电力载波通信相关知识
电力线载波通信汇总

电力线载波通信汇总第一章绪论●架空明线实用传输频带最高频率可达300 kHz●对称电缆可达600 kHz●同轴电缆可达60MHz●电力线高频通道可达500kHz●频带平移:上边带话音三角形与调制器输入调制信号的话音三角形方向一致频带倒置:下边带的话音三角形的方向与输入调制信号话音三角形的方向相反载波通信的基本过程:一变二分三还原变,就是用调制器把话音频带变换到高频频带;分,就是频率分割,即在收信端用滤波器把各路信号从群信号中分割出来;还原,就是利用解调器把高频频带还原成话音频带。
载波机中必须包括以下几种基本部件:●(1)调制器(或解调器):实现频率变换。
●(2)载波振荡器:产生载频信号。
●(3)滤波器:完成选频与频率分割作用。
●(4)放大器:提高信号电平。
两种现象:解决收后重发添加差接系统:差接系统能把用户方向的二线电路与载波机的收、发信支路的四线电路连接起来,同时能使收信支路与发信支路彼此隔离,切断“收后重发”通路。
这是因为差接系统具有信号在邻端方向传输衰减小,对端衰减大的性能。
解决自发自收用以下两个方案:1、双频带二线制双向通信所谓双带二线制,指的是在一对通信线路的两个方向上,采用两个不同的线路传输频带,利用方向滤波器把收、发两个方向的线路传输频带分开,切断“自发自收”通路,从而实现双向通信。
这种方法主要用在线路传输线对较少的载波通信系统中。
如架空明线、电力线载波通信系统中都采用这种通信方式。
2、单边带四线制双向通信所谓单边带四线制,指的是在线路上收、发信两个传输方向上采用相同的传输频带,而用两对导线(四根导线)来各自传输一个方向的信号,从而切断了“自发自收”通路。
这种方法主要用于对称电缆和同轴电缆载波通信系统。
载波机特点与技术要求发信功率较大有较快调节速度和较大调节范围的自动电平调节系统大多是单路机能适应不同电压等级的电力线通信需要具有自动交换系统,并提供优先权配置方向滤波器:分割收发频带线路滤波器:过滤信号频带,隔离载波通路与音频通路多级变频与标准转接频谱一次变频:把原始信号通过一次变频搬移到线路传输频带多级变频:把原始信号通过多次变频,搬移到线路传输频带通路变频:把音频信号变频为上、下边带或将上、下边带还原成音频群变频:把由若干路边带信号所组成的群信号送到一个变频器进行变频多级变频的优点有利于调制器后带通滤波器的设计与制造减少滤波器和载频种类实现较好的变频方案,减少串扰便于得到标准转接频谱,有利于机型统一和群间转接CCITT建议的标准频谱通路(0~4kHz) 指每路信号允许通过的频率范围,一般取为4kHz.前群(12~24kHz) 由3个话路信号分别经12, 16kHz和20kHz载波变频,取上边带,组成12~24kHz 的3路群信号,称为前群。
电力载波通信原理_电力载波通信的优缺点

电力载波通信原理_电力载波通信的优缺点电力载波通信原理_电力载波通信的优缺点电力线载波通信简介电力线载波通信(powerlinecarriercommunication)以输电线路为载波信号的传输媒介的电力系统通信。
由于输电线路具备十分牢固的支撑结构,并架设3条以上的导体(一般有三相良导体及一或两根架空地线),所以输电线输送工频电流的同时,用之传送载波信号,既经济又十分可靠。
这种综合利用早已成为世界上所有电力部门优先采用的特有通信手段。
载波通信方式(1)电力线载波通信。
