状态反馈控制律

合集下载

极点配置法设计状态反馈控制器——自动控制原理理论篇

极点配置法设计状态反馈控制器——自动控制原理理论篇

设计算法--适用于用能控标准形表示的SI系统的算法

a0 f1 0 a1 f 2 1

an1 f n n1
f1 0 a0 f2 1 a1

fn n1 an1
举例
例8-21 设系统的状态空间描述为
x(t)

0 6
1 0 5x(t) 1u(t)
y(t) 2 1x(t)
试求:(1)求状态反馈矩阵F使闭环系统有期望 极点s1,2=-3±2j; (2)绘制带有状态反馈控制器的状态变量图
举例----求解过程
解: 0
B 1
0 1 0 1 AB 6 51 5
rankS


rankB

AB

0 1
1 5

2
系统能控。
举例----求解过程
期望闭环系统特征多项式为:
(s s1)(s s2 ) (s 3 2 j)(s 3 2 j) s2 6s 13
设: F f1 f2
s sI A BF
6 f1
SI系统,所以设 F f1 f2 fn
| sI A BF |
0 1
0 0
s 0
0
s


s

0
a0
0 a1
1

0

1



0
f1
f
2

f
n

an1 1
极点配置法设计状态反馈控制器
——《自动控制原理-理论篇》第8.8节

非线性大作业—直流电动机调速系统的建模与控制系统的设计

非线性大作业—直流电动机调速系统的建模与控制系统的设计
其中,n为矩阵A的维数, 称为系统的能控性判别矩阵。
3、PBH秩判据
线性定常系统(1)为完全能控的充分必要条件是,对矩阵A的所有特征值 均成立, ( )或等价地表示为 , 也即(SI-A)和B是左互质的。
4、PBH特征向量判据
线性定常系统(1)为完全能控的充分必要条件是A不能有与B的所有列相正交的非零左特征向量。也即对A的任一特征值,使同时满足 , 的特征向量 。
所谓最优控制,就是根据建立的系统的数学模型,选择一个容许的控制规律,在一定的条件下,使得控制系统在完成所要求的控制任务时,使某一指定的性能指标达到最优值、极小值或极大值。本文利用线性二次型最优调节器(LQR)方法对移动高架吊车进行最优控制。控制目的是使移动高架吊车能在不平衡点达到平衡,并且能够经受一定的外加干扰[8]。
能控性的直观讨论:
从状态空间的角度进行讨论:输入和输出构成系统外部变量,状态为系统内部变量。能控性主要看其状态是否可由输入影响。每一个状态变量的运动都可由输入来影响和控制,由任意的始点到达原点,为能控,反之为不完全能控。具体来说就是指外加控制作用u(t) 对受控系统的状态变量x(t)和输出变量y(t)的支配能力,它回答了u(t)能否使x(t)和y(t)作任意转移的问题。
3.1.2能控性判据
我们利用线性系统的能控性判据来判断其能控性。
设线性定常系统状态方程为:
(1)
1、格拉姆矩阵判据
线性定常系统(1)为完全能控的充分必要条件是,存在时刻,使如下定义的格拉姆(Gram)矩阵 为非奇异。
其中,该判据的证明用到了范数理论中的矩阵范数,在此不再赘述。
2、秩判据
线性定常系统(1)为完全控的充分必要条件是 ,
2 直流电动机调速系统数学模型的建立

现代控制理论-09(第5章状态反馈控制器设计)

现代控制理论-09(第5章状态反馈控制器设计)

期望的闭环特征多项式
(λ − λ1 )(λ − λ 2 )(λ − λ3 ) = λ3 + b2 λ2 + b1 λ + b0
要实现极点配置,须
λ3 + (a 2 + k 2 )λ2 + (a1 + k1 )λ + a 0 + k 0 = λ3 + b2 λ2 + b1λ + b0
a 0 + k 0 = b0 a1 + k1 = b1 a 2 + k 2 = b2
− 设计一个状态反馈控制器,使得闭环极点是-2, 1 ± j

