等于相似比.面积比等于相似比的平方.9.【分析】根据圆周角定理以及推论和角平分线的定义可分别求出∠BAC和∠CAD的度数.进而求出∠BAD的度数.【解答】解:∵AC是⊙O的直径.∴∠ABC=90°.∵∠C=50°.∴∠BAC=40°.∵∠ABC的平分线BD交⊙O于点D.∴∠ABD=∠DBC=45°.∴∠CAD=∠DBC=45°.∴∠BAD=∠BAC+∠CAD=40°+45°=85°.故选:B.【点评】本题考查的是圆周角定理.即在同圆或等圆中.同弧或等弧所对的圆周角相等.直径所对的圆周角是直角.10.【分析】过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M.则BF+CM是这两个二次函数的最大值之和.BF∥DE∥CM.求出AE=OE=2.DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.推出△OBF∽△ODE.△ACM∽△ADE.得出=.=.代入求出BF和CM.相加即可求出答案.【解答】解:过B作BF⊥OA于F.过D作DE⊥OA于E.过C作CM⊥OA于M. ∵BF⊥OA.DE⊥OA.CM⊥OA.∴BF∥DE∥CM.∵OD=AD=3.DE⊥OA.∴OE=EA=OA=2.由勾股定理得:DE=.设P(2x.0).根据二次函数的对称性得出OF=PF=x.∵BF∥DE∥CM.∴△OBF∽△ODE.△ACM∽△ADE.∴=.=.∵AM=PM=(OA﹣OP)=(4﹣2x)=2﹣x.即=.=.解得:BF=x.CM=﹣x.∴BF+CM=.故选:A.【点评】本题考查了二次函数的最值.勾股定理.等腰三角形性质.相似三角形的性质和判定的应用.主要考查学生运用性质和定理进行推理和计算的能力.题目比较好.但是有一定的难度.二、填空题(本题共有6小题.每题4分.共24分)11.【分析】把x=1直接代入代数式x+2中求值即可.【解答】解:当x=1时.x+2=1+2=3.故答案为:3.【点评】本题考查了代数式求值.明确运算顺序是关键.12.【分析】直接用平方差公式分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:x2﹣36=(x+6)(x﹣6).【点评】本题主要考查利用平方差公式分解因式.熟记公式结构是解题的关键.13.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.即可求出答案.【解答】解:∵=0.6.=0.8.∴<.甲的方差小于乙的方差.∴甲的成绩比较稳定.故答案为:甲.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量.方差越大.表明这组数据偏离平均数越大.即波动越大.数据越不稳定;反之.方差越小.表明这组数据分布比较集中.各数据偏离平均数越小.即波动越小.数据越稳定.14.【分析】先根据三角形的外角性质求出∠DEC的度数.再根据平行线的性质得出结论即可.【解答】解:∵∠DEC是△ADE的外角.∠A=46°.∠1=52°.∴∠DEC=∠A+∠1=46°+52°=98°.∵DE∥BC.∴∠2=∠DEC=98°.故答案为:98.【点评】本题考查的是平行线的性质及三角形的外角性质.用到的知识点为:两直线平行.内错角相等.15.【分析】先根据一次函数y=kx+b过(2.3).(0.1)点.求出一次函数的解析式.再求出一次函数y=x+1的图象与x轴的交点坐标.即可求出答案.【解答】解∵一次函数y=kx+b过(2.3).(0.1)点.∴.解得:.一次函数的解析式为:y=x+1.∵一次函数y=x+1的图象与x轴交于(﹣1.0)点.∴关于x的方程kx+b=0的解为x=﹣1.故答案为:x=﹣1.【点评】本题考查了一次函数与一元一次方程.关键是根据函数的图象求出一次函数的图象与x轴的交点坐标.再利用交点坐标与方程的关系求方程的解.16.【分析】设正△ABC的边长为x.根据等边三角形的高为边长的倍.求出正△ABC的面积.再根据菱形的性质结合图形表示出菱形的两对角线.然后根据菱形的面积等于两对角线乘积的一半表示出菱形的面积.然后根据所分成的小正三角形的个数的比等于面积的比列式计算即可得解.【解答】解:设正△ABC的边长为x.则高为x.S△ABC=x•x=x2.∵所分成的都是正三角形.∴结合图形可得黑色菱形的较长的对角线为x﹣.较短的对角线为(x﹣)=x﹣1.∴黑色菱形的面积=(x﹣)(x﹣1)=(x﹣2)2.∴==.整理得.11x2﹣144x+144=0.解得x1=(不符合题意.舍去).x2=12.所以.△ABC的边长是12.故答案为:12.【点评】本题考查了菱形的性质.等边三角形的性质.熟练掌握有一个角等于60°的菱形的两条对角线的关系是解题的关键.本题难点在于根据三角形的面积与菱形的面积列出方程.三、解答题(本题共有8小题.共66分)17.【分析】分别进行二次根式的化简、零指数幂.然后代入tan45°=1.进行运算即可.【解答】解:原式=4﹣1+4+1=8.【点评】此题考查了实数的运算.解答本题关键是掌握零指数幂的运算.二次根式的化简.属于基础题.18.【分析】①+②消去未知数y求x的值.再把x=3代入②.求未知数y的值.【解答】解:①+②得3x=9.解得x=3.把x=3代入②.得3﹣y=1.解得y=2.∴原方程组的解是.【点评】本题考查了解二元一次方程组.熟练掌握加减消元法的解题步骤是关键.19.【分析】(1)把经过的点的坐标代入解析式进行计算即可得解;(2)根据反比例函数图象的性质.在每一个象限内.函数值y随x的增大而增大解答.【解答】解:(1)把(﹣2.8)代入y=.