这种通信具有高度的可靠性和经济性,且于调度管理的分布基本一致。
但这种方式受可用频谱的限制,并且抗干扰性能稍差。
(2)绝缘架空地线载波通信。
这种通信设备简单、造价低,可扩展电力线载波通信频谱,送电线路检修接地期间可以不中断通信,受系统短路接地故障影响较小,易实现长距离通信。
其缺点是易发生瞬时中断。
电力载波通信的优点只需要两端加上阻波器等少量设备即可实现通讯、远传等功能,投资小!电力线载波通信的缺点1、配电变压器对电力载波信号有阻隔作用,所以电力载波信号只能在一个配电变压器区域范围内传送;2、三相电力线间有很大信号损失(10dB-30dB)。
通讯距离很近时,不同相间可能会收到信号。
一般电力载波信号只能在单相电力线上传输;3、不同信号藕合方式对电力载波信号损失不同,藕合方式有线-地藕合和线-中线藕合。
线-地藕合方式与线-中线藕合方式相比,电力载波信号少损失十几dB,但线-地藕合方式不是所有地区电力系统都适用;4、电力线存在本身因有的脉冲干扰。
目前使用的交流电有50HZ 和60HZ,则周期为20ms 和16.7ms,在每一交流周期中,出现两次峰值,两次峰值会带来两次脉冲干扰,即电力线上有固定的100HZ或120HZ脉冲干扰,干扰时间约2ms,因定干扰必须加以处理。
有一种利用波形过0点的短时间内进行数据传输的方法,但由于过0点时间短,实际应用与交。
电力系统中的电力线载波通信技术

电力系统中的电力线载波通信技术引言电力通信被普遍应用在电力系统中,其主要目的是实现电力信息传输、监测和控制。
而电力线载波通信技术作为其中一种重要的通信手段,具有广泛的应用前景。
本文将探讨电力线载波通信技术在电力系统中的原理、应用和发展趋势,为读者提供更深入的了解。
一、电力线载波通信技术的原理电力线载波通信技术利用电力线作为传输介质,通过将高频信号耦合到输电线路上,实现信息传输的目的。
其原理基于电力线的双重工作特性,即输电和通信,并通过频分复用技术使其同时进行。
首先,信号的耦合。
在电力线输电过程中,由于电力系统的特性,存在着一定的电压和电流波动。
电力线载波通信技术利用这种波动作为信号传输的载体,通过改变电流和电压的幅度和频率来传递信息。
这种耦合不仅能提高信息传输的可靠性,还能减少系统对外部环境的干扰。
其次,频分复用技术。
电力线系统中,除了电力信号外,还有其他频率的干扰信号存在。
为了有效地区分不同信号,电力线载波通信技术引入了频分复用技术。
通过将不同频段的信号分配给不同的用户或功能,实现数据的同时传输和分离。
二、电力线载波通信技术的应用1. 电力数据传输电力线载波通信技术在电力系统中最常见的应用就是实现电力数据的传输。
通过将监测仪器、数据采集设备等连接到电力线上,可以将实时电力数据传输到中央控制中心,实现对电力系统的远程监测和管理。
这种应用不仅提高了电力系统的运行效率,还能预防和处理电力故障。
2. 智能电网随着电力系统的现代化发展,智能电网的建设成为当今的热点。
电力线载波通信技术在智能电网中起到了重要的作用。
通过将智能设备与电力线相连,可以实现对电力负荷、电能质量和安全等参数的实时监测和管理。
并且通过数据的传输和处理,可以实现电力系统的智能化运营和优化调度。
3. 家庭电力信息管理电力线载波通信技术还可以应用于家庭电力信息管理。
通过在家庭电力表中集成通信模块,可以实现对电力用量、功率因数等信息的实时监测和统计。
第3章__电力线载波通信..

