天线基础概述优秀课件
合集下载
天线基础知识(全)PPT课件

• 这时出现了分析天线公差的统计理论,发展了天线阵列的综合 理论等。
• 1957年美国研制成第一部靶场精密跟踪雷达AN/FPS-16,随后各 种单脉冲天线相继出现,同时频率扫描天线也付诸应用。
• 在50年代,宽频带天线的研究有所突破,产生了非频变天线理 论,出现了等角螺旋天线、对数周期天线等宽频带或超宽频带 天线。
天线的方向性
3/25/2020
7
Dept.PEE Hefei Normal
天线的方向性
3/25/2020
8
Dept.PEE Hefei Normal
天线的方向性
D=0.32 λ, S=0.25 λ, N=10
3/25/2020
9
Dept.PEE Hefei Normal
无线电电磁频谱
3Hz 30Hz 300Hz 3kHz 30kHz 300kHz 3MHz 30MHz 300MHz 3GHz 30GHz 300GHz 3THz 30THz 300THz
主 编:John D. Kraus
出版社:the McGraw-Hill Companies 出版时间:2002
《天线》
编著:[美]John D.Kraus Ronald J. Marhefka
出版社:电子工业出版社 2004年4月 第一版
《Radio Propagation for Modern Wireless Systems》
线电波来传递信号的,而无线电波的发射和接收都通过天线来完成。 因此天线设备是无线电系统中重要的组成部分。图1.和图2.指出了 天线设备在两种典型的无线电系统中的地位。
3/25/2020
11
Dept.PEE Hefei Normal
天线功能
• 1957年美国研制成第一部靶场精密跟踪雷达AN/FPS-16,随后各 种单脉冲天线相继出现,同时频率扫描天线也付诸应用。
• 在50年代,宽频带天线的研究有所突破,产生了非频变天线理 论,出现了等角螺旋天线、对数周期天线等宽频带或超宽频带 天线。
天线的方向性
3/25/2020
7
Dept.PEE Hefei Normal
天线的方向性
3/25/2020
8
Dept.PEE Hefei Normal
天线的方向性
D=0.32 λ, S=0.25 λ, N=10
3/25/2020
9
Dept.PEE Hefei Normal
无线电电磁频谱
3Hz 30Hz 300Hz 3kHz 30kHz 300kHz 3MHz 30MHz 300MHz 3GHz 30GHz 300GHz 3THz 30THz 300THz
主 编:John D. Kraus
出版社:the McGraw-Hill Companies 出版时间:2002
《天线》
编著:[美]John D.Kraus Ronald J. Marhefka
出版社:电子工业出版社 2004年4月 第一版
《Radio Propagation for Modern Wireless Systems》
线电波来传递信号的,而无线电波的发射和接收都通过天线来完成。 因此天线设备是无线电系统中重要的组成部分。图1.和图2.指出了 天线设备在两种典型的无线电系统中的地位。
3/25/2020
11
Dept.PEE Hefei Normal
天线功能
天线基础知识课件

重新安装
修复完成后,重新安装天线, 确保安装牢固。
天线的升级与改造方案
升级方案
根据实际需求和技术发展,对天线进 行升级改造,提高天线的性能和功能 。