得8=.解得:k=﹣16.所以y=﹣;(2)y1<y2.理由:∵k=﹣16<0.∴在每一个象限内.函数值y随x的增大而增大.∵点(2.y1).(4.y2)都在第四象限.且2<4.【点评】本题考查了待定系数法求反比例函数解析式.反比例函数图象的增减性.是中学阶段的重点.需熟练掌握.20.【分析】(1)由四边形ABCD是平行四边形.根据平行四边形的对边平行且相等.即可得AB=DC.AB∥DC.继而可求得∠CDE=∠F.又由BF=AB.即可利用AAS.判定△DCE≌△FBE;(2)由(1).可得BE=EC.即可求得BC的长.又由平行四边形的对边相等.即可求得AD的长.【解答】(1)证明:∵四边形ABCD是平行四边形.∴AB=DC.AB∥DC.∴∠CDE=∠F.又∵BF=AB.∴DC=FB.在△DCE和△FBE中.∵∴△DCE≌△FBE(AAS)(2)解:∵△DCE≌△FBE.∴EB=EC.∵EC=3.∴BC=2EB=6.∵四边形ABCD是平行四边形.∴AD=BC.【点评】此题考查了平行四边形的性质与全等三角形的判定与性质.此题难度适中.注意数形结合思想的应用.21.【分析】(1)有统计图表中的信息可知:其他所占的比例为5%.又人数为25人.所以可以求出总人数.进而求出a和b的值;(2)有(1)的数据可将条形统计图补充完整;(3)用该老人的总数15万人乘以与子女“同住”所占的比例30%即为估计值.【解答】解:(1)老人总数为250÷50%=500(人).b=%=15%.a=1﹣50%﹣15%﹣5%=30%.(2)如图:(3)该市与子女“同住”的老人的总数约为15×30%=4.5(万人).【点评】本题考查了条形统计图、用样本估计总数的知识.解题的关键是从统计图中整理出进一步解题的信息.22.【分析】(1)根据AD∥BC和AB切圆D于A.求出DAB=∠ADE =∠DEB=90°.即可推出结论;(2)根据矩形的性质求出AB=DE=4.根据垂径定理求出CF=2CE.设AD=3k.则BC=4k.BE=3k.EC=k.DC=AD=3k.在△DEC中由勾股定理得出一个关于k的方程.求出k的值.即可求出答案.【解答】(1)证明:∵⊙D与AB相切于点A.∴AB⊥AD.∵AD∥BC.DE⊥BC.∴DE⊥AD.∴∠DAB=∠ADE=∠DEB=90°.∴四边形ABED为矩形.(2)解:∵四边形ABED为矩形.∴DE=AB=4.∵DC=DA.∴点C在⊙D上.∵D为圆心.DE⊥BC.∴CF=2EC.∵.设AD=3k(k>0)则BC=4k.∴BE=3k.EC=BC﹣BE=4k﹣3k=k.DC=AD=3k.由勾股定理得DE2+EC2=DC2.即42+k2=(3k)2.∴k2=2.∵k>0.∴k=.∴CF=2EC=2.【点评】本题考查了勾股定理.切线的判定和性质.矩形的判定.垂径定理等知识点的应用.通过做此题培养了学生的推理能力和计算能力.用的数学思想是方程思想.题目具有一定的代表性.是一道比较好的题目.23.【分析】(1)利用已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.即可求出乙、丙两种树每棵钱数;(2)假设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵.得出等式方程.求出即可;(3)假设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.求出即可.【解答】解:(1)已知甲、乙丙三种树的价格之比为2:2:3.甲种树每棵200元.则乙种树每棵200元.丙种树每棵×200=300(元);(2)设购买乙种树x棵.则购买甲种树2x棵.丙种树(1000﹣3x)棵.根据题意:200×2x+200x+300(1000﹣3x)=210000.解得x=300∴2x=600.1000﹣3x=100.答:能购买甲种树600棵.乙种树300棵.丙种树100棵;(3)设购买丙种树y棵.则甲、乙两种树共(1000﹣y)棵.根据题意得:200(1000﹣y)+300y≤210000+10120.解得:y≤201.2.∵y为正整数.∴y最大取201.答:丙种树最多可以购买201棵.【点评】本题考查一元一次不等式组的应用.将现实生活中的事件与数学思想联系起来.读懂题列出不等式关系式即可求解.本题难点是(3)中总钱数变化.购买总棵树不变的情况下得出不等式方程.24.【分析】(1)根据已知条件求出AB和CD的中点坐标.然后利用待定系数法求该二次函数的解析式;(2)本问是难点所在.需要认真全面地分析解答:①如图2所示.△ADF与△DEF相似.包括三种情况.需要分类讨论:(I)若∠ADF=90°时.△ADF∽△DEF.求此时t的值;(II)若∠DF A=90°时.△DEF∽△FBA.利用相似三角形的对应边成比例可以求得相应的t的值;(III)∠DAF≠90°.此时t不存在;②如图3所示.画出旋转后的图形.认真分析满足题意要求时.需要具备什么样的限制条件.然后根据限制条件列出不等式.求出t的取值范围.确定限制条件是解题的关键.【解答】解:(1)由题意得AB的中点坐标为(﹣.0).CD的中点坐标为(0.3).分别代入y=ax2+b得.解得..∴y=﹣x2+3.(2)①如图2所示.在Rt△BCE中.∠BEC=90°.BE=3.BC=2∴sin C===.∴∠C=60°.∠CBE=30°∴EC=BC=.DE=又∵AD∥BC.∴∠ADC+∠C=180°∴∠ADC=180°﹣60°=120°要使△ADF与△DEF相似.则△ADF中必有一个角为直角.(I)若∠ADF=90°∠EDF=120°﹣90°=30°在Rt△DEF中.DE=.