第二节 电力线载波通信系统
一、电力线载波通信系统构成
电力线载波通信系统主要由电力线载波机、电力线路和耦合设 备构成,如图3-1 。其中耦合装置包括线路阻波器GZ、耦合电容 器C、结合滤波器JL(又称结合设备)和高频电缆HFC,与电力线 路一起组成电力线高频通道。
耦合装置 电力线路 耦合装置
G
发电机 变压器 GZ C JL HFC 载 波 机 A JL HFC GZ 变压器
一、电力线载波通信的特点(续)
2. 线路频谱安排的特殊性 电力线载波通信能使用的频谱由三个因素决定: (1)电力线路本身的高频特性。 (2)避免50Hz工频的干扰。 (3)考虑载波信号的辐射对无线电广播及无线 通信的影响。 我国统一规定电力线载波通信使用的频率范围为 40—500KHz。
一、电力线载波通信的特点(续)
图3-9
(二)电力线载波通信的转接方式
电力线载波通信中,为了组成以调度所为中心 的通信网,经常需要进行电路转接。常用的转 接方式有两种:话音、远动通路同时转接和话 音通路单独转接方式。当话音、远动同时转接 时,可采用中频转接或低频转接;当话音通路 单独转接时,应采用音频转接。各种转接的原 理及特点如下。
1.定频通信方式
定频通信方式如图3-7 所示,这种方式应用最普遍。一 对一的定频通信方式又是定点通信,传输稳定,电路 工作比较可靠。
图3-7
2.中央通信方式
为实现图3-7中A站与B、C两站通话需要,也可采用中 央通信方式(见图3-8)。采用这种方式,在A、B、C三 站或更多站间通信可只使用一对频率,节约了载波频 谱也节约了设备数量。但这种方式只限A站与B、C两 站或更多外围站分别通话。各外围站之间不能通话。 因此,这种方式只宜在通话量少的简单通信网中使用, 如集中控制站对无人值守变电所的通信。
电力线载波通信详解..

1、电力线载波通信系统的构成
高压电力线、阻波器、耦合电容器、结合滤波器、载波机 和高频电缆组成
变电站 A
阻波器
变电站 B 高压线
阻波器
CC/CVT
结合滤波器 电力线载波机 结合滤波器
CC/CVT
电力线载波机
传输数据、电话和护信号
耦合设备
2、电力载波机 载波机发送功率较大(1-100W) 为集中利用发送功率,一般使用单路载波机 具备有较好的自动电平调节系统,接收信号电平 变化在30dB变化范围内时,音频信号输出电平 变化<1dB 主要传输调度电话、自动化信息、电力线路保护 信号
结合滤波器与耦合电容器一起组成结合设备,在电力线和 高频电缆之间传输载波信号,实现线路侧和载波侧的阻抗匹配
结合滤波器样例: MCD80
结合滤波器原理图
设计耦合系统采用的线路阻抗值一般是: 单根导线:相地耦合为400Ω。相相耦合为600Ω; 分裂导线:相地耦合为300Ω,相相耦合为500Ω。 电缆侧(载波侧)一般为75Ω。
允许传送和判别的时间很短,发送信号的次数极少(每年 仅数次),没有预定的发送时间,而且要求保护装置正确 动作的概率很高(安全性很高)和丢失命令的概很低(可依 靠性很高) 与话音交替复用 (AMP)
二、电力线载波机的体系结构
(一)电力线载波机的特点与技术要求
(1)电力线高频通道杂音大,线路直通距离长,衰减大,为保证收 信端有足够的信噪比,要求电力线载波机的发信功率较大。 (2)电力线载波机确保在电力线路故障或系统操作,造成高频通道 衰减突然增大很多时,仍能维持通畅。因此,要求电力线载波机 要有较快调节速度和较大调节范围的自动电平调节系统 (3)为便于灵活组织通信和频率分配,并避免因发信功率太大引起 制造困难,电力线载波机大多是单路机。 (4)现代电力线载波机大多为多功能、标准化、系列化、通用化的 载波通信设备,能适应在110-500kV各种不同电压等级的电力线 上传送电话与非电话业务的需要。 (5)为了提高电力线高频通道和载波设备的利用率,国产电力线载 波机本身常带有自动交换系统,并可为重要用户提供优先权。