改造方案
根据实际场景和需求,对天线进行改 造,如改变天线结构、增加天线数量 等。
方案实施
制定详细的实施方案,包括改造计划 、时间安排、人员分工等,确保改造 顺利进行。
04
天线的应用领域
通信领域
移动通信
01
手机、无线电对讲机等移动通信设备使用天线接收和发送信号
。
卫星通信
02
卫星地面站使用天线与卫星进行通信。
无线局域网
03
路由器、电脑等设备通过天线连接无线网络。
雷达领域
天气预报雷达
用于监测天气状况,如风切变、降水等。
导航雷达
用于飞机、船舶等导航。
军事雷达
用于探测目标、制导武器等。
05
天线的设计与制作
天线的设计原则与方法
匹配原则
天线应与发射和接收设 备相匹配,以确保信号
的最佳传输。
效率原则
天线应具有高效率,以 减少信号的损失和干扰
。
抗干扰原则
天线应具有抗干扰能力 ,以减少外部信号的干
扰。
多功能性原则
天线应具有多功能性, 以满足不同的应用需求
。
天线的制作材料与工艺流程
01
电磁波在空间中以波的形 式传播,其传播速度等于 光速。
电磁波的特性
电磁波具有频率、波长、 振幅等特性,不同特性的 电磁波具有不同的传播方 式和性质。
天线辐射原理
天线的作用
天线是用来发射或接收电 磁波的设备,其作用是将 电信号转换为电磁波或将 电磁波转换为电信号。
修复完成后,重新安装天线, 确保安装牢固。
天线的升级与改造方案
升级方案
根据实际需求和技术发展,对天线进 行升级改造,提高天线的性能和功能 。
改造方案
根据实际场景和需求,对天线进行改 造,如改变天线结构、增加天线数量 等。
方案实施
制定详细的实施方案,包括改造计划 、时间安排、人员分工等,确保改造 顺利进行。
04
天线的应用领域
通信领域
移动通信
01
手机、无线电对讲机等移动通信设备使用天线接收和发送信号
。
卫星通信
02
卫星地面站使用天线与卫星进行通信。
无线局域网
03
路由器、电脑等设备通过天线连接无线网络。
雷达领域
天气预报雷达
用于监测天气状况,如风切变、降水等。
导航雷达
用于飞机、船舶等导航。
军事雷达
用于探测目标、制导武器等。
05
天线的设计与制作
天线的设计原则与方法
匹配原则
天线应与发射和接收设 备相匹配,以确保信号
的最佳传输。
效率原则
天线应具有高效率,以 减少信号的损失和干扰
。
抗干扰原则
天线应具有抗干扰能力 ,以减少外部信号的干
扰。
多功能性原则
天线应具有多功能性, 以满足不同的应用需求
。
天线的制作材料与工艺流程
01
电磁波在空间中以波的形 式传播,其传播速度等于 光速。
电磁波的特性
电磁波具有频率、波长、 振幅等特性,不同特性的 电磁波具有不同的传播方 式和性质。
天线辐射原理
天线的作用
天线是用来发射或接收电 磁波的设备,其作用是将 电信号转换为电磁波或将 电磁波转换为电信号。
天线的基础知识篇 PPT

1.42 端口测得的驻波比如左表所示。
2、方向图
天线的方向性常用方向图来直观表达。 天线的辐射是三维的,在工程上为了方
便,常采用水平和垂直两个面的方向图 来描述天线的方向性。 平面方向图有直角坐标方向图和极坐标 方向图,其中极坐标方向图更加直观
2、方向图
方向图像一个“汽车轮胎”
水平面 H面
对天线的要求
高效率: 天线把输入功率全部辐射出去。(理
想状态) 方向性:
在通信的方向上有辐射,不需要的方 向上没有辐射。(理想状态)
根据什么参数判断天线的好坏?
