高三总复习同步练习(三角函数二)
三角函数专题复习-三角恒等变换导学案-2023届高三数学二轮专题复习

三角函数第1课时 任意角和弧度制、三角函数的概念【学习目标】1.了解任意角的概念会用公式求扇形弧长、面积;2.会用三角函数定义求值,能判断三角函数在各象限的符号. 【教学过程】 一、基础自测1.下列与角9π4的终边相同的角的表达式中正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z )C.k ·360°-315°(k ∈Z )D.k π+5π4(k ∈Z )2.一扇形的圆心角α=︒60,半径R =10 cm ,该扇形的面积为 .3.若角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点P (-1,2),则sin α-cos α+tan α=________.4.已知点P (tan α,cos α)在第三象限,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限[必备知识] 1.角的概念(1)定义: .(2)分类: (3)终边相同的角: . 2.弧度制的定义和公式(1)定义: .(2)公式: . 3.设角α终边上异于原点的任意一点P (x ,y ),r =x 2+y 2.三角函数 定义 定义域第一象限符号 第二象限符号 第三象限符号 第四象限符号sin αcos αtan α角度 ︒0 ︒30 ︒45 ︒60 ︒90 ︒120 ︒135 ︒150 ︒180弧度 sin αcos α tan α二、典例精讲例1(1)已知角α的终边上一点P (-3,m )(m ≠0),且sin α=2m4,则cos α=________,tan α=________. (2)若α为第二象限角,则cos 2α,cos α2,1sin 2α中,其值必为正的有( )A.0个B.1个C.2个D.3个归纳:巩固练习1:(1)已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( )A.-12B.-32C.12D.32(2)设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角例2.扇形周长为20 cm ,这个扇形的面积最大时,扇形的圆心角α为 弧度归纳:巩固练习2(多选)已知扇形的周长是6 cm ,面积是2 cm 2,下列选项可能正确的有( ) A.圆的半径为2 B.圆的半径为1 C.圆心角的弧度数是1 D.圆心角的弧度数是2三、达标检测1.若扇形的面积为3π8、半径为1,则扇形的圆心角为( )A.3π2B.3π4C.3π8D.3π162.已知角α的终边经过点(3,-4),则sin α+1cos α等于( )A.-15B.3715C.3720D.13153.(多选)角α的终边在第一象限,则sinα2⎪⎪⎪⎪sin α2+cos α2⎪⎪⎪⎪cos α2+tan α2⎪⎪⎪⎪tan α2的值为( )A.-1B.1C.-3D.34.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.5.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限; (2)若角α的终边上一点M ),53(m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.思维导图 三角 函数任意角与弧度制任意角的三角函数角定义弧度制符号角度与弧度互化 特殊角弧度数 扇形弧长、面积三角函数第2课时同角三角函数基本关系与诱导公式【学习目标】1.会用同角基本关系式解决给值求值问题;2.熟记诱导公式并会用诱导公式化简求值. 【教学过程】 二、基础自测1.若sin α=55,π2<α<π,则αcos = tan α=2.若sin(π+α)=12,α∈02π⎛⎫- ⎪⎝⎭,,则tan(π-α)等于( ) A .-12B 3C 3D 33.已知()cos 2cos 2παπα⎛⎫+=- ⎪⎝⎭,则()tan α-=( )A .–2B .2C .13- D .134.sin 1 050°等于( ) A.12 B .-12 C.32 D .-32 [必备知识]1.同角三角函数的基本关系平方关系: 商数关系: 2.公式 角 正弦 余弦 正切 口诀① 2k π+α(k ∈Z )奇变偶不变,符号看象限② -α ③ π-α ④ π+α⑤ π2-α⑥ π2+α⑦ 32π+α⑧ 32π-α三、典例精讲例1(1)已知tan α=2,则3sin α-cos αsin α+2cos α等于( )A.54 B .-54 C.53 D .-53(2)已知sin θ+cos θ=43,θ∈)4,0(π,则sin θ-cos θ的值为 .归纳:巩固练习1:(1)已知α是三角形的内角,且tan α=-13,则sin α+cos α的值为 .(2)已知sin θ+cos θ=713,θ∈(0,π),则sin θ-cos θ= ,tan θ= . 例2.