电力系统不对称短路电流计算共36页文档
第八章 电力系统不对称短路分析与计算

(3)短路点故障相电压等于零。
两相短路 b、c相短路故障的 3 个边界条件 UDb UDc , I Da 0, I Db I Dc a
U Db I Da I Db a U Da1 aU Da 2 U Da 0
2
c
b
aU Da1 a 2U Da 2 U Da 0 U Dc I Da1 I Da 2 I Da 0 0 a 2 I Da1 aI Da 2 I Da 0 (aI Da1 a 2 I Da 2 I Da 0 ) I Dc
Z0
I Da 0
U Da 0
正序等效定则
不对称短路正序电流的计算通式
I
( n) Da 1
U D (0) Z1 Z
( n)
( n) Z ——附加电抗;
正序等效定则
在简单不对称短路的情况下,短路点的正序 分量电流,与在短路点每一相中接入附加电 ( n) 抗 Z 后发生三相短路的电流相等。
I Da1
U Da 2
两相接地短路 复合序网 边界条件 UDb UDc ( I Db I Dc )Zg , I Da 0
U Db a 2U Da 1 aU Da 2 U Da 0 3 I Da 0 Z g 2 U aU a U Da 2 U Da 0 3 I Da 0 Z g Dc Da 1 I Da I Da 1 I Da 2 I Da 0 0
U D(0)
I Da1
两相接地短路
b、c相接地短路故障的 3 个边界条件
UDb 0, UDc 0, I Da 0
b
a
电力系统不对称短路的分析与计算

本章内容
1 不对称短路的特征 2 对称分量法 3 不对称短路的计算原理 4 各元件的正序、负序、零序参数(阻抗、
导纳) 5 各种不对称短路的短路电流和短路电压的
计算方法
第27页/共116页3 不对称路的计算原理在任意某系统某点f 发生不对称短路时
特征:短路点元件参数不对称 (三相阻抗不等) 运行参量不对称
第43页/共116页
4.2 变压器的序参数及等值电路
注意:变压器的电阻一般较小,因此在短路 计算时常予忽略不计!
(1)正序电抗X(1)
定义:变压器通过正序电流时的电抗
Xm:值很大, 忽略不计。
正序单相等值电路
第44页/共116页
(2)负序电抗X(2)
定义:变压器通过负序电流时的电抗
由于:三相变压器为静止元件,改变相序并不改变各绕 组相互之间的互感和自身的漏感。
转子d轴,一会掠过转子q 轴,使励磁绕组和d轴阻尼 绕组中的磁链总要变动;
第40页/共116页
4)根据磁链守恒原则,励磁 绕组和阻尼绕组均要产生 感应电流,将负序磁链挤 出,使之通过漏磁路构成通 路;这与对称三相突然短路 时暂态过程开始的情况相似;
5)负序磁链通过d轴磁路时,负序电抗相当于 ; 负序磁链通过q轴磁路时,负序电抗相当于 ; 介于二者之间时,通常取二者的平均值:
负序电压波形图
AC B
相序:
A—>C—>B:1200
第11页/共116页
三相负序电压向量
理解:正序和负序时相对而言的!
若为发电机
如:取XX’绕组为A相,则必 取YY’绕组为B相,ZZ ’绕组 为C相,则转子逆时针旋转时 产生的电压、电流的相序为 A—>B—>C:1200 则:此时,若转子反转,产 生的电压和电流的相序为: A—>C—>B:1200
不对称短路故障分析与计算(电力系统课程设计)

不对称短路故障分析
02
不对称短路故障类型
单相接地短路
其中一相电流通过接地电阻,其余两 相保持正常。
两相短路
两相接地短路
两相电流通过接地电阻,另一相保持 正常。
两相之间没有通过任何元件直接短路。
不对称短路故障产生的原因
01
02
03
设备故障
设备老化、绝缘损坏等原 因导致短路。
外部因素
如雷击、鸟类或其他异物 接触线路导致短路。
操作错误
如误操作或维护不当导致 短路。
不对称短路故障的危害
设备损坏
短路可能导致设备过热、烧毁或损坏。
安全隐患
短路可能引发火灾、爆炸等安全事故。
停电
短路可能导致电力系统的局部或全面停电。
经济损失
停电和设备损坏可能导致重大的经济损失。
不对称短路故障计算
03
方法
短路电流的计算
短路电流的计算是电力系统故障分析中的重要步骤,它涉及到电力系统的 运行状态和设备参数。
不对称短路故障分析与 计算(电力系统课程设计)
contents
目录
• 引言 • 不对称短路故障分析 • 不对称短路故障计算方法 • 不对称短路故障的预防与处理 • 电力系统不对称短路故障案例分析 • 结论与展望
引言
01
课程设计的目的和意义
掌握电力系统不对称短路故障的基本原理和计算 方法
培养解决实际问题的能力,提高电力系统安全稳 定运行的水平
故障描述
某高校电力系统在宿舍用电高峰期发生不对称短路故障,导致部 分宿舍楼停电。
故障原因
经调查发现,故障原因为学生私拉乱接电线,导致插座短路。
解决方案
加强学生用电安全教育,规范用电行为;加强宿舍用电管理,定 期检查和维护电路。
不对称短路电流计算