一般要关注的天线的参数: 1、电压驻波比 2、方向图 3、方向系数和增益 4、带宽 5、极化
1、电压驻波比(VSWR)
电压驻波比(VSWR): 入射波与从天线回来的反射波在馈线中 叠加,形成驻波状态。馈线中的电压最 大值与电压最小值的比值就是电压驻波 比。当天线端口没有反射时,就是理想 匹配,驻波比为1;当天线端口全反射时, 驻波比为无穷大。
VSWR
弦上的驻波
驻波比从一个方面反映了天线的效率。
驻波比越大,表示反射的功率越大,效 率越低。
一般要求驻波比小于等于1.5
回波损耗
50 欧姆
前向: 1W 回波: 0.05W
80 欧姆
0.95 W
此例中,回波损耗为 10log(1/0.05) = 14dB , VSWR (驻波比) 是对此现象的另一种度量方法
方向系数和增益
9.85dBd=12dBi 半波振子的增益是2.15dBi
4、带宽(天线的工作频率范围)
无论是发射天线还是接收天线,它们 总是在一定的频率范围内工作的,通常, 工作在中心频率时天线所能输送的功率最 大,偏离中心频率时它所输送的功率都将 减小,据此可定义天线的频率带宽。
天线的知识讲座PPT课件

天线的基本知识
1.3.4 波瓣宽度
方向图通常都有两个或多个瓣,其中辐射强度最大的瓣称为主瓣,其余的瓣称 为副瓣或旁瓣。参见图1.3.4 a , 在主瓣最大辐射方向两侧,辐射强度降低 3 dB(功
率密度降低一半)的两点间的夹角定义为波瓣宽度(又称 波束宽度 或 主瓣宽度 或 半功率角)。波瓣宽度越窄,方向性越好,作用距离越远,抗干扰能力越强。
1.3 天线方向性的讨论
1.3.1 天线方向性
发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功 能之二是把大部分能量朝所需的方向辐射。 垂直放置的半波对称振子具有平放的 “面包圈” 形的立体方向图(图1.3.1 a)。 立体方向图虽然立体感强,但绘制困难, 图1.3.1 b 与图1.3.1 c 给出了它的两个主平面方向图,平面方向图描述天线在某指定 平面上的方向性。从图1.3.1 b 可以看出,在振子的轴线方向上辐射为零,最大辐射 方向在水平面上;而从图1.3.1 c 可以看出,在水平面上各个方向上的辐射一样大。
半波对称振子的增益为G = 2.15 dBi ; 4个半波对称振子 沿垂线上下排列,构成一个垂直四元阵,其增益约为G = 8.15 dBi ( dBi这个单位表示比较对象是各向均匀辐射的理想点源) 。 如果以半波对称振子作比较对象,则增益的单位是dBd .
半波对称振子的增益为G = 0 dBd (因为是自己跟自己比,比值为1,取对 数得零值。) ; 垂直四元阵,其增益约为G = 8.15 – 2.15 = 6 dBd .
两个半波振子(带反射板)
在垂直面上的配置
反 射 板
长 度 为 L
增益为 G = 11 ~ 14 dB
两
反
个
射
半
天线PPT课件(完整版)

Hertz ,KIT的教授 无线电之父
赫兹实验的无线电系统
天线发展简史
二、1901, 马可尼(Guglielmo Marconi, 1874-1937,1909 年 诺贝尔物理学奖) 1901年马可尼成功实现横穿大西洋(英国—加拿大) 的无线电通信。位于英国(Poldhu, England)的发射天线 由50根斜拉导线组成,用悬于60米高的木塔间的钢索支撑。 位于加拿大(Newfoundland, Canada)的接收天线是200米 长的导线,由风筝牵引。 马可尼,意大 利人,当时年 仅20岁。
1 H A
B H A
A
-磁矢量位函数
§1.1 辅助函数法
B E t 1 H A
E jA E jA
2 H A A A D H J t
§1.3 磁基本振子
1931年,英国的著名物理学家狄拉克(1933年诺 贝尔物理学奖获得者)首先从理论上讨论了磁单极 子存在的问题。1975年,加利福尼亚和休斯顿大学的 一个小组宣称,他们从高空气球的实验中发现了磁 单极子,曾哄动了当时的物理学界。但后来发现, 如果正确考虑实验中的系统误差,从他们的实验结 果中并不能得出这个结论。1982年3月,美国斯坦福 大学的卡布莱拉又宣称,他利用一个在9K温度下的 铌超导线圈捕捉到一个磁单极子。不过至今许多类 似的实验始终未能发现同样的事例。
I 0l e jkr Ar Az cos cos 4 r I 0l e jkr A Az sin sin 4 r
A 0
1 1 Ar ˆ rA 对于磁场: H r r
天线基本原理及常用天线介绍ppt课件

.
3、天线的工作频率范围(带宽)
无论是发射天线还是接收天线,它们总是在一定的 频率范围内工作的,通常,工作在中心频率时天线所能 输送的功率最大,偏离中心频率时它所输送的功率都将 减小,据此可定义天线的频率带宽。
有几种不同的定义: 一种是指天线增益下降三分贝时的频带宽度; 一种是指在规定的驻波比下天线的工作频带宽度。
.