确定能控标准型实现
1 0⎤ ⎡0 ⎡0 ⎤ x = ⎢0 0 1⎥ x + ⎢0⎥u ⎢ ⎥ ⎢ ⎥ ⎢0 − 2 − 3⎥ ⎢1⎥ ⎣ ⎦ ⎣ ⎦ y = [10 0 0]x
状态反馈控制器 u = − Kx ,K = [k1 k 2 k3 ] 闭环多项式:det[λI − ( A − BK )] = λ3 + (3 + k 3 )λ2 + (2 + k 2 )λ + k1 期望多项式: (λ + 2)(λ + 1 − j)(λ + 1 + j) = λ3 + 4λ2 + 6λ + 4
问题:对一般状态空间模型,如何解极点配置问题? 思路:考虑能控状态空间模型 将能控状态空间模型等价地转化为能控标准型 如何从能控标准型模型的解导出一般模型的极 点配置控制器。
系统模型
x = Ax + Bu
~ TAT −1 = A, ~ TB = B
0 ⎤ 0 ⎥ ⎥ ⎥, ⎥ 1 ⎥ − an−1 ⎥ ⎦ ⎡0 ⎤ ⎢0 ⎥ ~ ⎢ ⎥ B=⎢ ⎥ ⎢ ⎥ ⎢0 ⎥ ⎢1⎥ ⎣ ⎦

状态反馈控制

状态反馈控制

Abk Nhomakorabea
A1

0
A A
2 4


b1

0

k1
k2

A
1

b1k1 0
A2
b1k 2 A4

A4的特征值不受 k 的影响,即A-bk中的一部分特征值不受k
的影响,这与可任意配置A-bk的特征值相矛盾。矛盾表明系
8
定理:
闭环方程(9-159) 的系统矩阵A-bk 的特征值可以由 状态反馈增益阵 k 配置到复平面的任意位置,其充分 必要条件是(9-157)式的系统可控。
证明:
先证充分性
因为(9-157)式的系统可控,则存在可逆矩阵P,将
(9-157)式的系统通过 x Px 的变换化为可控标准形。
9
x Ax b u
u v kx v kP1x v kx
考虑矩阵 k kP 1
k kP
0
1


1

A bk



1

(a 0 k 0 ) (a1 k1 )
(a n1 k n1 )
11
它的特征式为
det[sI (A bk)] s n (a n1 k n1 )s n1 (a1 k1 )s (a 0 k 0 ) 由于
不可控。这一性质称为状态反馈不改变系统 的可控性。
状态反馈可能改变系统的可观测性。
即原来可观的系统在某些状态反馈下,闭环可以是不 可观的。同样,原来不可观的系统在某些状态反馈下, 闭环可以是可观的。状态反馈是否改变系统的可观测 性,要进行具体分析。

状态反馈控制

状态反馈控制

本科毕业论文(设计)题目状态反馈控制学院计算机与信息科学学院专业自动化(控制方向)年级2009级学号222009321042049 姓名王昌洪指导老师何强成绩2013 年4 月18 日状态反馈控制王昌洪西南大学计算机与信息科学学院,重庆400715摘要:现代控制理论的特色为状态反馈控制,状态反馈控制经过近几十年的发展演变,在现实控制系统中应用越来越是广泛,由于系统的内部特性可以由状态变量全面的反应出来,因而相对于输出反馈控制,状态反馈更加的有利于改善系统的控制性能。

但是,在实际的系统中,状态变量由于其难于直接测量,所以进行状态反馈总是很难实现。

本论文将论述状态反馈基本原理,并通过举例说明状态反馈控制的优越性,同时将对状态反馈控制进行Matlab仿真,使系统满足提出的设计要求。

关键词:状态反馈;极点配置;Matlab仿真;时域指标State Feedback ControlWang changhongSouthwest university school of computer and information science, chongqing, 400715Abstract:Modern control theory, the characteristics for the state feedback control, state feedback control through decades of development and evolution, in the real control system is applied more and more widely, because the internal characteristics of the system can be fully reflected by the state variables,So relative to the output feedback control, state feedback are more favorable to improve the control performance. However, in practical systems, the state variable because of its difficult to measure directly, so the state feedback is always difficult to achieve.This paper will describe the state feedback principle, and illustrates the superiority of the state feedback control, at the same time, the state feedback control for Matlab simulation, the system meets the requirements of the design.Key words:State feedback;Pole assignment;Matlab simulation;Time domain index目录1 引言 (1)2 状态反馈控制原理 (2)3 状态反馈矩阵可控性和可观性 (2)3.1 状态反馈系统的可控性 (2)3.2状态反馈系统的可观性 (3)4 极点配置问题 (4)5 极点配置 (5)6 状态反馈控制实例 (6)7 加入干扰信号后的状态反馈系统 (12)7.1 系统输入端产生干扰信号 (12)7.2 系统中产生干扰信号(1) (12)7.3 系统中产生干扰信号(2) (13)8 分析与总结 (15)参考文献: (16)1 引言随着状态观测器理论与状态估计方法的发展,卡尔曼-布什滤波方法的出现,以及计算机仿真技术的越来越成熟,状态反馈控制方法应用越来越广泛。

