勾股定理的培优专题
勾股定理的培优专题

勾股定理的培优专题勾股定理培优专题一、基础知识1.勾股定理的逆定理是:如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形。
2.勾股定理的逆定理和勾股定理的题设和结论相反,被称为互逆命题。
3.如果一个定理的逆命题经过证明是正确的,它也是一个定理,称这两个定理互为逆定理。
4.能够成为直角三角形三条边长的三个正整数3、4、5 等,称为勾股数。
巩固练:1.如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形,这个定理叫做勾股定理的逆定理。
2.如果两个命题中,第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。
如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。
3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有 1、2、3 号。
4.若△ABC 中,(b-a)(b+a)=c,则∠B=90°。
5.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是直角三角形。
6.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以 a-2、a、a+2 为边的三角形的面积为 6(a-1)。
7.写出下列命题的逆命题,并判断逆命题的真假。
1) 两直线平行,同位角相等。
逆命题为:同位角相等,则两直线平行。
真。
2) 若 a>b,则 a>b。
逆命题为:若a≤b,则a≤b。
假。
二、例题和训练考点一:证明三角形是直角三角形例1:已知:如图,在△ABC 中,CD 是 AB 边上的高,且 CD=AD·BD。
求证:△ABC 是直角三角形。
训练:已知:在△ABC 中,∠A、∠B、∠C 的对边分别是 a、b、c,满足a+b+c+3√3=10a+24b+26c。
试判断△ABC 的形状。
例2:如图,在直角△ABC 中,∠B=90°,BD 垂直于AC,且 AD=CD。
勾股定理经典培优题

勾股定理的应用经典培优题类型之一 利用勾股定理解决平面图形问题图1-ZT -11.如图1-ZT -1,在△ABC 中,CD ⊥AB 于点D ,E 是AC 的中点,若AD =6,DE =5,则CD 的长等于________.2.在Rt △ABC 中,∠A =90°,BC =4,有一个内角为60°,P 是直线AB 上不同于A ,B 的一点,且∠ACP =30°,求PB 的长.类型之二 利用勾股定理解决立体图形问题3.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图1-ZT -2所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是________尺.图1-ZT -2图1-ZT -34.如图1-ZT -3,将一根长为20 cm 的筷子置于底面直径为5 cm ,高为12 cm 的圆柱形水杯中,则筷子露在杯子外面的长度为________cm.类型之三 利用勾股定理解决折叠问题5.如图1-ZT -4(1)是一个直角三角形纸片,∠A =30°,BC =4 cm ,将其折叠,使点C 落在斜边上的点C ′处,折痕为BD ,如图(2),再将(2)沿DE 折叠,使点A 落在DC ′的延长线上的点A ′处,如图(3),则折痕DE 的长为( )图1-ZT -4A.83cm B .2 3 cm C .2 2 cm D .3 cm图1-ZT-56.如图1-ZT-5,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为________.类型之四利用勾股定理解决实际问题7.如图1-ZT-6,A市气象站测得台风中心在A市正东方向300千米的B处,以10 7千米/时的速度向北偏西60°的BF方向移动,距台风中心200千米范围内是受台风影响的区域.(1)A市是否会受到台风的影响?写出你的结论并给予说明;(2)如果A市受这次台风的影响,那么受台风影响的时间有多长?图1-ZT-6详解详析1.82.解:若∠ACB 为60°,当点P 在线段AB 上时(如图①),由直角三角形的性质得BC =2AC ,PC =2AP ,由勾股定理,得AB =BC 2-AC 2=42-22=2 3.再设AP =x ,∵∠PCB =∠ACB -∠ACP =60°-30°=30°,∠B =90°-60°=30°,∴∠PCB =∠PBC ,∴PC =PB ,则有PB =2x =23AB =43 3;当点P 在线段AB 外时(如图②),可得PB =83 3;若∠ABC 为60°,当点P 在直线AB 上时(如图③),可得PB =4.因此PB 的长为4 33或8 33或4.3.25 [解析] 把这个圆柱平均分成5段,将其中一段沿一条母线剪开,展开得到一个长方形,一条边(即这段圆柱的高)长4尺,另一条边长3尺,因此这一段葛藤长42+32=5(尺).故葛藤的总长为5×5=25(尺).4.7 [解析]杯子内的筷子长度为122+52=13(cm),则筷子露在杯子外面的长度为20-13=7(cm).5.A [解析] 在Rt △DC ′E 中,设DE =x ,则DE =AE =x ,AC ′=AB -BC ′=AB -BC =4,所以EC ′=4-x .在Rt △AC ′D 中,∠A =30°,由勾股定理得DC ′=43,在Rt △DEC ′中,根据勾股定理,得DE 2-EC ′2=DC ′2,即x 2-(4-x )2=(43)2,解得x =83. 6.32[解析] BC =AC 2-AB 2=4. 由折叠的性质,得BE =B ′E ,AB =AB ′.设BE =x ,则B ′E =x ,CE =4-x ,B ′C =AC -AB ′=AC -AB =2.在Rt △B ′EC 中,B ′E 2+B ′C 2=EC 2,即x 2+22=(4-x )2,解得x =32. 7.解:(1)过点A 作AC ⊥BF 于点C ,则AC =12AB =150千米<200千米, ∴A 市会受到台风的影响.(2)以点A 为圆心,200千米为半径画弧,交BF 于点D ,E ,则CE =CD =AD 2-AC 2=2002-1502=50 7(千米),∴A 市受台风影响的时间为50 7×210 7=10(时).。
勾股定理培优训练