(1)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),则sin )22021(πα-等于( ) A .-45 B .-35 C.35 D.45(2)已知sin )3(απ+=1213,则cos )6(απ-等于( )A.513B.1213 C .-513 D .-1213 归纳:巩固练习2:(1)已知α∈(0,π),且cos α=-1517,则sin )2(απ+·tan(π+α)等于( )A .-1517 B.1517 C .-817 D.817(2)sin )12(πα-=13,则cos )1271(πα+= .四、达标检测1.已知α是第四象限角,tan α=-815,则sin α等于( )A.1517 B .-1517 C.817 D .-8172.已知(0,)απ∈,若2cos 6πα⎛⎫-= ⎪⎝⎭5sin 6πα⎛⎫+ ⎪⎝⎭的值为( )A .14B 2C .2D 143.(多选)在△ABC 中,下列结论正确的是( )A .sin(A +B )=sinC B .sin B +C 2=cos A2 C .tan(A +B )=-tan C )2(π≠C D .cos(A +B )=cos C4.sin 4π3·cos 5π6·tan )34(π-的值是 .5.已知-π2<α<0,且函数f (α)=cos )23(απ+-sin α·1+cos α1-cos α-1.(1)化简f (α); (2)若f (α)=15,求sin αcos α和sin α-cos α的值.思维导图三角函数第3课时 两角和与差的正弦、余弦、正切公式【学习目标】1.会用两角和与差的正弦、余弦、正切公式化简求值;2.会用辅助角公式化简求值. 【教学过程】 三、基础自测1.(多选)下面各式中,正确的是( )A.cos π12=cos π3-cos π4B.cos 5π12=22sin π3-cos π4cos π3C.cos )12(π-=cos π4cos π3+64 D.3sin α+cos α=2sin )3(πα+2.已知tan θ=2,则tan )4(πθ-= .3.cos 17°cos 77°+cos 73°cos 13°=4.tan 10°+tan 50°+3tan 10°tan 50°= . [必备知识]两角和与差的余弦、正弦、正切公式(1)公式C α-β:cos(α-β)= ;(2)公式C α+β:cos(α+β)= ; (3)公式S α+β:sin(α+β)= ;(4)公式S α-β:sin(α-β)= ; (5)公式T α+β:tan(α+β)= ;(6)公式T α-β:tan(α-β)= . (7)(辅助角公式)a sin α+b cos α= .五、典例精讲例1(1)若cos α=-45,α是第三象限角,则sin )4(πα+等于( )A.-210B.210C.-7210D.7210(2)已知534cos 23sin 23=+αα,则4sin 3απ⎛⎫+ ⎪⎝⎭的值为( ) A .23B 23C .45-D .45归纳:巩固练习1:(1)已知sin α=35,α∈),2(ππ,tan(π-β)=12,则tan(α-β)的值为( )A.-211B.211C.112D.-112(2)若3sin s 2a a +=,则tan()πα+=( )A 3B 2C 2D 3例2.已知sin α=255,sin(β-α)=-1010,α,β均为锐角,则β等于( )A.5π12B.π3C.π4D.π6归纳:巩固练习2:已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β= ..六、达标检测1.-sin 133°cos 197°-cos 47°cos 73°等于( ) A.12 B.33 C.22 D.322.已知α,β∈⎝⎛⎭⎫-π2,π2,tan α,tan β是方程x 2+12x +10=0的两根,则tan(α+β)等于( ) A.43 B.-2或12 C.12D.-2 3.(多选)已知3cos α-3sin α=23cos(α+φ),则φ的值可能为( )A.π6 B.613π C. 6π- D.611π 4.已知cos ⎝⎛⎭⎫α+π6=3cos α,tan β=33,则tan(α+β)= . 5.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.思维导图 辅助角公式 a sin α+b cos α=a 2+b 2sin(α+φ),其中sin φ=b a 2+b 2,cos φ=aa 2+b 2三角函数第4课时 三角恒等变换【学习目标】1.熟记正弦、余弦、正切倍角公式;2.会用正弦、余弦、正切倍角公式、半角公式化简求值. 【教学过程】 四、基础自测1.sin 15°cos 15°等于( )A.-14B.14C.-12D.122.已知α,β为锐角,tan α=43,则cos 2α等于( )A.725B.-725C.2425D.-24253.计算:4tanπ123tan 2π12-3等于( )A.233B.-233C.239D.-239[必备知识]二倍角的正弦、余弦、正切公式(1)公式S 2α:sin 2α= .(2)公式C 2α:cos 2α= = = . (3)公式T 2α:tan 2α= .