求得EF=1.DF=2.又∵E(t.3).F(t.﹣t2+3).∴EF=3﹣(﹣t2+3)=t2∴t2=1.∵t>0.∴t=1此时=2..∴.又∵∠ADF=∠DEF∴△ADF∽△DEF(II)若∠DF A=90°.可证得△DEF∽△FBA.则设EF=m.则FB=3﹣m∴.即m2﹣3m+6=0.此方程无实数根.∴此时t不存在;(III)由题意得.∠DAF<∠DAB=60°∴∠DAF≠90°.此时t不存在.综上所述.存在t=1.使△ADF与△DEF相似;②如图3所示.依题意作出旋转后的三角形△FE′C′.过C′作MN⊥x轴.分别交抛物线、x轴于点M、点N.观察图形可知.欲使△FE′C′落在指定区域内.必须满足:EE′≤BE且MN≥C′N.∵F(t.3﹣t2).∴EF=3﹣(3﹣t2)=t2.∴EE′=2EF=2t2.由EE′≤BE.得2t2≤3.解得t≤.∵C′E′=CE=.∴C′点的横坐标为t﹣.∴MN=3﹣(t﹣)2.又C′N=BE′=BE﹣EE′=3﹣2t2.由MN≥C′N.得3﹣(t﹣)2≥3﹣2t2.解得t≥或t≤﹣﹣3(舍).∴t的取值范围为:.【点评】本题是动线型中考压轴题.综合考查了二次函数的图象与性质、待定系数法、几何变换(平移与旋转)、菱形的性质、相似三角形的判定与性质等重要知识点.难度较大.对考生能力要求很高.本题难点在于第(2)问.(2)①中.需要结合△ADF与△DEF 相似的三种情况.分别进行讨论.避免漏解;(2)②中.确定“限制条件”是解题关键.。
初中数学试题及答案中考

初中数学试题及答案中考一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.33333D. π答案:B2. 一个等腰三角形的两边长分别为5和8,那么第三边的长度是:A. 3B. 5C. 8D. 13答案:C3. 如果一个二次方程的解为x1=2和x2=-3,那么这个二次方程可以表示为:A. x^2 - 5x + 6 = 0B. x^2 + x - 6 = 0C. x^2 - x - 6 = 0D. x^2 + 5x + 6 = 0答案:A4. 一个数的相反数是-7,那么这个数是:A. 7B. -7C. 0D. 14答案:A5. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 菱形D. 不规则多边形答案:C6. 一个圆的半径为5cm,那么这个圆的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B7. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C8. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么这个长方体的体积是:A. 8cm³B. 12cm³C. 24cm³D. 36cm³答案:C9. 下列哪个选项是正确的不等式?A. 2x > 3xB. 5x ≤ 2xC. 3x < 6xD. 4x ≥ 8答案:D10. 一个角的补角是它的余角的两倍,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:B二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是________或________。
答案:5 或 -512. 一个等差数列的首项是3,公差是2,那么第5项的值是________。
答案:1113. 如果一个三角形的内角和为180°,其中一个角是60°,另一个角是75°,那么第三个角的度数是________。
初中数学(初升高)中考全国真题题库3(含解析)

初中数学初升高(中考)全国真题题库3(含解析)一、选择题1.(2023·大庆)端午节是我国传统节日,端午节前夕,某商家出售粽子的标价比成本高25%,当粽子降价出售时,为了不亏本,降价幅度最多为( )A.20%B.25%C.75%D.80% 2.(2023·大庆)下列说法正确的是( )A.一个函数是一次函数就一定是正比例函数B.有一组对角相等的四边形一定是平行四边形C.两条直角边对应相等的两个直角三角形一定全等D.一组数据的方差一定大于标准差3.(2023·大庆)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是( )A.B.C.D.4.(2021·河池)如图是由几个小正方体组成的几何体,它的左视图是( )A.B.C.D.5.(2021·河池)下列各式中,与 2a2b 为同类项的是( )A.−2a2b B.−2ab C.2a b2D.2a2 6.(2021·河池)二次函数 y=a x2+bx+c(a≠0) 的图象如图所示,下列说法中,错误的是( )A.对称轴是直线 x=12B.当−1<x<2 时, y<0C.a+c=b D.a+b>−c7.(2021·河池)下列图形中,既是轴对称图形又是中心对称图形的是( ) A.B.C.D.8.(2020·攀枝花)下列式子中正确的是( ).A.a2−a3=a5B.(−a)−1=a C.(−3a)2=3a2D.a3+2a3=3a3 9.(2020·攀枝花)中国抗疫取得了巨大成就,堪称奇迹,为世界各国防控疫情提供了重要借鉴和支持,让中国人民倍感自豪.2020年1月12日,世界卫生组织正式将2019新型冠状病毒名为2019−nCoV .该病毒的直径在0.00000008米-0.000000012米,将0.000000012用科学记数法表示为 a×10n 的形式,则 n 为( ).A.-8B.