第13章 线性定常系统的状态反馈和状态观测器设计

第13章 线性定常系统的状态反馈和状态观测器设计
试设计状态反馈增益矩阵k,使闭环极点配置在-1,-2上。
第13章 线性定常系统的状态反馈和状态观测器设计 解 (1)系统的能控矩阵
因为rankUc=2,所以系统是能控的。 故可以通过状态反馈实现闭环系统极点的任意配置
第13章 线性定常系统的状态反馈和状态观测器设计 (2)期望闭环极点配置在-1,-2,由
第13章 线性定常系统的状态反馈和状态观测器设计
第13章 线性定常系统的状态反馈 和状态观测器设计
13.1 状态反馈与输出反馈 13.2 闭环系统的极点配置 13.3 状态观测器的设计
第13章 线性定常系统的状态反馈和状态观测器设计
13.1 状态反馈与输出反馈
13.1.1 状态反馈 状态反馈就是将系统的每一个状态变量乘以相应的反馈
得 (3)求状态反馈增益矩阵k,则
第13章 线性定常系统的状态反馈和状态观测器设计 (4)状态反馈系统模拟结构图如图13-4所示。
图13-4 状态反馈系统模拟结构图
第13章 线性定常系统的状态反馈和状态观测器设计
2.方法二 求解实际问题的状态反馈增益矩阵k 的步骤为: (1)计算能控性矩阵Uc,判断系统是否能控; (2)根据闭环系统的期望极点计算系统的期望特征多项 式:
13.4 带观测器的状态反馈系统
13.4.1 系统的结构和状态空间表达式 带观测器的状态反馈系统由三部分组成,即原系统、观
测器和控制器,如图13-7所示。
第13章 线性定常系统的状态反馈和状态观测器设计
图13-7 带状态观测器的反馈系统
第13章 线性定常系统的状态反馈和状态观测器设计 设能控能观测的受控系统为
绍,下面就其特点和应用方面略加讨论。 (1)状态反馈与输出反馈的共同特点是:反馈的引入并不

第5章状态反馈控制器及状态观测器

第5章状态反馈控制器及状态观测器

极点配置定理: 线性(连续或离散)多变量系统能任 意配置极点的充分必要条件是,该系统状态完全能控。
27
极点配置的方法:
一、采用状态反馈 (Ⅰ)定理:线性定常系统可通过线性状态反馈任意地配置其全 部极点的充要条件是:此被控系统状态完全能控。 (Ⅱ)方法: 单输入单输出线性定常系统的状态方程为:
& x=Ax+Bu
u 若线性反馈控制律为:
= v - Kx
28
按指定极点配置设计状态反馈增益阵的基本方法: 选择状态反馈增益矩阵使系统的特征多项式 det[λI − ( A − bK )]
* f (λ ) ,即 等于期望的特征多项式
det[λI − ( A − bK )] = f * (λ )
按指定极点配置设计状态反馈增益阵的基本步骤 (1)判断系统能控性 (2)求能控标准型的变换矩阵P
n −1 L SC = ⎡ b Ab A b⎤ ⎣ ⎦ −1 = L 0 0 1 P S [ ] 1 C
⎡ P ⎤ 1 ⎢ PA ⎥ P=⎢ 1 ⎥ ⎢ M ⎥ ⎢ n −1 ⎥ ⎣P ⎦ 1A
29
3)求出被控对象的特征多项式
f (λ ) = det[ λI − A] = λn + an−1λn−1 + L + a1λ + a0
⎡0 2 ⎤ rank[ B AB] = rank ⎢ =2=n ⎥ ⎣1 1 ⎦ ⎡C ⎤ ⎡1 2 ⎤ rank ⎢ ⎥ = rank ⎢ =2=n ⎥ ⎣CA⎦ ⎣7 4 ⎦
开环系统为状态能控又能观的。 2. 经状态反馈u=v-Kx后的闭环系统的状态方程为
⎡1 2 ⎤ ⎡0 ⎤ x ′ = ( A − BK ) x + Bv = ⎢ x + ⎢ ⎥v ⎥ ⎣0 0 ⎦ ⎣1 ⎦