勾股定理培优训练一.选择题(共19小题)1.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D.若AC=3,BC=4,则CD的长为()(1题)(3题)A.2.4B.2.5C.4.8D.52.已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.C.5或D.以上都不对3.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC扩充为等腰三角形ABD,且扩充部分是以AC 为直角边的直角三角形,则CD的长为()A.,2或3B.3或C.2或D.2或34.已知△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则下列条件中:①a2﹣b2=c2;②a2:b2:c2=1:3:2;③∠A:∠B:∠C=3:4:5;④∠A=2∠B=2∠C.能判断△ABC是直角三角形的有()A.1个B.2个C.3个D.4个5.已知△ABC三边分别为a、b、c,根据下列条件能判断△ABC为直角三角形的有()①∠A=∠B+∠C;②∠A:∠B:∠C=3:4:5;③a:b:c=3:4:5;④a=n2﹣1,b=2n,c=n2+1.A.1个B.2个C.3个D.4个6.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()(6题)(7题)A.90°B.60°C.45°D.30°7.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.75°8.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,1.21,1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S1+S2+S3+S4的值是()A.3.65B.2.42C.2.44D.2.659.如果一个直角三角形的两条直角边分别为n2﹣1,2n(n>1),那么它的斜边长是()A.2n B.n+1C.n2﹣1D.n2+110.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列示意图中正确的是()A.B.C.D.11.如图,在赵爽弦图中,已知直角三角形的短直角边长为a,长直角边长为b,大正方形的面积为20,小正方形的面积为4,则ab的值是()(11题)(14题)(15题)A.10B.9C.8D.712.下列各组线段能构成直角三角形的一组是()A.30,40,50B.7,12,13C.5,9,12D.3,4,613.满足下列条件时,△ABC不是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A=20°,∠B=70°C.AB:BC:CA=3:4:5D.14.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m15.如图,在四边形ABCD中,∠ABC=∠ADC=90°,分别以四边形的四条边为边向外作四个正方形,面积依次为S1,S2,S3,S4,下列结论正确的是()A.S3+S4=4(S1+S2)B.S4﹣S1=S3﹣S2C.S1+S4=S2+S3D.S4﹣3S1=S3﹣3S216.如图,小明和小华同时从P处分别向北偏东60°和南偏东30°方向出发,他们的速度分别是3m/s和4m/s,则10s后他们之间的距离为()(16)(17)(18)(19)A.30m B.40m C.50m D.60m17.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=6,BC=3时,则阴影部分的面积为()A.B.C.9πD.918.毕达哥拉斯树也叫“勾股树”,是由毕达哥拉斯根据勾股定理所画出来的一个可以无限重复的树状图形,其中所有的四边形都是正方形,所有的三角形都是直角三角形.如图,若正方形A,B,C,D的边长分别是2,3,1,2,则正方形G的边长是()A.8B.C.D.519.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB =3,AD=4,则ED的长为()A.B.3C.1D.二.填空题(共11小题)20.如图为某楼梯的侧面,测得楼梯的斜长AB为13米,高BC为5米,计划在楼梯表面铺地毯,地毯的长度至少需要米.(20)(21)21.如图,△ABC中,∠ACB=90°,AC=3,BC=4,P为直线AB上一动点,连接PC,则线段PC最小值是.22.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,在直线BC上找一点P,使得△ABP为以AB为腰的等腰三角形,则PC=.(22)(23)(24)23.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.24.如图,∠B=90°,AB=4cm,BC=3cm,CD=12cm,AD=13cm,则图中此图形的面积是cm2.25.如图,四边形ABCD中,∠B=90°,AB=4cm,BC=3cm,AD=13cm,CD=12cm,则四边形ABCD的面积cm2.(25)(26)(27)26.如图,是一个三级台阶,它的每一级的长、宽,高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是.27.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1,1.21,1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S1+2S2+2S3+S4=.28.如图,在梯形ABCD中,AB∥CD,∠ADC+∠BCD=90°,分别以DA、AB、BC为边向梯形外作正方形,其面积分别是S1、S2、S3,且S2=S1+S3,则线段DC与AB存在的等量关系是.(28)(29)29.如图所示的正方形图案是用4个全等的直角三角形拼成的.已知正方形ABCD的面积为25,正方形EFGH的面积为1,若用x、y分别表示直角三角形的两直角边(x>y),下列三个结论:①x2+y2=25;②x﹣y=1;③xy =12;④x+y=40.其中正确的是(填序号).30.如图,正方形网格中,每一小格的边长为2.P、A、B均为格点.(1)AP=;(2)点B到直线AP的距离是;(3)∠APB=;(4)S△APB =.三.解答题(共30小题)31.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S2,S3表示,确定它们的关系并证明.32.