806~960MHz的超宽频天线
现在的一副天线相当于原来的三副天线, 并且具备电调功能,既提高. 了产品性能,又在很大程度上降低了天线的生产成本
3G(1710~2170MHz)频段的超宽频天线
现在的一副天线相当于原来的三副天线, 并且具备电调功能,既提高了. 产品性能,又在很大程度上降低了天线的生产成本
峰值 - 3dB点
Peak - 3dB
10dB 波束宽度 - 10dB点
120° (eg)
峰值
- 10dB点
Peak - 10dB
15° (eg)
Peak
32° (eg)
Peak
Peak - 3dB
俯仰面即. 垂直面方向图
Peak - 10dB
方向图旁瓣显示
上旁瓣抑制 下旁瓣抑制
.
8、方向图在移动组网中的应用
方向图可用来说明天线在空间各个方向上所具有的 发射或接收电磁波的能力。
.
天线的主要技术指标
天线匹配指标
驻波比 隔离度
天线辐射特性指标
与国际接轨的 天性辐射特性
增益
主瓣波束宽度
第一副瓣抑制
前后比
交叉极化比
轴向 ±30
波束效率
3dB 10dB
杂散因子
3dB 10dB
.
≤1.4
3、天线的工作频率范围(带宽)
无论是发射天线还是接收天线,它们总是在一定的 频率范围内工作的,通常,工作在中心频率时天线所能 输送的功率最大,偏离中心频率时它所输送的功率都将 减小,据此可定义天线的频率带宽。
有几种不同的定义: 一种是指天线增益下降三分贝时的频带宽度; 一种是指在规定的驻波比下天线的工作频带宽度。
.
806~960MHz的超宽频天线
现在的一副天线相当于原来的三副天线, 并且具备电调功能,既提高. 了产品性能,又在很大程度上降低了天线的生产成本
3G(1710~2170MHz)频段的超宽频天线
现在的一副天线相当于原来的三副天线, 并且具备电调功能,既提高了. 产品性能,又在很大程度上降低了天线的生产成本
峰值 - 3dB点
Peak - 3dB
10dB 波束宽度 - 10dB点
120° (eg)
峰值
- 10dB点
Peak - 10dB
15° (eg)
Peak
32° (eg)
Peak
Peak - 3dB
俯仰面即. 垂直面方向图
Peak - 10dB
方向图旁瓣显示
上旁瓣抑制 下旁瓣抑制
.
8、方向图在移动组网中的应用
方向图可用来说明天线在空间各个方向上所具有的 发射或接收电磁波的能力。
.
天线的主要技术指标
天线匹配指标
驻波比 隔离度
天线辐射特性指标
与国际接轨的 天性辐射特性
增益
主瓣波束宽度
第一副瓣抑制
前后比
交叉极化比
轴向 ±30
波束效率
3dB 10dB
杂散因子
3dB 10dB
.
≤1.4
《天线基础培训》课件

05
天线基础培训总结
培训内容回顾
天线基础知识
介绍了天线的定义、分类、基 本参数等,帮助学员了解天线
的基本概念和原理。
天线设计
讲解了天线设计的原则、步骤 和方法,以及如何根据实际需 求选择合适的天线类型和参数 。
天线应用
介绍了天线在通信、雷达、导 航等领域的应用,以及不同应 用场景下天线的选择和优化。
《天线基础培训》ppt 课件
contents
目录
• 天线基础知识 • 天线设计与优化 • 天线在通信系统中的应用 • 天线的新技术与未来发展 • 天线基础培训总结
01
天线基础知识
天线的定义与作用
总结词
天线的定义与作用
详细描述
天线是无线通信系统中的重要组成部分,用于接收和发送无线电波。它能够将传输线中的导行波转换为自由空间 中的电磁波,或者将自由空间中的电磁波转换为导行波。天线在通信系统中发挥着至关重要的作用,它的性能直 接影响到无线信号的接收和发送质量。
天线测量与性能评估
讲解了天线测量和性能评估的 方法、标准和实际操作,帮助 学员了解如何评估天线的性能
和质量。
培训效果评估
学员反馈
通过问卷调查和口头反馈,收集学员对培训内容、讲师、组织等方面 的意见和建议,以改进后续的培训活动。
测试与考试
对学员进行测试和考试,以评估学员对天线基础知识的掌握程度和应 用能力。