-7C.7D.8 10.(2020·徐州)3的相反数是( ).A.-3B.3C.−13D.1311.(2020·攀枝花)若关于 x 的方程 x2−x−m=0 没有实数根,则m的值可以为( ).A.-1B.−14C.0D.112.(2020·攀枝花)下列说法中正确的是( ).A.0.09的平方根是0.3B.√16=±4C.0的立方根是0D.1的立方根是 ±1 13.(2020·攀枝花)实数a、b在数轴上的位置如图所示,化简 √(a+1)2+√(b−1)2−√(a−b)2 的结果是( ).A.-2B.0C.-2a D.2b 14.(2020·攀枝花)如图,直径 AB=6 的半圆,绕B点顺时针旋转 30° ,此时点A到了点 A′ ,则图中阴影部分的面积是( ).A.π2B.3π4C.πD.3π二、填空题15.(2023·大庆)1261年,我国宋朝数学家杨辉在其著作《详解九章算法》中提到了如图所示的数表,人们将这个数表称为“杨辉三角”.观察“杨辉三角”与右侧的等式图,根据图中各式的规律,¿展开的多项式中各项系数之和为 .16.(2023·大庆)一个圆锥的底面半径为5,高为12,则它的体积为 .17.(2023·大庆)若关于x的不等式组{3(x−1)>x−68−2x+2a≥0有三个整数解,则实数a的取值范围为 .18.(2023·大庆)在综合与实践课上,老师组织同学们以“矩形的折叠”为主题开展数学活动.有一张矩形纸片ABCD如图所示,点N在边AD上,现将矩形折叠,折痕为BN,点A对应的点记为点M,若点M恰好落在边DC上,则图中与△NDM一定相似的三角形是 .19.(2023·大庆)已知(x−2)x+1=1,则x的值为 .20.(2021·河池)分式方程3x−2=1 的解是 x=¿ .21.(2021·河池)在平面直角坐标系中,一次函数 y=2x 与反比例函数 y=kx(k≠0) 的图象交于A(x1,y1) , B(x2,y2) 两点,则 y1+y2 的值是 .22.(2020·攀枝花)因式分解:a-ab2= .23.(2020·攀枝花)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有 人进公园,买40张门反而合算.三、计算题24.(2021·河池)先化简,再求值:(x+1)2−x(x+1) ,其中 x=2021.四、解答题25.(2023·大庆)为营造良好体育运动氛围,某学校用800元购买了一批足球,又用1560元加购了第二批足球,且所购数量是第一批购买数量的2倍,但单价降了2元,请问该学校两批共购买了多少个足球五、综合题26.(2023·大庆)如图,二次函数y=a x2+bx+c的图象与x轴交于A,B两点,且自变量x的部分取值与对应函数值y如下表:x⋯−101234⋯y⋯0−3−4−305⋯(1)求二次函数y=a x2+bx+c的表达式;(2)若将线段AB向下平移,得到的线段与二次函数y=a x2+bx+c的图象交于P,Q两点(P在Q 左边),R为二次函数y=a x2+bx+c的图象上的一点,当点Q的横坐标为m,点R的横坐标为m+√2时,求tan∠RPQ的值;(3)若将线段AB先向上平移3个单位长度,再向右平移1个单位长度,得到的线段与二次函数y=1t(a x2+bx+c)的图象只有一个交点,其中t为常数,请直接写出t的取值范围.27.(2021·河池)如图,在 Rt△ABC 中, ∠A=90° , AB=4 , AC=3 ,D,E分别是AB,BC边上的动点,以BD为直径的 ⊙O交BC于点F.(1)当 AD=DF 时,求证:△CAD≅△CFD;(2)当 △CED 是等腰三角形且△DEB 是直角三角形时,求AD的长.28.(2021·河池)为了解本校九年级学生的体质健康情况,李老师随机抽取35名学生进行了一次体质健康测试,根据测试成绩制成统计图表.组别分数段人数A x<602B60≤x<755C75≤x<90aD x≥9012请根据上述信息解答下列问题:(1)本次调查属于 调查,样本容量是 ;(2)表中的 a=¿ ,样本数据的中位数位于 组;(3)补全条形统计图;(4)该校九年级学生有980人,估计该校九年级学生体质健康测试成绩在D组的有多少人?29.(2021·河池)如图, ∠CAD 是 △ABC 的外角.(1)尺规作图:作 ∠CAD 的平分线AE(不写作法,保留作图痕迹,用黑色墨水笔将痕迹加黑);(2)若 AE/¿BC ,求证:AB=AC.30.(2020·攀枝花)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线 MN 的距离皆为 100cm .王诗嬑观测到高度 90cm矮圆柱的影子落在地面上,其长为 72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线 MN互相垂直,并视太阳光为平行光,测得斜坡坡度 i=1:0.75 ,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为 150cm ,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否符合题意?(3)若同一时间量得高圆柱落在坡面上的影子长为 100cm ,则高圆柱的高度为多少cm?答案解析部分1.【答案】A【解析】【解答】解:设粽子的降价幅度为x,成本价为a元,则标价为(1+25%)m元,根据题意得(1+25%)m(1-x)≥m,解之:x≥20%,∴当粽子降价出售时,为了不亏本,降价幅度最多为20%.故答案为:A.【分析】设粽子的降价幅度为x,成本价为a元,根据当粽子降价出售时,为了不亏本,可得到关于x的不等式,然后求出不等式的最小值即可.2.