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a:b=3:4,c=75cm,求a、b;(2)若a:c=15:17,b=24,求△ABC的面积;(3)若c﹣a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.33.一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.(1)如果梯子的顶端下滑1m,那么梯子的底端也将下滑1m吗?说明你的方法;(2)如果梯子的顶端下滑2m呢?说说你的理由.34.如图所示,在平静的湖面上,有一支红莲,高出水面1m,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m,求水深是多少?35.如图,在Rt△ABC中,∠B=90°,AD平分∠BAC交BC于点D,作DE⊥AC于点E.(1)若AD=CD,求∠C的度数.(2)若AB=6,BC=8.①求AE的长度;②求△ACD的面积.36.在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形周长为32,求BC和CD的长度.37.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=5千米,BD=15千米,且CD=15千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万.(1)请你在河流CD上设计选择水厂的位置M,使铺设水管的费用最节省(作图).(2)请你求出铺设水管的长及总费用是多少?38.一架梯子AB长25m,如图斜靠在一面墙上,梯子底端B离墙7m.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4m,那么梯子的底端在水平方向也滑动了4m吗?如果不是,梯子的底端在水平方向上滑动了多长的距离呢?39.如图,△ABC中,CE、CF分别是∠ACB及外角∠ACD的平分线,且CE交AB于点E,EF交AC于点M,已知EF∥BC.(1)求证:M为EF中点;(2)若EM=3,求CE²+CF²的值.40.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点.求CD 的长.41.如图1,在4×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点D、A同时出发向右移动,点P的运动速度为每秒1个单位,点Q的运动速度为每秒0.5个单位,当点P运动到点C时,两个点都停止运动,设运动时间为t(0<t<8).(1)请在4×8的网格纸图2中画出t为6秒时的线段PQ.并求其长度;(2)当t为多少时,△PQB是以PQ为腰的等腰三角形?42.若△ABC的三边长为a,b,c,根据下列条件判断△ABC的形状.(1)a2+b2+c2+200=12a+16b+20c(2)a3﹣a2b+ab2﹣ac2+bc2﹣b3=0.43.在△ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式当a2+b2和c2的大小关系,可以判断△ABC的形状(按角分类).(1)请你通过画图探究并判断:当△ABC三边长分别为6、8、9时,△ABC三角形:当△ABC三边长分别为6、8、11时,△ABC三角形.(2)小明同学根据上述探究.猜想:“当a2+b2>c2时.△ABC为锐角三角形;当a2+b2<c2时,△ABC为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=7、b=24时,最长边c在什么范围内取值时,△ABC是锐角三角形、钝角三角形?44.已知△ABC的三边长分别为a、b、c,且a、b、c满足a2+b+|﹣2|=10a+2﹣24,是判断△ABC的形状.45.在△ABC中,AB=15,AC=13,AD是BC上的高,AD=12,求△ABC的周长和面积.46.如图,在正方形ABCD中,AB=4,AE=2,DF=1,请你判定△BEF的形状,并说明理由.47.有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm.在圆柱下底面的点A有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物,沿圆柱侧面爬行的最短路程是多少?(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画出几条路线,你觉得哪条路线最短?(2)如图,将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?(3)蚂蚁从点A出发,想吃到点B处的食物,它沿圆柱侧面爬行的最短路程是多少?解:由题意,得AC=cm,AD=cm,所以DB=cm,在Rt△ADB中,由勾股定理,得AB=(cm).48.如图,一只蚂蚁从长为7cm、宽为5cm,高是9cm的长方体纸箱的A点沿纸箱爬到B点,那么它所走的最短路线的长是多少?49.如图,Rt△ABC中,∠ABC=90°,DE垂直平分AC,垂足为O,AD∥BC.(1)求证:OD=OE.(2)若AB=3,BC=4,求AD的长.50.如图所示,已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm,求△ABC 的周长.51.如图,△ABC中,AB=10,BC=9,AC=17,求△ABC的面积.52.如图,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若点P从点A出发,以每秒1cm的速度沿折线A﹣B ﹣C﹣A运动,设运动时间为t(t>0)秒.(1)AC=cm;(2)若点P恰好在AB的垂直平分线上,求此时t的值;(3)在运动过程中,当t为何值时,△ACP是以AC为腰的等腰三角形(直接写出结果)?53.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.勾股定理内容为:如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2.(1)如图2、3、4,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有个;(2)如图5所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为S1,S2,直角三角形面积为S3,请判断S1,S2,S3的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图6所示的“勾股树”.