电力线载波通信基础要点

方向的分散,以及从组网的灵活性考虑,电力线载波
通信不象邮电载波那样在一条线路上开通十几路、几
十路、甚至几百路的载波电话,而是大量采用单路载
波设备。在某些特定情况下使用多路载波,也均在千
路以下。
23ቤተ መጻሕፍቲ ባይዱ
电力线载波通信的特点
线路存在强大的电磁干扰
由于电力线路上可能存在强大的电晕等干扰噪声,要
1)电力线路本身的高频特性;
2)避免50Hz工频谐波的干扰;
3)考虑载波信号的辐射对无线电广播及无线通信的
影响。
我国统一规定电力线载波通信使用频带为(40~500)
kHz。
22
电力线载波通信的特点
以单路载波为主
电力系统从调度通信的需要出发,往往要依靠发电厂、
变电所同母线上不同走向的电力线,开设电力线载波
设备功率容量能得到充分利用;
➢
因占用频带窄,故外来干扰也相应减小。
12
载波通信基本原理
双向通信的实现
载波通信的基本过程可归纳为:“一变二分三还原”。
“变”是用调制器把话音频带变换到高频频带,“分”
就是频率分割,在收信端用滤波器把各路信号从群信
号中分割出来,“还原”就是利用解调器把高频频带
还原成话音频带。
按照频率搬移、频率分割原理实现传输线路频分多路
复用的设备叫做载波机载波机。
13
载波通信基本原理
双带二线制
所谓双带二线制指的是在一对通信线路的两个传输方
向上,采用两个不同的线路传输频带,利用方向滤波
器把收、发两个方向的线路传输频带分开,防止“自
电力载波通信概述

• 耦合电容器
耦合电容器接在结合滤波器与高压 导线之间,它是一个耐高压的瓷瓶油浸 纸介绝缘电容,其容量随电压等级的不 同而不同。其作用是将载波设备与电力 线上的高电压、操作过电压及雷电过电 压等隔离开,防止高电压进入通信设备 ,同时使高频载波信号能顺利地耦合到 高压线路上。
采用自动呼叫方式完成。
• 自动交换系统
国产机通常为四门用户交换系 统,通过自动拨号选叫所需用户 ,用户时分占用同一个载波信道 。
进口机常连接小交换机,提高 通路的利用率和实现组网功能。
电力线载波机的主要技术指标
• 传输信号电平 • 通路净衰耗频率特性 • 通路振幅特性 • 通路稳定度 • 通路杂音 • 载波同步 • 通路串音 • 回音和群时延 • 振铃边际
• 电力载波机 主要实现调制和解调 特点: ① 发送功率大 ② 单路机 ③ 自动电平调节 ④ 可以复合传送信号
• 调制方式 单边带幅度调制
接收带宽减少一半,噪声和干扰减少 提高电力线载波频谱的利用率 发送功率集中在一个边带中,利用率高
• 组成电路: 音频汇接电路、 发信支路、 收信支路、 自动电平调节系统、 呼叫及自动交换系统
• 线路阻波器GZ
串接在电力线和母线之间,是对电力系 统一次设备的“加工”,其作用是通过电 力电流,阻止高频载波信号漏到变压器和 电力线分支线路等电力设备,以减少变电 站和分支线路对高频信号的介入损耗及同 一母线不同电力线上的衰耗。高频阻波器 串联在高压输电线路上,因此它具备承受 强大供电电流、供电电压及瞬间短路电流 的能力。
• 远方保护信号也是音频信号,是在发生 电力故障时,需要传输到远方的信号。 通常传输的时间极短。因此在传送时先 停送话音、远动、呼叫信号,传送完保 护信号后,再继续传送其他信号。由于 时间很短,并不影响其他信号的传输。 同时可以全功率传输远方保护信号,确 保保护信号的可靠性。
电力载波通信资料

八、电力线载波部分:49题(716-764)716. 电力线载波通信的特点是什么?答:线路衰减小,机械强度高,传输可靠; 线路存在强大的电磁干扰,要求电力线载波设备具有较高的发信功率,以获得必需的输出信噪比; 具有独特的耦合设备。
电力线载波通信是电力系统特有的通信方式。