。
A
B
C
D
加强互动与交流
组织更多的互动和交流活动,鼓励学员之 间的合作和学习经验的分享,提高培训效 果和学习效率。
增加实践环节
增加更多的实践操作和实验,让学员通过 实际操作加深对理论知识的理解和掌握。
第八章天线基础PPT课件

sin
• 方向性图如图8.5.3(a)所示,主瓣宽度为 2 780 。
半波天线的辐射场可由式(8.5.3)取 l 得到
4
E
j 60I r
cos
2
cos
e
jkr
sin
• 半波天线的辐射功率为
Pr
Ss 平均
ds
1
2 120
2 0
0
E
2 r2 sin d d
240 0 0
E2 max
r2
2
240 Pr
F 2 , sin d d
00
• 而理想的无方向性天线的辐射功率为
Pr 0
S0
4 r2
E02
20
4 r2
E02r 2 60
•故
E02
60 Pr 0 r2
则
•则
D
E2 max
E02 Pr Pr 0
2 0
4 F2 ,
0
sin d d
• 上式为计算天线方向性系数的公式。
8.2 电偶极子的辐射
• 在几何长度远小于波长的线元上载有等幅同相的电流,这就 是电偶极子。关于电偶极子产生的电磁场的分析计算,是线 形天线工程计算的基础。
• 设线元上的电流随时间作正弦变化,表示为
• 如图8.2.1所示,i 电t 偶 极I c子os沿tz轴R放e 置Ie,j中t 心在坐标原点。元
方向性函数的最大值。
• 实际应用的天线的方向性图要比电偶极子的方向性复 杂,出现很多波瓣,分别称为主瓣和副瓣,有时还将 主瓣正后方的波瓣称为后瓣。
主瓣轴
1.0
0.5 副瓣
0.5
半功率点 半功率波束宽度 (HPBW)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Main Lobe:主波束 最大輻射方向的波束
HPBW:半功率波束寬 主波束的半功率的角度寬。
Minor Lobe:次波束 主波束之外的均稱次波束
Back Lobe: 與主波束相背的波束
Side Lobe:旁波束 與主波束相鄰的波束
方向性
方向性(directivity): 特定方向的輻射強度與天線全部方向輻射 強度的平均值之比。換言之,特定方向的 輻射強度與等值天線(isotropic antenna) 之比。
另一種效益稱為天線效益,比天線輻射效 益還多考慮的阻抗不匹配的損失。
天線增益
天線增益=天線方向性*天線輻射效益 單位為dBi。 使用電波暗室所量測得到的數值即為天線
增益。
精品课件!
精品课件!
極化 polarization
天線之極化定義為以地球表面為基準,輻 射波的電場方向即為極化方向。
近場與遠場 (2)
Radiation near field:
電抗能量減少,可輻 射的能量開始散佈在 這個區域。
R2=2D2/λ
Radiation far field:
電抗能量已經不存在, 只有輻射能量存在於 這個區域。
在此區域中功率密度 將與天線的距離平方 成反比。
輻射場型
天線輻射場型是依據輻射遠場 特性所畫出的圖形。
一般極化區分為Linear(線性)與circular(圓 形)極化二種。
Linear含有Vertical與Horizontal Circular含有RHCP與LHCP
天线基础概述
天線如何輻射
天線輻射主要來至於 電流的移動或是具有 加速度的電子。
電子如果隨時間做週 期性變化時,也會產 生輻射。
天線產生電磁波之方 式如右圖。
近場與遠場 (1)
圍繞天線的電磁場可 區分三個範圍,如右 圖。
Reactive near field: 電抗能量為主,能量 開始遠離天線。 R1=0.62√D3/λ D:天線尺寸 λ:波長
及虛部,所以也可轉 換成極座標的型式表 示。 ρ=|ρ|∠θ
電壓駐波比VSWR
VSWR (Voltage standing wave ratio): 當天線與系統之間阻抗不匹配時,會有部 分能量被反彈回系統端,並與系統的輸出 能量之間產生駐波。將此特性數值化便稱 為電壓駐波比。