X
1
U 0 jI0 X 0
(4.6.8)
18
不对称短路的分析计算
➢ 单相接地短路 ➢ 两相短路 ➢ 两相接地短路
19
1.单相(A相)接地短路
故障处的边界条件为
A
B
用对称分量表示为
C
化简可得
(4.6.9)
U A 0 IA
IB IC 0
(a) jX1∑
IA1
20
不对称短路的分析计算
变压器的绕组接线形式 变压器零序电抗
Y0,d Y0,y
X0=XⅠ+XⅡ X0= ∞
Y0,y0
X0=XⅠ+XⅡ+XL0 X0= ∞
备注
变压器副边至少有 一个负载的中性点 接地 变压器副边没有负 载的中性点接地
13
不对称短路的序网络图
利用对称分量法分析不对称短路时,首先必 须根据电力系统的接线、中性点接地情况等原始 资料绘制出正序、负序、零序的序网络图。
IA IA1 IA2 IA0
3IA1
3E1 j( X 1 X 2 X 0 )
(4.6.11)
22
1.单相(A相)接地短路
电压和电流的各序分量, 也可直接应用复合序网来求 得。 复合序网:根据故障处各分 量之间的关系,将各序网络 在故障端口联接起来所构成 的网络。
与单相短路相对应的复 合序网示于图4.6.3(b)。
U 1 U 2
E1 jI2
jI1 X2
X
1
U 0 jI0 X 0
IA1 IA2 U A1 U
A2
IA0UA00
(4.6.8) (4.6.16)
28
B
C
不对称短路的分析计算 IA 0 IB IC
电力系统发生不对称短路故障分析

摘要电力系统发生不对称短路故障的可能性是最大的,本课题要求通过对电力系统分析不对称短路故障进行分析与计算,为电力系统的规划设计、安全运行、设备选择和继电保护等提供重要的依据。
关键字:标么值;等值电路;不对称故障目录一、基础资料 (3)二、设计内容 (3)1.选择110kV为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数。
(3)2.化简各序等值电路并求出各序总等值电抗。
(6)3.K处发生单相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(7)4.设在K处发生两相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(9)5.讨论正序定则及其应用。
并用正序定则直接求在K处发生两相直接短路时的短路电流。
(11)三、设计小结 (12)四、参考文献 (12)附录 (12)一、基础资料1. 电力系统简单结构图如图1所示。
图1 电力系统结构图在K 点发生不对称短路,系统各元件标幺值参数如下:(为简洁,不加下标*) 发电机G1和G2:S n =120MV A ,U n =10.5kV ,次暂态电动势标幺值1.67,次暂态电抗标幺值0.9,负序电抗标幺值0.45;变压器T1:S n =60MV A ,U K %=10.5 变压器T2:S n =60MV A ,U K %=10.5线路L=105km ,单位长度电抗x 1= 0.4Ω/km ,x 0=3 x 1, 负荷L1:S n =60MV A ,X 1=1.2,X 2=0.35 负荷L2:S n =40MV A ,X 1=1.2,X 2=0.35 取S B =120MV A 和U B 为所在级平均额定电压。
二、设计内容1.选择110kV 为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数(要求列出基本公式,并加说明)在产品样本中,电力系统中各电器设备如发电机、变压器、电抗器等所给出的都是标么值,即以本身额定值为基准的标么值或百分值。
电力系统不对称短路计算