717. 我国规定高压电力线载波通信的频率使用范围是多少?答:40~500kHz。
718. 电力线载波通信系统主要由哪些部分构成?答:电力线载波通信系统主要由电力线载波机、电力线路和耦合装置构成。
719. 电力线载波通信的耦合装置由哪些部分构成?答:耦合装置由线路阻波器、耦合电容器、结合滤波器(又称结合设备)和高频电缆构成。
720. 电力线高频通道由哪些部分组成?答:电力线高频通道由耦合装置与电力线路一起组成。
721. 耦合电容的作用是什么?答:通高频,阻工频。
722. 结合滤波器的作用是什么?答:阻工频,通高频载波。
723. 线路阻波器的主要作用是什么?答:通工频,阻高频。
724. 对连接结合设备的次级端子和载波机的高频电缆有什么要求?答:按照载波机载波输出输入端不同阻抗的要求,可以用不对称电缆(同轴电缆),也可用对称电缆。
电缆的阻抗值,同轴电缆一般为75Ω;对称电缆一般为150Ω。
我国主要采用同轴电缆。
725. 简述电力线载波进行话音通信的原理?答:利用载波机将低频话音信号调制成40kHz以上的高频信号,通过专门的结合设备耦合到电力线上,信号会沿电力线传输,到达对方终端后,再采用滤波器将高频信号和工频信号分开,通过解调还原出低频语音信号。
726. 能否在输电线上直接传送话音信号?简单说明理由。
答:不能,因为高压输电线路上输送的工频电压很高,电流很大,其谐波分量也很大,这些谐波落会在语音频段,与话音信号混合在一起无法区分,且其谐波幅值往往比一般传送的话音信号大得多,对话音信号产生严重干扰,因此不能在电力线上直接传送话音信号。
727. 利用载波设备传输音频信号,高压电力线的工频电流是否会对它产生严重干扰?简述原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、电力载波通信相关知识简介
1、通信系统的组成
通信的目的是为了交换信息。
一般通信系统的组成可用下图概括:
信源是信息产生的
来源,是一些可视或可闻的信息,这些信息通常都是些非电信号,要转换为电信号才能进行传输,这个工作通常由输入设备完成,如电话机、电报机、摄像机。
交换设备是沟通输入设备和发送设备的接续装置,(在其他通信系统有可能不需要这一过程,电信号直接送入到发送设备进行调制)。
发送设备的任务是将各种信息的电信号经过处理(调制)使之满足信道传输的要求。
信道是信息传输的媒介,概括来讲分为有线和无线两种,其中有线传输包括:电力载波、光纤通信;无线传输包括微波、特高频等。
接收设备和输出设备与发送设备和输入设备的作用相反。
1.1载波通信系统的组成
载波通信系统的组成可以用下图表示:
上图中:
用户通常是电话机或远动设备专用的调制解调器;
交换机是接通电话用户的交换机接续设备,分人工和自动接续两种;载波机相当于通信系统的发送和接收设备,它的作用是把语音信号转换成适合线路传输的频率的信号。
或将线路传输的高频信号还原成语音信号。
高频通道在电力系统中通常是指,由高频电缆、结合滤波器、耦合电容器、高压线路等组成的传输通道。
2、载波通信系统的类型和应用
在载波通信系统中,根据传输媒介的不同,载波通信可以分为以下几种类型:(1)架空明线载波通信
架空明线是指沿专用通信杆架设的金属线(铁线或铜线),90年代以前,架空明线载波通信在我国长途通信中曾被大量使用,目前,已被光纤通信取代。
(2)对称电缆载波通信
对称电缆是埋在地下的一种电缆,电缆分缆芯和护层两部分,传输频带为12-252kHz,可传输60路电话。
(3)同轴电缆载波通信
同轴电缆可架设或埋地,根据同轴线缆的不同,最高传输频率可达60MHz,载波通信容量最高可达13200路。
(4)电力载波通信
电力载波通信是在工频为50Hz的电力输电线路上传输的一种载波通信。