【答案】C【解析】【解答】解:A、一个函数是正比例函数就一定是一次函数,故A不符合题意;B、有一组对角相等的四边形不是平行四边形,故B不符合题意;C、两条直角边对应相等的两个直角三角形一定全等,故C符合题意;D、一组数据的方差不一定大于标准差,故D不符合题意;故答案为:C.【分析】利用一次函数不一定是正比例函数,可对A作出判断;利用平行四边形的判定定理可对B 作出判断;利用SAS可对C作出判断;利用一组数据的方差不一定大于标准差,可对D作出判断. 3.【答案】A【解析】【解答】解:从上往下看是一个矩形.故答案为:A.【分析】俯视图就是从几何体的上面往下看,所看到的平面图形,根据几何体可得到是俯视图的选项.4.【答案】A【解析】【解答】解:主视图是由前向后看得到的物体的视图,由前向后看共3列,中间一列有3个小正方形,左右两列各一个小正方形.故从坐左边看只有1列,三行,每一行都只有一个小正方形,故答案为:A.【分析】左视图是由视线从左向右看在侧面所得的视图,从左边看只有1列,三行,每一行都只有一个小正方形,则可解答.5.【答案】A【解析】【解答】与 2a2b 是同类项的特点为含有字母a,b ,且对应 a 的指数为2, b 的指数为1,只有A选项符合;故答案为:A.【分析】字母相同,并且相同字母的指数也相同的两个式子叫同类项. 同类项的条件有两个:1、所含的字母相同;2、相同字母的指数也分别相同. 根据条件分别判断即可.6.【答案】D【解析】【解答】解:A、对称轴为:直线 x=−1+22=12 ,故答案为:A正确,不符合题意;B、由函数图象知,当-1<x<2时,函数图象在x轴的下方,∴当-1<x<2时,y<0,故答案为:B正确,不符合题意;C、由图可知:当x=-1时,y=a-b+c=0,∴a +c=b,故答案为:C正确,不符合题意;D、由图可知:当x=1时,y=a+b+c<0∴a+b<-c,故答案为:D错误,不符合题意;故答案为:D.【分析】根据抛物线与x轴的交点坐标求对称轴方程判断A;在图象中找出x下方部分x的范围判断B;根据x=-1时,y=a-b+c=0,变形可判断C;根据当x=1时,y=a+b+c<0,变形可判断D.7.【答案】B【解析】【解答】解:A、是轴对称图形,不是中心对称图形,故A不符合题意;B、既是轴对称图形,又是中心对称图形,故B符合题意;C、是中心对称图形,不是轴对称图形,故C不符合题意;D、是轴对称图形,不是中心对称图形,故A不符合题意;故答案为:B.【分析】根据轴对称和中心对称图形特点分别分析判断,轴对称图形沿一条轴折叠180°,被折叠两部分能完全重合,中心对称图形绕其中心点旋转180°后图形仍和原来图形重合。
最新中考数学试题及答案

最新中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.5B. √2C. 2/3D. 3.14答案:B2. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5和-5D. 以上都不是答案:C3. 一个等腰三角形的底边长为6,两腰长为5,那么这个三角形的周长是:A. 16B. 17C. 18D. 19答案:A4. 如果一个函数的图像是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 无法确定答案:A5. 一个数的立方根是2,那么这个数是:A. 8B. 6C. 4D. 2答案:A6. 一个数的平方是25,那么这个数是:A. 5B. -5C. ±5D. 25答案:C7. 一个圆的半径是3,那么这个圆的面积是:A. 9πB. 18πC. 27πD. 36π答案:C8. 一个直角三角形的两直角边长分别为3和4,那么斜边长是:A. 5B. 6C. 7D. 8答案:A9. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A10. 下列哪个选项是二次根式?A. √3B. √(-1)C. √(2/3)D. √(2x)答案:D二、填空题(每题4分,共20分)1. 一个数的平方是16,那么这个数是______。
答案:±42. 一个数的绝对值是7,那么这个数是______。
答案:±73. 一个等腰三角形的底边长为8,两腰长为10,那么这个三角形的周长是______。
答案:284. 一个圆的半径是4,那么这个圆的面积是______。
答案:16π5. 一个直角三角形的两直角边长分别为6和8,那么斜边长是______。
答案:10三、解答题(每题10分,共50分)1. 已知一个直角三角形的两直角边长分别为3和4,求斜边长。
答案:根据勾股定理,斜边长为√(3²+4²)=√(9+16)=√25=5。
中考初三数学试题及答案

中考初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14B. √2C. 0.33333…D. 1/3答案:B2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1/5答案:A3. 一个等腰三角形的顶角为40°,那么它的底角是:A. 70°B. 40°C. 50°D. 60°答案:D4. 下列哪个方程是一元二次方程?A. 2x + 3 = 0B. x² - 4x + 4 = 0C. 3x - 2 = 0D. x² - 2xy + y² = 0答案:B5. 一个数的平方根是2,那么这个数是:A. 4C. 2D. -2答案:A6. 一个数的立方是-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B7. 一个直角三角形的两条直角边长分别是3和4,那么它的斜边长是:A. 5B. 7C. 6答案:A8. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π答案:C9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 0答案:C10. 一个数的倒数是1/3,那么这个数是:A. 3B. 1/3C. -3D. -1/3答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是7,这个数是________。