3.2电力系统各序网络的制定
3.2.1正序网络
正序网络即使通常计算对称短路时所用的等值网络。除中性点接地阻抗,空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。所有同步发电机和调相机,以及个别的必须用等值电源支路表示的综合负荷,都是正序网络中的电源。此外,还须在短路点引入代替故障条件的不对称电势源中的正序分量。
而且电流的流通与变压器中性点接地情况及变压器接法有密切的关系。
图3-3零序网络图
3.3各序组合电抗及电源组合电势的计算
3.3.1正序组合电抗及电源组合电势
图3-4正序等值电路参数计算简化过程图
可计算得: = + + =0.2+0.105+0.109=0.414
= + + =0.054+0.105+1.8=1.959
----已设定的基准容量(基准功率),MV.A; -----发电机额定容量。
负载电抗标幺值:
----原件所在网络的电压标幺值; ----负载容量标幺值; ----负载无功率标幺值
变压器电抗标幺值:
在变压器中电抗 ,即 忽略,因此在变压器中阻抗主要是指电抗,由变压器电抗有名值推出变压器电抗标幺值为:
式中 -----变压器阻抗百分数; -----基准容量,MV.A; ------变压器铭牌参数给定额定容量,MV.A; -----基准电压 取平均电压 。
= =0.342
= =0.865
3.3.2负序组合电抗
图3-5负序等值电路参数计算简化过程图
可计算得: = + + =0.25+0.105+0.109=0.464
电力系统不对称故障的分析计算

第八章 电力系统不对称故障的分析计算主要内容提示:电力系统中发生的故障分为两类:短路和断路故障。
短路故障包括:单相接地短路、两相短路、三相短路和两相接地短路;断路故障包括:一相断线和两相断线。
除三相短路外,均属于不对称故障,系统中发生不对称故障时,网络中将出现三相不对称的电压和电流,三相电路变成不对称电路。
直接解这种不对称电路相当复杂,这里引用120对称分量法,把不对称的三相电路转换成对称的电路,使解决电力系统中各种不对称故障的计算问题较为方便。
本章主要内容包括:对称分量法,电力系统中主要元件的各序参数及各种不对称故障的分析与计算。
§8—1 对称分量法及其应用利用120对称分量法可将一组不对称的三相量分解为三组对称的三序分量(正序分量、负序分量、零序分量)之和。
设c b a F F F ∙∙∙为三相系统中任意一组不对称的三相量、可分解为三组对称的三序分量如下:()()()()()()()()()021021021c c c c b b b b a a a a F F F F F F F F F F F F ∙∙∙∙∙∙∙∙∙∙∙∙++=++=++= 三组序分量如图8-1所示。
正序分量: ()1a F ∙、()1b F ∙、()1c F ∙三相的正序分量大小相等,彼此相位互差120°,与系统正常对称运行方式下的相序相同,达到最大值的顺序a →b →c ,在电机内部产生正转磁场,这就是正序分量。
此正序分量为一平衡的三相系统,因此有:()()()111c b a F F F ∙∙∙++=0。
负序分量:()2a F ∙、()2b F ∙、()2c F ∙三相的负序分量大小相等,彼此相位互差120°,与系图 8-1 三序分量Fc(0) ·零序F b(0) ·F a(0) ·120°120° 120° 正序F b(1)·F a(1)·F c(1) ·ω120°120°120°负序 F a(2)·F c(2)·F b(2)·ω统正常对称运行方式下的相序相反,达到最大值的顺序a →c →b ,在电机内部产生反转磁场,这就是负序分量。
电力系统教学课件8电力系统不对称短路的分析与计算

经调查发现,事故原因为发电机组出口电缆接头松动,引发相间短路。
解决方案
加强设备巡检,定期对电缆接头进行检查和紧固,确保设备安全稳定运行。
事故描述
某大型发电厂在并网运行时发生不对称短路事故,导致设备损坏。
实例二:某大型发电厂不对称短路事故处理
评估内容
针对某城市电网采取的不对称短路预防措施进行实施效果评估。
电力系统教学课件8电力系统不对称短路的分析与计算
目录
引言 不对称短路的基本概念 不对称短路的计算方法 不对称短路的预防与控制 电力系统不对称短路的实例分析 电力系统不对称短路的未来研究方向
01
CHAPTER
引言
01
02
课程背景
不对称短路是电力系统中的常见故障,其分析与计算对于提高电力系统的可靠性和稳定性具有重要意义。
利用历史数据和实时监测数据,构建预测模型,提前预警可能发生的短路故障。
智能化预防与控制技术研究
引入数学、物理、化学等领域的新理论和新方法,为电力系统不对称短路的分析与计算提供新的思路和方法。
拓展电力系统不对称短路分析在可再生能源并网、智能微电网等领域的应用,促进电力系统的可持续发展。
加强与信息科学、计算机科学等领域的交叉融合,推动电力系统不对称短路分析的信息化和智能化。
培训与演练
应急预案
05
CHAPTER
电力系统不对称短路的实例分析
某地区电网在运行过程中发生不对称短路故障,导致部分区域停电。
故障描述
经调查发现,故障原因为输电线路老化,绝缘层破损,导致相间短路。
故障原因
对故障线路进行更换,加强线路巡检和维护,提高电网安全稳定性。
解决方案
实例一:某地区电网不对称短路故障分析