在如图7所示的“勾股树”的某部分图形中,设大正方形M的边长为定值m,四个小正方形A,B,C,D的边长分别为a,b,c,d,已知∠1=∠2=∠3=∠α,则当∠α变化时,回答下列问题:(结果可用含m的式子表示)①a2+b2+c2+d2=;②b与c的关系为,a与d的关系为.54.如图,在△ABC中,CD⊥AB于点D,BC=15,CD=12,AD=16.(1)求BD的长;(2)求△ABC的面积;(3)判断△ABC的形状.55.如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB =10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站应建在离A 站多少km处?56.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,BC=4,BD=2.5.(1)则点D到直线AB的距离为.(2)求线段AC的长.57.(1)如图,作直角边为1的等腰Rt△OA1A2,则其面积S1=;以OA2为一条直角边,1为另一条直角边作Rt △OA2A3,则其面积S2=;以OA2为一条直角边,1为另一条直角边作Rt△OA3A4,则其面积S3=,……则S4=;(2)请用含有n(n是正整数)的等式表示S n,并求+++...+的值.58.在△ABC中,AC=BC,∠ACB=90°,D、E是直线AB上两点.∠DCE=45°(1)当CE⊥AB时,点D与点A重合,求证:DE2=AD2+BE2;(2)如图,当点D不与点A重合时,求证:DE2=AD2+BE2;(3)当点D在BA的延长线上时,(2)中的结论是否成立?画出图形,说明理由.59.我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠B =90°,AB=6m,BC=8m,CD=24m,AD=26m.(1)求出空地ABCD的面积;(2)若每种植1平方米草皮需要350元,问总共需投入多少元?60.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为2cm/秒,设点P运动的时间为t秒.(1)当△PBC是以BC为斜边的直角三角形时,求t的值;(2)当△PBC为等腰三角形时,求t的值.。
勾股定理培优题

勾股定理一、知识要点1、勾股定理勾股定理在西方又被称为毕达哥拉斯定理,它有着悠久的历史,蕴含着丰富的文化价值,勾股定理是数学史上的一个伟大的定理,在现实生活中有着广泛的应用,被人誉为“千古第一定理” .勾股定理反映了直角三角形(三边分别为a 、b 、c ,其中c 为斜边)的三边关系,即a 2+b 2=c 2,它的变形式为c 2-a 2=b 2或c 2-b 2=a 2.勾股定理是平面几何中最重要的几何定理之一,在几何图形的计算和论证方面,有着重要的应用,它沟通了形与数,将几何论证转化为代数计算,是一种重要的数学方法. 2、勾股定理的逆定理如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,则这个三角形是以c 为斜边的直角三角形.勾股定理的逆定理给出了判定一个三角形是直角三角形的方法,这种方法与前面学过的一些判定方法不同,它是通过代数运算“算”出来的,实际上利用计算证明几何问题在几何里也是很重要的,这是里体现了数学中的重要思想——数形结合思想,突破了利用角与角之间的转化计算直角的方法,建立了通过求边与边的关系来判断直角的新方法,它将数形之间的联系体现得淋漓尽致.因此也有人称勾股定理的逆定理为“数形结合的第一定理”.二、基本知识过关测试1.如果直角三角形的两边为3,4,则第三边a 的值是 .2.如图,图形A 是以直角三角形直角边a 为直径的半圆,阴影S A = .3.如图,有一个圆柱的高等于12cm ,底面半径3cm ,一只蚂蚁要从下底面上B 点处爬至上底与B 点相对的A 点处,所需爬行的最短路程是 .4.如图.在 △ABC 中,CD ⊥AB 于D ,AB =5,CD=BCD =30° ,则AC = . 5.的线段.6.在下列各组数中 ①5,12,13 ;②7,24,25;③32,42,52;④3a ,4a ,5a ;⑤a 2+1,a 2-1,2a (a >1);⑥m 2-n 2,2mn ,m 2+n 2(m >n >0)可作直角三角形三边长的有 组.7.如图,四边形ABCD 中,AB =1,BC =2,CD =2,AD =3,AB ⊥BC ,则四边形ABCD 的面积是 .第2题图 第3题图 第4题图 第7题图8.如图,在正方形ABCD 中,F 为DC 中点,E 为BC 上一点,且EC =14BC ,试判断△ AEF 的形状.三、综合.提高.创新BADCBADCBAFE DCB A【例1】(1)在三角形纸片ABC 中,∠C =90°,∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E (如图),折痕DE 的长是多少?(2)如图,在矩形ABCD 中,AB =8,AD =10,按如图所示折叠,使点D 落在BC 上的点E 处,求折痕AF 的长.(3)如图,正三角形ABC 的边长为2,M 是AB 边上的中点,P 是BC 边上任意一点,PA +PM 的最大值和最小值分别记作S 和T ,求S 2-T 2的值.【练】如图,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD ′,AD ′与BC 交于E ,若AD =4,DC =3,求BE .【例2】(1)如图,△ABC 中,∠C =60°,AB =70,AC =30,求BC 的长.EDC BAFEDCBAPMCAD 'EDCB A(2)如图,在四边形ABCD 中,AB =2,CD =1,∠A =60°, ∠B =∠D =90°,求四边形ABCD 的面积.【练】如图,△ABC 中,A =150°,AB =2,BCAC 的长.【例3】(1)如图,△ABC 中,AB =AC =20,BC =32,D 为BC 上一点,AD ⊥AB ,求CD .(2)如图,在Rt △ABC 中,∠C =90°,D 、E 分别是BC 、AC 中点,AD =5,BE=,求AB .【例4】如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB =c ,CD =h ,求证:CBADCBACBADCBAEDC BA(1)222111a b h +=; (2)a +b <c +h ;(3)以a +b ,h 和c +h 为边的三角形是直角三角形.【例5】(1)如图,ABCD 为矩形,P 为矩形ABCD 所在平面上一点,求证:PA 2-PB 2=PD 2 -PC 2.(2)锐角△ABC 中,AD ⊥BC 于D ,若∠B =2∠C ,求证:AC 2=AB 2+AB ·BC .