答案:±712. 一个数的平方是16,这个数是________。
答案:±413. 一个数的立方根是-2,这个数是________。
答案:-814. 一个三角形的内角和是________。
答案:180°15. 一个等差数列的首项是2,公差是3,那么它的第5项是________。
答案:1716. 一个等比数列的首项是3,公比是2,那么它的第4项是________。
答案:4817. 一个二次函数y = ax² + bx + c的顶点坐标是(-2, 3),那么a 的值是________。
精选最新初中数学中考考试题库(标准答案)

2019年初中数学中考复习试题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.不论a ,b 为何实数,22248a b a b +--+的值---------------------------------------( )(A )总是正数 (B )总是负数 (C )可以是零 (D )可以是正数也可以是负数2.多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y -3.三角形三边长分别是6、8、10,那么它最长边上的高为 ( ) (A )6 (B )4.8 (C )2.4 (D )8第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题4.如图:DE 是△ABC 的中位线,∠ABC 的平分线交DE 于点F. 求证:AF ⊥BF5. 图8是二次函数122-+-=a x ax y 的图象,则a 的值是____________.6. 一条抛物线的对称轴是x=1且与x轴有惟一的公共点,并且开口方向向下,则这条抛物线的解析式是____________________(任写一个)7. 如图,抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点坐标是(3,0),则A 点的坐标是______________8.线y =a x 2+b x +c 经过A ,B ,C 三点,当x ≥0时,其图象如图所示. (1) 求抛物线的解析式,写出抛物线的顶点坐标; (2) 画出抛物线y =a x 2+b x +c 当x <0时的图象; (3) 利用抛物线y =a x 2+b x +c ,写出x 为何值时,y >0.图 8A9. 如右图,在△ABC 中,BC = 8 cm ,AB 的垂直平分线交AB 于点D,交边AC 于点E , △BCE 的周长等于18 cm ,则AC 的长等于 。
最新版精编初中数学中考考核题库完整版(标准答案)

2019年初中数学中考复习试题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.不论a ,b 为何实数,22248a b a b +--+的值---------------------------------------( )(A )总是正数 (B )总是负数 (C )可以是零 (D )可以是正数也可以是负数2.关于x 的一元二次方程a 2x -5x +a 2+a =0的一个根是0,则a 的值是--------------------( )(A )0 (B )1 (C )-1 (D )0,或-13.若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是----------------------------------------------------------------------------------------------------------------------------------------( )(A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠0 4.D 是ABC ∆的边AB 上的一点,过D 点作DE //BC 交AC 于E 。
已知AD :DB =2:3,则BCED ADE S S 四边形:∆= ( ) (A )2:3 (B )4:9 (C )4:5 (D )4:21第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题5.将图中的△ABC 作下列运动,画出相应的图形: (1)关于y 轴对称图形;(2)以B 点为位似中心,将△ABC 放大到2倍。