(4)(降幂公式)sin 2α= ,cos 2α= . (5)(半角公式)=2sinα,=2cosα.七、典例精讲例1(1)(2020·全国Ⅰ)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α等于( )A.53B.23C.13D.59正用、逆用公式变形正弦:正余余正符号同余弦:余余正正符号异(2)已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4= .归纳:巩固练习1:(1)(2019·全国Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α等于( ) A.15 B.55 C.33 D.255(2)已知()5sin 26cos 0απα+-=,0,2πα⎛⎫∈ ⎪⎝⎭,则2cos 24απ⎛⎫ +⎪⎝⎭=( )A .15-B .15C .35D .45例2.若sin ⎝⎛⎭⎫π3-α=14,则cos ⎝⎛⎭⎫π3+2α 等于 . 归纳:巩固练习2:若1010)6cos(=+πθ,则)322cos(πθ- 等于 . 八、达标检测1.已知sin α-cos α=43,则sin 2α等于( )A.-79B.-29C.29D.792.计算:1-cos 210°cos 80°1-cos 20°等于( )A.22B.12C.32D.-223.(多选)已知函数f (x )=sin x ·sin ⎝⎛⎭⎫x +π3-14,则f (x )的值不可能是( ) A.-12 B.12C.-2D.24.若α∈⎝⎛⎭⎫π2,π,sin α=31010,则tan 2α= . 5.已知sin ⎝⎛⎭⎫α+π4=210,α∈⎝⎛⎭⎫π2,π.求: (1)cos α的值;(2)sin ⎝⎛⎭⎫2α-π4的值思维导图。
高三数学回归课本复习材料:三角函数基本概念(二)

三角函数基本概念回归课本复习材料21象限角的概念: 已知α为第三象限角,则2α所在的象限是 D (A )第一或第二象限 (B )第二或第三象限 (C )第一或第三象限 (D )第二或第四象限 2.弧长公式已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为(B ) A31 B 33 C 32 D 36 4、任意角的三角函数的定义:已知角α的终边经过点P(5,-12),则ααcos sin +的值为__。
(答:713-); 5.三角函数线(1)已知sin α>sin β,那么下列命题成立的是( D ) A.若α、β是第一象限角,则cos α>cos β B.若α、β是第二象限角,则tan α>tan β C.若α、β是第三象限角,则cos α>cos β D.若α、β是第四象限角,则tan α>tan β(2)若α为锐角,则,sin ,tan ααα的大小关系为_______ (答:sin tan ααα<<); 6.特殊角的三角函数值:7. 同角三角函数的基本关系式:8.三角函数诱导公式97costan()sin 2146πππ+-+的值为 (答:2323-); 9、两角和与差的正弦、余弦、正切公式及倍角公式:(2) 函数4()cos f x x =2sin cos x x -4sin x -的最小正周期为____(答:π);10. 三角函数的恒等变形 (1)巧变角已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为___(答:23431(1)555y x x x =--+<<) (2)三角函数名互化(切割化弦), 求值sin50(13tan10)+ (答:1); (3)公式变形使用tan 20tan 403tan 20tan 40++⋅ 的值为3为sin cos y x x =-得到的图象,只要把函数sin cos y x x =+的图象按向量a 平移,则a等于A .π(,0)2B .π(-,0)2C .4π(,0) D .π(-,0)4(4)三角函数次数的降升,(5)式子结构的转化(对角、函数名、式子结构化同)。
专题2 三角函数压轴小题(原卷版)

专题2 三角函数压轴小题一、单选题 1.(2022·湖北·宜城市第二高级中学高三开学考试)已知正实数C 满足:对于任意θ,均存在,,0255i j i j ∈≤≤≤Z ,使得2cos iC jθ-≤,记C 的最小值为λ,则( ) A .1120001000λ<< B .111000500λ<< C .11500200λ<< D .11200100λ<< 2.(2022·河南·灵宝市第一高级中学模拟预测(理))已知锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2b aC a-=,则sin sin B A +的取值范围是( )A .32⎫⎪⎪⎝⎭B .(C .32⎫⎪⎭D .⎦3.(2022·湖北·宜城市第二高级中学高三开学考试)已知△ABC 中,AB AC ==,()min 2AB BC R λλ+=∈,2AM MB =,22sin cos AP AB AC αα=⋅+⋅,,63ππα⎡⎤∈⎢⎥⎣⎦,则MP 的最小值为( )A B .23C D 4.