变式:如图,AM 是△ABC 的BC 边上的中线,求证:AB 2+AC 2=2(AM 2+BM 2).(3)如图,△ABC 中,AB =AC ,P 为线段BC 上一动点,试猜想AB 2,AP 2, PB ,PC 有何关系,并加以证明.D CBAPDCB ADCBAM BA变式:若点P 在BC 的延长线上,如图,(3)中结论是否仍然成立?并证明.(4)在等腰Rt △ABC 的斜边AB 所在的直线上取点P 并设s =AP 2+BP 2,试探求P 点位置变化时,s 与2CP 2的大小关系,并证明.变式:若点P 在BA 的延长线上,如图中,(4)中结论是否仍然成立?并证明.【例6】(1)如图,△ABC 中,D 为BC 边上的中点,以D 为顶点作∠EDF =90°,DE 、DF 分别交AB 、AC 于E 、F ,且BE 2+FC 2=EF 2,求证:∠BAC =90°.P CB APC APCBACBAFED(2)在Rt△ABC中,∠BAC=90°,AB=AC,E,F分别是BC上两点,若∠EAF=45°,试推断BE,CF,EF之间的关系,并证明.AB C变式一:将(2)中△AEF旋转至如图所示,上述结论是否仍然成立?试证明.AE变式二:如图,△AEF中∠EAF=45°,AG⊥EF于G,且GF=2,GE=3,求S△AEF.AG【例7】(1)在△ABC中,∠ACB=90°,AC=BC,P为△ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数.(2)如图,在四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =CD ,求证BD 2=AB 2+BC 2.【例8】在等腰△ABC 中,AB =AC ,边AB 绕点A 逆时针旋转角度m ,得到线段AD . (1)如图1,若∠BAC =30°,30°<m <80°,连接BD ,请用含m 的式子表示∠DBC ;(2)如图2,若∠BAC =90°,0°<m <360°,射线AD 与直线BC 相交于点E ,是否存在旋转角度m,使AEBE若存在,求出所有符合条件的m 的值;若不存在,请说明理由.【例9】(1)已知点P 在一、三象限的角平分线上,且点P 到点A (3,6)的距离为PA =15,求点P 的坐标;PCBADCBADCB AE DCBA(2)已知直角坐标平面内的△ABC三个顶点的坐标分别为A(-1,4),B(-4,-2),C(2,-2),试判断△ABC的形状;(3的最小值;(4)已知a>0,b>0.自我归纳:四、课后练习1.如图,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B处,测得灯塔M在北偏西45°,问该货轮到达灯塔正东方向D处时,货轮与灯塔M的距离是多少?2.在△ABC 中,A =30°,B =45°,BC =10cm ,求AB ,AC 及△ABC 的面积.3.(1)如图,把长方形沿ABCD 对角线折叠,重合部分为△EBD . 1)求证和:△EBD 为等腰三角形; 2)若AB =2,BC =8,求AE .(2)如图,折叠长方形ABCD 的一边AD ,使点D 落在BC 边上,已知AB =8cm ,CE =4cm ,求AD .4.如图,△ABC 是等腰三角形,∠BAC =90°,AB =AC ,D .E .是BC 上的两点,且∠DAE =45°,若BD =6,EC =8,求DE 的长.MDB A北C 'EDCB AFED CBA5.如图,在等腰三角形中,AB=AC,D是斜边BC的中点,E、F分别为AB,AC边上的点,且DE⊥DF. (1)求证:BE2+CF2=EF2;(2)若BE=12,CF=5,试求△DEF的面积.6.如图,等腰Rt△ABC中,∠A=90°,P为△ABC内一点,PA=1,PB=3,PC,求∠CPA.7.(1)如图1,已知点P是矩形ABCD内一点,求证:PA2+PC2=PB2+PD2. (2)①如果点P移动到矩形的一边或顶点时,如图2,(1)中结论仍成立;C BAEDFC BAEPCB AAB CDP②如果点P移动到矩形ABCD的外部时,如图3,(1)中结论仍成立.请在以上两个结论中任选一个并给出证明.归纳结论:8.如图,△ABC中,AD是BC边的中点,AE是BC边上的高,求证:AB2-AC2=2BC·DE.9.10.试判断,三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是否为直角三角形?11.已知a,b,x,y.PDCBAPDCBAED C BA12.如图,Rt△ABC的两直角边AB=4,AC=3,△ABC内有一点P,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,且AB PF+AC PE +BCPD=12,求PD、PE、PF的长.PFED CBA欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
完整版)勾股定理培优专项练习

完整版)勾股定理培优专项练习勾股定理练(根据对称求最小值)基本模型:已知点A、B为直线m同侧的两个点,请在直线m上找一点M,使得AM+BM有最小值。
1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N,使得EN+BN有最小值,并求出最小值。
解:由于AE=1,所以DE=√3.连接BE,设∠EBN=x,则∠EBD=∠ABE-x=60°-x。
由正弦定理得:EN/ sinx = BN/sin(60°-x)。
=。
EN/BN = sinx/sin(60°-x)由于sinx/sin(60°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。
又由于XXX,所以问题转化为:在直线AD上找一点N,使得MN+EB最小。
连接AC,设交点为F,则∠ABF=∠FBD=30°,BF=AB/2=2.由于AF=AD-DF=√3-DF,所以MN+EB=BF+MN+EF=BF+FN。
由于FN=AF-AN=AF-AE=√3-1,所以MN+EB=2+MN+√3-1=MN+3+√3.因此,EN+BN的最小值为3+√3,此时x=30°。
2、已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N,使得EN+BN有最小值,并求出最小值。
解:连接BE,设∠EBN=x,则∠EBD=∠ABE-x=45°-x。
由正弦定理得:EN/sinx = BN/sin(45°-x)。
=。
EN/BN = sinx/sin(45°-x)由于sinx/sin(45°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。