6.已知: 2228162n n ⨯⨯=,求n 的值7. 抛物线3)2(2+-=x y 的对称轴是_______________________8. 如图,抛物线对称轴是x=1,与x 轴交于A 、B 两点,若B 点坐标是(3,0),则A 点的坐标是______________A9.线y =a x 2+b x +c 经过A ,B ,C 三点,当x ≥0时,其图象如图所示. (1) 求抛物线的解析式,写出抛物线的顶点坐标; (2) 画出抛物线y =a x 2+b x +c 当x <0时的图象; (3) 利用抛物线y =a x 2+b x +c ,写出x 为何值时,y >0.10.已知:在菱形ABCD 中,分别延长AB 、AD 到E 、F ,使得BE =DF ,连结EC 、FC . 求证:EC =FC .11.如图,AB ⊥BE ,BC ⊥BD ,AB=BE ,BC=BD,求证:AD=CE12.25的相反数是 ▲ ,9的平方根是 ▲ ,计算:24(2)3x x -⋅= ▲ ,23--= ▲ .13.在△ABC 中,D 、E 是AB 上的点,且AD=DE=EB,DF ∥EG ∥BC ,则△ABC 被分成的三部分的面积比S △ADF :S 四边形DEGF :S 四边形EBCG 等于 。
最新版精选初中数学中考测试题库(标准答案)

2019年初中数学中考复习试题(含答案)学校:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.选择题:若关于x的方程2x+(k2-1) x+k+1=0的两根互为相反数,则k的值为--------()(A)1,或-1 (B)1 (C)-1 (D)02.函数y=-12(x+1)2+2的顶点坐标是------------------------------------------------()(A)(1,2) (B)(1,-2) (C)(-1,2) (D)(-1,-2)3.若12,x x是方程22630x x-+=的两个根,则1211x x+的值为---------------------------( )(A)2(B)2-(C)12(D)924.若变量y与x成正比例,变量x又与z成反比例,则y与z的关系是()A.成反比例 B.成正比例C.y与2z成正比例 D.y与2z成反比例5.下列图形中既是中心对称图形又是轴对称图形的是【▲】A B C D6.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 (平方毫米),这个数用科学记数法表示为 【 ▲ 】 A .6107-⨯ B .6107.0-⨯ C .7107-⨯ D .81070-⨯第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题7.如图,四边形ABCD 是⊙O 的内接矩形,AB=2,BC=4,E 是BC 的中点,AE 的延长线交⊙O 于点F ,则EF 的长是_________。
8.21)(a an --= ;212216-+⨯⨯m m = ;23)()(a b b a -⨯-= ;54)1()1(x x --= 。
9.(1)x 28=,则=x ;x248=⨯,则=x ;x 39273=⨯⨯,则=x ;10.计算下列各式(1)n b b b ⋅-⋅-23)( (2) n n 212)3(3)3(-⋅+-+11. 抛物线3)2(2+-=x y 的对称轴是_______________________ 12.m x mx y +++=)14(412的图象与x 轴相交于点A 、B 两点. (1)求证:不论m 为何值该抛物线总经过点(-4,0); (2)若B (x 0,0)且-4<x 0<0,试确定m 的取值范围;(3)在(2)的条件下,如果这个二次函数的图象与一次函数949+-=x y 的图象相交于点C ,且∠BAC 的余弦值为 54,求这个二次函数的解析式.13.如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为________________14.如图,在矩形ABCD 中,AD =6,AB =4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF =CG =2,BE =DH =1,点P 是直线EF 、GH 之间任意一点,连结PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于 ▲ .ABCOED15. 已知:如图9,在ΔABC 中,AB=AC ,AD ⊥BC ,垂足为点D ,AN 是ΔABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年初中数学中考复习试题(含答案)学校:
__________
第I卷(选择题)
请点击修改第I卷的文字说明
一、选择题
1.如图1,已知ABC
∆周长为1,连结ABC
∆三边的中点构成第二个三角形,再连结第二个对角线三边中点构成第三个三角形,依此类推,第2003个三角形周长为-------------------------------()
(A)
1
2002
(B)
1
2003
(C)
2002
1
2
(D)
2003
1
2
2.选择题:若关于x的方程2x+(k2-1) x+k+1=0的两根互为相反数,则k的值为
--------()
(A)1,或-
1 (B)1 (C)-1 (D)0
3.若变量y与x成正比例,变量x又与z成反比例,则y与z的关系是()
A.成反比例 B.成正比例C.y与2z成正比例 D.y与2z成反比例
4
.=-------------------------------------------------()
(A)2
x≠(B)0
x>(C)2
x>(D)02
x
<<
图1
5.如下图,O 是△ABC 的外心(三角形外接圆的圆心叫外心),OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,则OD :OE :OF= ( ) A 、a:b:c B 、1a : 1b : 1