根据所使用的耦合方式的不同,分为相地结合和相相结合高频通道。
通信所采用有载波通信为相地结合的高频通道、保护专用载波收发信机通常采用相相结合的高频通
道。
电力载波通信的传输频带一般为40-500kHz。
(5)架空地线载波通信
在电力线路不直接将架空地线接地(即每个杆塔上安装避雷器再接地)的情况下,采用架空地线传输的电力载波通信。
架空地线载波通信分线线耦合和线地耦合两种方式。
(6)分裂相导线载波通信
在超高压输电线路上,大多采用分裂导线,当把导线间的金属支架改为绝缘支架后,每一相的分裂导线就成为一对或几对通信线;由分裂相导线为信道构成的载波通信称为分裂相导线载波通信。
2.1电力载波通信的应用
作为电力系统特有的通信方式,电力载波通信有以下几点应用:
(1)传输电话信号
传输电力生产和行政管理的电话信号是载波通信的主要应用之一。
经大量试验人说话的频谱和能量主要集中在300-2000Hz之间。
根据IEC(国际电工委员会)的推荐,电话信号的有效传输频带有三种制式:300-3400Hz、300-2400Hz、300-2000Hz。
(2)传输远动信号
远动信号包括反映系统运行参数的遥信和遥测信号,以及厂站端的遥调和遥控等远方控制信号。
远动信号的原始信息是采用二进制编码的数据信号。
表示数字信号速率常用单位有波特(Bd)和比特/秒(b/s),波特是指数据信号的调制速率,即每秒所含单元信号的个数,亦即单位脉冲宽度的倒数。
比特/秒是指信号传输的速率,它与信号的状态数和单元倍所占时间有关。
在二进制中波特数和比特/秒在数量上是相等的。
(3)传输远方保护信号
远方保护是继电保护的一种方式,用于正确有效地控制保护继电器的动作。
对远方保护信号的传输,以前大都采用专用通道,近年来开始与语音、远动信号复用载波通道。
ZJ-5型电力载波机(复用载波)音频频带的划分:
二、电力载波通信的基本原理和构成方式
1、载波通信的实现
语音频率的电信号可以直接进行短距离传输, 如需进行长距离传输,可有多种方式如:微波\光纤\载波, 电力载波通信是通过将语音频率频率变换到适合线路传输的较高的频率上传送给对方,对方接收到信号后再经过反变换的方式恢复成语音信号。
所谓频率搬移实质上就是变频。
变频器示意图如下:
通常传送上边带(F+f)、下边带(F-f)两个边带和载频分量的方式称为双带制,只传送一个边带,另一个边带与载频被抑制的方式称作单边带抑制载频传输。
目前电力载波机通常采用后一种传送方式。
多次变频:要将语音信号搬移至40-500kHz的范围内,可进行一次直接调制至高频,也可以将信号进行若干次调制后变换为合适的传输频率,后者有利于抑制无用信号。
2、载波通信的传输方式
为实现载波通信系统的双向通信通常采用双频带二线制传输和单频带四线制传输方式。
前者是在同一对导线上,两个传输方向上采用两个不同的传输频带,以区分收信和发信两种不同的信号。
后者是在同两对导线上,两个传输方向上采用相同的传输频带。
双向载波通信原理图:
3、电力载波通信系统的构成
(1)载波终端设备:是指由发信支路、收信支路、差接系统、自动电平调节系统和自动交换系统构成的能完成通信功能的基本设备。
(2)结合加工设备:载波终端设备与高压线路相连所必须使用的一些辅助设备,包括:
高频阻波器――阻止高频信号进入变电站(电厂);
耦合电容器――阻止工频电流进入载波设备,允许高频载波信号传输到高压输电线;
结合滤波器――与耦合电容器一起构成高频带通滤波器;
接地开关――检修中将耦合电容器低压端子接地之用;
高频电线――将载波终端设备与结合滤波器连接在一起。
(3)输电线路;
由载波设备、结合加工设备和输电线路组成的载波通道结线图如下:
载波通信的高频通道是指由一端载波机外线端子至对端载波机外线端子之间的全部设备组成,主要包括高频电缆、结合滤波器、耦合电容器、阻波器、输电线路。