又由于XXX,所以问题转化为:在对角线AC上找一点N,使得MN+EB最小。
连接BD,设交点为F,则∠ABF=∠FBD=45°,BF=AB/√2=2√2.由于AF=AD-DF=4-DF,所以MN+EB=BF+MN+EF=BF+FN。
第三章 勾股定理培优专题 折叠问题中的勾股定理应用(含解析)

第三章勾股定理培优专题折叠问题中的勾股定理应用(含解析)中小学教育资源及组卷应用平台第三章勾股定理培优专题折叠问题中的勾股定理应用类型1 勾股定理在三角形折叠中的应用1.如图,Rt△ABC 中,AB=9,BC=6,△B=90°,将△ABC折叠,使点A 与BC的中点D重合,折痕为MN,则线段BN 的长为( )C.4D.5第1题图第2题图2.如图,三角形纸片ABC中,△BAC=90°,AB=2,AC=3.沿过点A 的直线将纸片折叠,使点B落在边BC上的点D处;再折叠纸片,使点C 与点D重合,若折痕与AC 的交点为E,则AE 的长是( )3.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A 与B 重合,折痕为DE.(1)如果AC=6 cm,AB=10 cm,可求得△ACD的周长为___________cm;(2)如果△CAD:△BAD=1:4,可求得△B 的度数为_____________;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,AB=15 cm,请求出CD的长.类型2 勾股定理在四边形折叠中的应用4.如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F 处,则CE 的长为_____________.第4题图第5题图5.如图,有一张长方形纸片ABCD,AB=8cm,BC=10 cm,点E为CD上一点,将纸片沿AE折叠,BC的对应边. 恰好经过点D,则线段DE的长为_____________cm.6.如图,长方形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,BE与CD 相交于点F,则AP 的长为____________.7.如图,将长方形纸片ABCD折叠,使点B与点D重合,点A 落在点P处,折痕为EF.(1)试说明:△PDE△△CDF;(2)若CD=4 cm,EF=5cm ,求BC 的长.参考答案1. C 【解析】由折叠知DN=AN=9-BN.因为点D为BC的中点,所以因为△B=90°,所以NB +DB =DN ,即BN +3 =(9-BN) ,解得BN=4.故选C.2. A 【解析】因为沿过点A 的直线将纸片折叠,使点B落在边BC上的点D处,所以AD=AB=2,△B=△ADB.因为折叠纸片,使点C与点D重合,所以CE=DE,△C=△CDE.因为△BAC=90°,所以△B+△C=90°.所以△ADB+△CDE=90°.所以△ADE=90°.所以AD +DE =AE .设AE=x,则CE=DE=3-x.所以2 +(3-x) =x ,解得所以故选A.3.解:操作一:(1)14【解析】在Rt△ABC 中,AC=6 cm,AB=10 cm,根据勾股定理,得BC=8cm .由折叠知AD=BD.所以△ACD的周长=AC+CD+AD=AC+CD+BD=AC+BC=6+8=14(cm).(2)40°.操作二:在Rt△ABC中,AC=9 cm,AB=15 cm,根据勾股定理,得BC =AB -AC =15 -9 =144.所以BC=12 cm.由折叠知AE=AC=9 cm.因为AB=15 cm,所以BE=AB-AE=6cm.设CD=x cm,则BD=(12-x) cm,DE=CD=x cm.在Rt△BDE中,根据勾股定理,得DE +BE =BD ,即x +6 =(12-x) .解得x=4.5.所以CD=4.5cm .【解析】设CE=x,则BE=6-x.由折叠性质,知EF=CE=x,DF=CD=AB=10.在Rt△DAF中,AD=6,DF=10,所以AF=8.所以BF=AB-AF=10-8=2.在Rt△BEF中,BE +BF =EF ,即((6-x) +2 =x .解得5.5 【解析】因为将纸片沿AE折叠,BC的对应边B'C'恰好经过点D,所以C'E,所所以所以因为,即DE =4 +(8-DE) ,所以DE=5cm .6. 【解析】因为OD=OE,△D=△E=90°,△DOP=△EOF,所以△DPO△△EFO(ASA).所以PO=FO,EF=DP.所以PE=DF.设AP的长为x,则PE=DF=x,DP=EF=6-x,所以BF=BE-EF=8-(6-x)=2+x,CF=DC-DF=8-x.在Rt△BCF中,.BF =BC +CF ,即(2+x) =6 +(8-x) .所以7.解:(1)因为四边形ABCD是长方形,所以△A=△ADC=△B=△C=90°,AB=CD.由折叠得AB=PD,△A=△P=90°,△B=△PDF=90°,所以PD=CD.因为△PDF=△ADC=90°,所以△PDE=△CDF.在△PDE和△CDF中,所以△PDE△△CDF(ASA).(2)如图,过点E作EG△BC于点G,所以△EGF=90°,EG=CD=4 cm.在Rt△EGF中,由勾股定理,得FG =EF -EG =5 -4 =9,所以FG=3cm.设CF=x cm,则PE=AE=BG=x cm.因为△PDE△△CDF,所以DF=DE=CG=(x+3) cm.在Rt△CDF中,由勾股定理,得DF =CD +CF ,即x +4 =(x+3) ,所以所以所以BC的长为21世纪教育网 精品试卷·第2 页(共2 页)21世纪教育网()。
勾股定理专题培优学案(勾股定理和几何计算、勾股定理和几何证明和勾股弦图)

勾股定理辅助线一、本章概述本章共分为勾股定理与几何计算、勾股定理与几何证明和勾股弦图三部分,都是勾股定理的重难点内容二、知识回顾1.勾股定理(1)直角三角形两直角边的平方和等于斜边c的平方和。
(即:)2.勾股定理的逆定理(2)如果三角形的三边长:。
满足关系,那么这个三角形是直角三角形。
3.勾股定理的证明:(3)勾股定理的证明方法很多,常见的是拼图方法,用拼图的方法验证勾股定理的思路是:①图形进行割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
(4)常见方法如下:方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积。
方法三:美国第二十任总统伽菲尔德的“总统证法”.1. 勾股定理与几何计算一、本节概述本节主要讲解勾股定理常见的三个辅助线模型,将斜三角形问题,转化为直角三角形问题。