c C 、cosA:cosB:cosC D 、sinA:sinB:sinC
6.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22
(21)30x m x m +-++=的根,则m 等于 ( ) (A )3- (B )5 (C )53-或 (D )53-或
7.三角形三边长分别是6、8、10,那么它最长边上的高为 ( ) (A )6 (B )4.8 (C )2.4 (D )8
8.下列函数图象中,顶点不在坐标轴上的是 ( ) (A )y =2x 2 (B )y =2x 2-4x +2 (C )y =2x 2-1 (D )y =2x 2-4x
9.正方形ABCD 的边长与等腰直角三角形PMN 的腰长均为4cm ,且AB 与MN 都在直线l 上,开始时点B 与点M 重合。
让正方形沿直线向右平移,直到A 点与N 点重合为止,设正方形与三角形重叠部分的面积为y(cm 2
),MB 的长度为x(cm),则y 与x 之间的函数关系的图象大致是 【 ▲ 】
A B C D
10.二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误..的是 【 ▲ 】 A .ab <0 B .ac <0
C .当x <2时,y 随x 增大而增大;当x >2时,y 随x 增大而减小
D .二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根 11.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元
O
A F D
C
E
第10题
x
件大约只占0.000 000 7 (平方毫米),这个数用科学记数法表示为 【 ▲ 】 A .6
107-⨯ B .6
107.0-⨯ C .7
107-⨯ D .8
1070-⨯
第II 卷(非选择题)
请点击修改第II 卷的文字说明
二、填空题
12.在△ABC 中,∠C=900
,BC=2,sinA=23,则边AC 的长是________________
13.
25
的相反数是 ▲ ,9的平方根是 ▲ ,计算:24(2)3x x -⋅= ▲ ,23--= ▲ .
14.已知 22
28162n
n
⨯⨯=,则n=__________ ;
15.在三角形纸片ABC 中,∠C =90°,∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E (如图2),折痕DE 的长为
16.△ABC 中,∠C=90°,将△ABC 折叠使点A 和点B 重合,DE 为折痕,若AC=8,BC=6,
则DC=_________DE=_________.
A
17.已知:如图,梯形ABCD 中,AD ∥BC ,E 是AB 的中点, 直线CE 交DA 的延长线于点F.
(1)求证:△BCE ≌△AFE (2)若AB ⊥BC 且BC =4,AB =6,求EF 的长
18.如图,AB ⊥BE ,BC ⊥BD ,AB=BE ,BC=BD ,求证:AD=CE
19.如图,在菱形ABCD 中,AE ⊥BC 于E ,EC =8,cos ∠B =13
5
,则这个菱形的面积是 ▲ .
E
C
B A
20.在△ABC 中,D 、E 是AB 上的点,且AD=DE=EB,DF ∥EG ∥BC ,则△ABC 被分成的三部分的面积比S △ADF :S 四边形DEGF :S 四边形EBCG 等于 。
21.求二次函数1632
+--=x x y 图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.
22.锐角A满足2sin(A-150
)=3
则∠A=_________________
23.反比例函数y=k
x
的图象经过点(-2,-1),那么k 的值为_________. 24.如果点(a,-2a)在函数y=k
x
的图象上,那么k______0.(填“>”或“<”)
25.若函数 5
2
)2(--=m x m y 是反比例函数,则m 的值为
26.若函数5
)52(--=m x m y 是反比例函数,那么正比例函数x m y )52(-=的图象经过
第 象限
27.函数5)2(32
+--=x y 的图象的开口向 ,对称轴为 ,顶点坐标为 ;当
=x 时,函数取最 值=y ;当 时,y 随着x 的增大而减小
28.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三
C
角形称为“格点三角形”,图中的△ABC 就是格点三角形。
在建立平面直角坐标系后,点B 的坐标为(-1,-1)。
(1).把△ABC 向左平移8格后得到△A 1B 1C 1,画出△A 1B 1C 1的图形并写出点B 1的坐标: .
(2).把△ABC 绕点C 按顺时针方向旋转90°后得到△A 2B 2C ,画出△A 2B 2C 的图形并写出点B 2的坐标: .
(3).把△ABC 以点A 为位似中心放大,使放大前后对应边长的比为1:2,画出△AB 3C 3,△AB 3C 3的面积是△ABC 的面积的 倍.
三、解答题
29.已知x 1和x 2是一元二次方程2x 2+5x -3=0的两根,利用根与系数的关系求下列各式的值:
(1)求| x 1-x 2|的值; (2)求2212
11x x +的值; (3)x 13+x 23.
30.因式分解:3
2
933x x x +++。