(2023·全国·高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A .⎫+∞⎪⎣⎭B .43⎤⎥⎣⎦ C .43⎫⎪⎪⎝⎭D .43⎫⎪⎪⎣⎭5.(2022·全国·高三专题练习)在ABC 中,角,,A B C 所对应的边分别为,,a b c ,设ABC 的面积为S ,则24Sa bc+的最大值为( )A B C D 6.(2023·全国·高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:△()f x 在区间(0,)π上有且仅有3个不同的零点; △()f x 的最小正周期可能是2π; △ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; △()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增.其中所有正确结论的序号是( ) A .△△B .△△C .△△D .△△△7.(2022·江苏省滨海中学模拟预测)设函数()211f x x =-,()122x fex --=,()31sin 23f x x π=,99i ia =,0i =、1、2、、99.记()()()()()()10219998k k k k k k k I f a f a f a f a f a f a =-+-++-,1k =、2、3,则( )A .123I I I <<B .321I I I <<C .132I I I <<D .213I I I <<8.(2022·上海市实验学校高三阶段练习)设a △R ,函数f (x )()()2222215cos x a x a x a x a x a ππ⎧-⎪=⎨-+++≥⎪⎩<,若函数f (x )在区间(0,+∞)内恰有6个零点,则a 的取值范围是( ) A .(2,94]△(52,114]B .(74,2]△(52,114]C .(2,94]△[114,3)D .(74,2)△[114,3)9.(2022·江苏·高邮市第一中学高三阶段练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,S 为ABC 的面积,且()222S a b c =--,则222b c bc+的取值范围为( )A .4359,1515⎛⎫ ⎪⎝⎭B .4315⎡⎫⎪⎢⎣⎭C .5915⎡⎫⎪⎢⎣⎭D .)⎡+∞⎣10.(2022·上海市向明中学高三开学考试)直线1y =与函数π()2sin 26f x x ⎛⎫=- ⎪⎝⎭的图像在y 轴右侧交点的横坐标从左到右依次为12n a a a 、、、,下列结论:△π2cos 23f x x ⎛⎫-=- ⎪⎝⎭;△()f x 在π5π,612⎡⎤⎢⎥⎣⎦上是减函数;△12n a a a 、、、为等差数列;△121234πa a a +++=.其中正确的个数是( )A .3B .2C .1D .011.(2022·上海交大附中高三开学考试)已知()sin |||sin |cos |||cos |=+++f x x x x x ,给出下述四个结论: △()y f x =是偶函数; △()y f x =在3,22ππ⎛⎫⎪⎝⎭上为减函数;△()y f x =在(,2)ππ上为增函数; △()y f x =的最大值为 其中所有正确结论的编号是( ) A .△△△B .△△△C .△△△D .△△12.(2022·广东汕头·高三阶段练习)已知函数()()()()()222sin 2π2πR 216,x a x a f x a x a x a x a⎧-<⎪=∈⎨-++-+≥⎪⎩,若()f x 在区间()0,∞+内恰好有7个零点,则a 的取值范围是( ) A .5817,,3236⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦B .581711,,2363⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦C .51711,3,263⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦D .81711,3,363⎛⎤⎛⎤⋃ ⎥⎥⎝⎦⎝⎦13.(2022·广西·模拟预测(理))已知函数()()()sin cos cos sin f x x x =+,则下列结论正确的是( ) A .()f x 是奇函数 B .()f x 的最大值为2 C .()(),x f x f x π∀∈-=RD .[]()0,,0x f x ππ∀∈+>14.(2022·湖南湘潭·高三开学考试)已知 11sin 65a =, 11sin 56b =, 15cos 156c =, 则( )A .a b c <<B .b a c <<C .a c b <<D . c a b <<15.(2022·全国·高三专题练习)在ABC 中,角A B C 、、所对的边分别是,120,a b c A D =、、是边BC 上一点,AB AD ⊥且AD =2b c +的最小值是( )A .4B .6C .8D .916.