当遇到三角形内的几何计算,特别是长度计算时,可以考虑用勾股定理解决。
在没有直角三角形时,我们就构造直角三角形,方法就是作高。
要尽量作与题中条件有关系的高,总有一条适合你的,比如特殊角所对的高。
二、典例精析知识点:勾股定理与几何计算【例1】如图,已知AC=2,思路分析:标记条件,题目中给出三角形的两个角和一条边,符合“AAS”,故三角形形状固定,可通过作高转化为勾股定理来解决,作高的时候,要充分利用特殊角。
作AB角形问题。
解:,先从右边已知一边和一角的直角三角形入手,这是个()的特殊直角三角形。
得到CD后,再看左边已知一边和一角的直角三角形,这是个()的特殊直角三角形。
方法总结这是利用勾股定理时常见的辅助线做法之一:三角形给出的条件满足“AAS”,作高的时候要充分利用特殊角,使分割后得到的直角三角形可求解即可,此例题是垂线在三角形内,并获得特殊直角三角形的例子。
【例2】思路分析:标记条件,给出的三角形符合“SAS”,故形状固定,可通过作高解决,作高时要充分利用特殊三角形,因为给出的特殊角是钝角,故可利用它的补角。
专题勾股定理培优版(综合)

专题 勾股定理在动态几何中的应用一.勾股定理与对称变换 (一)动点证明题1.如图,在△ABC 中,AB =AC ,(1)若P 为边BC 上的中点,连结AP ,求证:BP ×CP =AB 2-AP 2;(2)若P 是BC 边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由;(3)若P 是BC 边延长线上一点,线段AB 、AP 、BP 、CP 之间有什么样的关系?请证明你的结论.(二)最值问题2.如图,E 为正方形ABCD 的边AB 上一点,AE =3 ,BE =1,P 为AC 上的动点,则PB +PE 的最小值是ABPCBCPADPED C C将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;(3)当AM +BM +CM 的最小值为13 时,求正方形的边长.D C CD C C长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决. (1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD 和AB 的长.图① 图②DB C图2图1A'PPA ABCBC5.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC,连接A A ',当点A 落在C A '上时,此题可解(如图2).请你回答:AP 的最大值是 .参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点, 则AP+BP+CP 的最小值是 .(结果可以不化简)6.如图,P 是等边三角形ABC 内一点,AP=3,BP=4,CP=5,求∠APB的度数. BAC图3CABP变式1:∆ABC 中, ∠ACB=90º,AC=BC ,点P 是∆ABC 内一点,且PA=6,PB=2,PC=4,求∠BPC 的度数变式2:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决. 请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹); (2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3CBAPCA BEF MN图① 7. 已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在∠ACE 的内部旋转时,如图①,求证:222BN AM MN +=;(2)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.变式1:如图,在Rt ABC ∆中, 90,,45BAC AC AB DAE ∠=︒=∠=︒ 且3BD =,4CE =,则DE =变式2:如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕 点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ≌△ACD ; ③BE DC DE +=;④222BE DC DE +=其中正确的是( ) CABE F MN 图②BCDEFA(三)其它应用7. 在ABC △中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.(1)请你将ABC △的面积直接填写在横线上__________________; 思维拓展:(2)我们把上述求ABC △面积的方法叫做构图法....若ABC △三边的长分别为2a 、13a 、17a (0a >),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:(3)若ABC △中有两边的长分别为2a 、10a (0a >),且ABC △的面积为22a ,试运用构图..法.在图3的正方形网格(每个小正方形的边长为a )中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上__________________.8.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连结QE并延长交BP于点F.(1)如图1,若AB=32,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=32,设BP=x,以QF为边的等边三角形的面积y,求y关于x的关系式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
勾股定理培优专题
一、本节基础知识
1、勾股定理:直角三角形 的平方和等于 的平方,即:a 2
+b 2
=c 2。
公式变形:a 2 = ; b 2= 。
( a=22b c - ;
22b c b -=;22b a c +=)
2、勾股定理的逆定理:如果三角形的三边长:a 、b 、c 满足 ,那么这个三角形是直角三角形。
3、满足2
22c b a =+的三个 ,称为勾股数。
请你写出几组勾股数:
___________,_________,____________,____________,_______________,
4、巩固练习:
1.如果三角形的三边长a 、b 、c 满足a 2
+b 2
=c 2
,那么这个三角形是_________三角形,我们把这个定理叫做勾股定理的_________.