VSWR=(1+|ρ|)/(1-|ρ|)
輸入阻抗(Input Impedance)
輸入阻抗可用下列式子表現: Zin=Rin+jXin
Zin :天線阻抗 Rin :天線的實部阻抗 Xin :天線虛部阻抗,也稱電抗 虛部阻抗所產生的電磁場能量將只會產生
於輻射近場之內。
反射係數ρ
Zin=Rin+jXin Zs=Rs+jXs ρ=(Zin-Zs)/(Zin+Zs) 因反射係數具有實部
反射損耗return loss
系統的輸出能量與被反射能量之比。 RL=-20log10|ρ|
VSWR=∞ ρ=1
RL=0dB
VSWR=1 ρ=0
RL=∞
VSWR
天線輻射效益
天線輻射效益antenna radiation efficiency 能量送入至天線與天線輻射出去之能量的 比值。 兩者之間的差異在於導体與介質所產生的 損失。
HPBW:半功率波束寬 主波束的半功率的角度寬。
Minor Lobe:次波束 主波束之外的均稱次波束
Back Lobe: 與主波束相背的波束
Side Lobe:旁波束 與主波束相鄰的波束
方向性
方向性(directivity): 特定方向的輻射強度與天線全部方向輻射 強度的平均值之比。換言之,特定方向的 輻射強度與等值天線(isotropic antenna) 之比。
另一種效益稱為天線效益,比天線輻射效 益還多考慮的阻抗不匹配的損失。
天線增益
天線增益=天線方向性*天線輻射效益 單位為dBi。 使用電波暗室所量測得到的數值即為天線
增益。
精品课件!
精品课件!
極化 polarization
天線之極化定義為以地球表面為基準,輻 射波的電場方向即為極化方向。
近場與遠場 (2)
Radiation near field:
電抗能量減少,可輻 射的能量開始散佈在 這個區域。
R2=2D2/λ
Radiation far field:
電抗能量已經不存在, 只有輻射能量存在於 這個區域。
在此區域中功率密度 將與天線的距離平方 成反比。
輻射場型
天線輻射場型是依據輻射遠場 特性所畫出的圖形。
一般極化區分為Linear(線性)與circular(圓 形)極化二種。
Linear含有Vertical與Horizontal Circular含有RHCP與LHCP
天线基础概述
天線如何輻射
天線輻射主要來至於 電流的移動或是具有 加速度的電子。
電子如果隨時間做週 期性變化時,也會產 生輻射。
天線產生電磁波之方 式如右圖。
近場與遠場 (1)
圍繞天線的電磁場可 區分三個範圍,如右 圖。
Reactive near field: 電抗能量為主,能量 開始遠離天線。 R1=0.62√D3/λ D:天線尺寸 λ:波長
及虛部,所以也可轉 換成極座標的型式表 示。 ρ=|ρ|∠θ
電壓駐波比VSWR
VSWR (Voltage standing wave ratio): 當天線與系統之間阻抗不匹配時,會有部 分能量被反彈回系統端,並與系統的輸出 能量之間產生駐波。將此特性數值化便稱 為電壓駐波比。
VSWR=(1+|ρ|)/(1-|ρ|)
輸入阻抗(Input Impedance)
輸入阻抗可用下列式子表現: Zin=Rin+jXin
Zin :天線阻抗 Rin :天線的實部阻抗 Xin :天線虛部阻抗,也稱電抗 虛部阻抗所產生的電磁場能量將只會產生
於輻射近場之內。
反射係數ρ
Zin=Rin+jXin Zs=Rs+jXs ρ=(Zin-Zs)/(Zin+Zs) 因反射係數具有實部
反射損耗return loss
系統的輸出能量與被反射能量之比。 RL=-20log10|ρ|
VSWR=∞ ρ=1
RL=0dB
VSWR=1 ρ=0
RL=∞
VSWR
天線輻射效益
天線輻射效益antenna radiation efficiency 能量送入至天線與天線輻射出去之能量的 比值。 兩者之間的差異在於導体與介質所產生的 損失。