系统的传递函数矩阵为

系统的传递函数矩阵为

E1
k2d2 Ad2 L M
定义 若(A,B,C) 的传函阵G(s)p=q是对角形非奇异 矩阵,则称系统(4-32)是解耦的。
n1(s )
d1(s
)
G(s
)
0
0L
n 2 (s ) d2 (s )
O
0
0
0
n
p
(s
)
dp (s )
ni (s ) 不恒为零。
di (s )
2
例:考虑如下系统:
1
y1 y 2
=G(s
0 0 0 1 0
x&
0
0
1
x
0
0 u
1 2 3 0 1
y
1 0
1 0
0 1
x
试计算di 和 Ei

c1B=[1 0], d1 =0; E1=[1 0]
c2B=[0 1], d2=0; E2=[0 1]
16
3. 开、闭环传递函数阵 引入非负整数 di 及非零行向量Ei后, 记
E
E1
E2
即可。
23
为此,先证明: ci (A BK)k ci Ak,k 0,1,2,L ,di
由k=0、1,…..,依次证明即可。
开环: Ei : ci Adi B 0 ciAk B 0, k di
于是:
1)k 0,1,L ,di 1时,ci (A BK)k BH ci Ak BH 0;
§4-3 用状态反馈进行解耦控制 一、解耦问题的提法
1.解耦系统的定义
系统动态方程为 x& Ax Bu , y Cx (4-32)
这里A、B、C分别为n×n、n×p、p×n的矩阵。由于p=q, 这是一个方阵解耦问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

状态反馈控制律
状态反馈控制律是现代控制理论中常用的控制方法,其主要目的是通过测量系统状态并通过控制回路将它们反馈到控制器中,以实现对系统的精确控制。

该方法在航空航天、机器人、汽车、工业自动化和人工智能等领域得到广泛应用。

状态反馈控制律的基本原理是将系统状态作为反馈信号,通过控制回路使系统状态趋向所期望的状态。

在状态反馈控制律中,控制器的输出不仅仅取决于系统输入,还取决于当前的系统状态。

因此,可以对系统状态进行实时调节来实现对系统的更好控制。

在状态反馈控制律中,通常采用线性控制理论,因为它具有解析和可行性证明,加之其具有简明和清晰的数学结构,使其广泛应用。

线性控制是在系统分析和设计中的基本工具,因为它可以转化为增益和复杂度较低的运算。

在状态反馈控制律中,控制器可以通过一个动态方程来描述,即状态反馈控制律通常是一种线性动态反馈控制器,它将当前的状态变量作为控制输入,以使系统达到期望状态。

在状态反馈控制律的应用中,必须考虑系统的可观测性和可控性。

可观测性是指通过系统的输出可以确定系统
的状态,可控性是指可以通过对输入进行控制可以使系统到达任意状态。

通常可以通过观察和控制矩阵的秩和奇异值来确定系统的可观测性和可控性。

如果矩阵的秩和奇异值合理,那么系统是可观测和可控的,即状态反馈控制律可以应用于该系统。

状态反馈控制律可以应用于具有多个输入和多个输出的系统,例如,如果某个系统具有多个输入和多个输出,那么必须在控制器中设计多组状态反馈控制律,以保证每个输入和输出的控制都能得到最优化的控制。

同时,如果系统是非线性的,则必须通过将系统线性化来实现状态反馈控制律的应用。

状态反馈控制律在航空航天领域的应用,例如飞行控制系统,在任务执行期间反馈恒定的状态变量,例如飞行姿态、高度和速度等。

在机器人领域,通过对机器人系统进行状态反馈控制律的应用,可以实现控制机器人行动,从而执行一系列特定的任务,例如清扫、维护和运输等。

在汽车工业和工业自动化领域,可以通过状态反馈控制律,实现对汽车和工业机器的高应变控制,从而提高工作效率和减少错误率。

总之,状态反馈控制律是一种非常有用的控制方法,可以应用于许多领域,包括航空航天、机器人、汽车、工业自动化以及人工智能等。

通过状态反馈控制律,可以实
时调整系统状态,从而实现对系统的更好控制,提高生产效率和降低失误率。

相关文档
最新文档