2.分别以下列四组数为一个三角形的边长:(1)6、8,10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有_________.(填序号) 3.若△ABC 中,(b -a )(b +a )=c 2
,则∠B =_________;
4.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是________三角形.
5.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、
a +2为边的三角形的面积为________.
二、经典例题、针对训练、
考点一 证明三角形是直角三角形
例1、已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2
+338=10a+24b+26c.试判断△ABC 的形状.
例2:(如图) 在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41
BC ,求证:∠EFA=90︒.
A
B D
C
F
E
2
例3:已知△ABC 中,AB=20,AC=15,BC 边上的高为12,求△ABC 的周长。
例4:一直角三角形的一直角边长为7,另两条边长为两连续整数,求这个直角三角形的周长。
例5:如图,长方形ABCD 中,AB=8。
BC=4,将长方形沿AC 折叠,点D 落到D ′,则重叠部分
△AFC 的面积是多少?
例6: 如图,把一张长方形纸片ABCD 折叠起来,使其对角顶点A 、C 重合,•若其长BC 为a ,
宽AB 为b ,则折叠后不重合部分的面积是多少?
例7: 如图2-3,把矩形ABCD 沿直线BD 向上折叠,使点C 落在C ′的位置上,已知AB=•3,
BC=7,重合部分△EBD 的面积为________.
例8:如图2-5,长方形ABCD 中,AB=3,BC=4,若将该矩形折叠,使C 点
与A 点重合,•则折叠后痕迹EF 的长为( )
A .3.74
B .3.75
C .3.76
D .3.77
D
D C
B A
F
2-3
例9:如图2-4,一架长2.5m的梯子,斜放在墙上,梯子的底部B•离墙脚O•的距离是0.7m,当梯子的顶部A向下滑0.4m到A′时,梯子的底部向外移动多少米?
例10:如图,等腰△ABC中AB=AC,底边BC=20,D为AB上一点,CD=16,BD=12,求△ABC的周长。
例11:如图:长方体的高为3cm,底面是正方形,边长为2cm,现有绳子从A出发,沿
长方形表面到达C处,问绳子最短是多少厘米?
问题1:如图,圆柱的高为10cm,底面半径为4cm,在圆柱下底面的A点处有一只蚂蚁,它想吃到下底面D处的食物,沿圆柱侧面爬行的最短路程是多少?为什么?(π取3)
问题2:如图,圆柱的高为10cm,底面半径为4cm,在圆柱下底面的A点处有一只蚂蚁,它想吃到距离下底面1cm的E处的食物,沿圆柱侧面爬行的最短路程是多少?为什么?(π取3)
问题3:一个无盖的长方体盒子的长、宽、高分别为8cm、8cm、12cm,一只蚂蚁想从盒底的A
点爬到盒顶的B点。
你能帮蚂蚁设计一条最短线路吗?蚂蚁要爬行的最短行程是多少?
问题3:如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B离点C 5 cm ,一只蚂蚁如
果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?
·E
A B
8cm 8cm
12cm
15cm
10cm
20cm
A
C
B
·
3
4
问题4::如图将一根长24cm 的筷子,置于底面直径为 5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外面的长度是为hcm ,则h 的取值范围是 。
问题5:如图,长方体的底面边的长分别为1cm 和3cm ,高6cm 。
如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 。
问题6:如图,是一个三级台阶,它的每一级的长、宽、
高分别等于5cm 、3cm 、1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物。
请你想一想,它爬行的最短路程是多少?
5米
3米
(第11题) (第14题)(第15题)
三,作业:11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地
毯,地毯的长度至少需要____________米.
12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.
15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.
A
B
A
B
C
D
第18
题图
7cm
B
3 1
6。