(2022·江苏南通·高三开学考试)已知锐角ABC 满足AB =60C ∠=°且O 为ABC 的外接圆圆心,若OC OA OB λμ=+,则2λμ-的取值范围为( ) A .(2,1)-B .(1,2)-C .[2,2)-D .(2,2)-17.(2023·全国·高三专题练习)已知,x y ∈R ,则表达式22cos cos cos x y xy ( )A .既有最大值,也有最小值B .有最大值,无最小值C .无最大值,有最小值D .既无最大值,也无最小值18.(2023·全国·高三专题练习)设数列{}n a 的通项公式为()()()*121cos 1N 2nn n a n n π=--⋅+∈,其前n 项和为n S ,则120S =( ) A .60-B .120-C .180D .24019.(2023·全国·高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( ) A .16B .24C .25D .3620.(2023·全国·高三专题练习)在锐角ABC cos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( )A .(4⎤⎦B .(2,C .(]0,4D .(]2,421.(2022·山西·忻州一中模拟预测(文))定义:设不等式()0f x >的解集为A ,若A 中只有唯一整数,则称A 为“和谐解集”.若关于x 的不等式sin cos 2sin cos x x mx x x +>+-在(0,)π上存在“和谐解集”,则实数m 的取值范围为( ) A .cos2[,cos1)2B .cos2(,cos1]2C .[]cos2,cos1D .[]cos2,sin 222.(2023·全国·高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( ) A .12,43⎛⎤⎥⎝⎦ B.23⎤⎥⎝⎦ C.14⎡⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦23.(2022·全国·高三专题练习(文))在三角函数部分,我们研究过二倍角公式2cos 22cos 1x x =-,实际上类似的还有三倍角公式,则下列说法中不正确的有( ) A .3cos34cos 3cos x x x =- B .存在||1x ≤时,使得3|43|1x x -> C .给定正整数n ,若||1i x ≤,(1,2,,)i n =,且310n i i x ==∑,则1||3ni i n x =≤∑ D .设方程38610x x --=的三个实数根为1x ,2x ,3x ,并且123x x x <<,则2232312()x xx x -=-二、多选题24.(2022·湖北·襄阳四中模拟预测)若()sin cos x x x x f x =-,则下列说法正确的是( ) A .()f x 的最小正周期是2πB .()f x 的对称轴方程为212k x ππ=-,()k ∈Z C .存在实数a ,使得对任意的x ∈R ,都存在125,01,2x x π⎡⎤∈-⎢⎥⎣⎦且12x x ≠,满足()()()210k f x af x f x -+=⎡⎤⎣⎦,()1,2k =D .若函数()()2g x f x b =+,250,12x π⎡⎤∈⎢⎥⎣⎦,(b 是实常数),有奇数个零点()12221,,,,N n n x x x x n +⋅⋅⋅∈,则()1232215023n n x x x x x π++++⋅⋅⋅++=25.(2022·重庆十八中两江实验中学高三阶段练习)已知在平行四边形ABCD 中,3AB =,2AD =,60A ∠=︒,把△ABD 沿BD 折起使得A 点变为'A ,则( ) A.BD =B .三棱锥'A BCD -C .当'A C BD =时,三棱锥'A BCD -D .当'A C BD =时,'60A BC ∠=︒26.(2022·辽宁·东北育才学校高三阶段练习)已知函数()()()sin 0,f x x ωϕωϕ=+>∈R 在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭有下列结论正确的有( )A .203f π⎛⎫=⎪⎝⎭B .若()56f x f x π⎛⎫-= ⎪⎝⎭,则函数()f x 的最小正周期为π; C .关于x 的方程()1f x =在区间[0,2)π上最多有4个不相等的实数解 D .若函数()f x 在区间213,36ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为8,33⎛⎤⎥⎝⎦ 27.(2022·全国·高三专题练习(文))由倍角公式2cos 22cos 1x x =-,可知cos2x 可以表示为cos x 的二次多项式.一般地,存在一个n (n *∈N )次多项式()12012n n n n n P t a t a ta t a --=+++⋅⋅⋅+(012,,,n a a a a ⋅⋅⋅∈R ),使得()cos cos n nx P x =,这些多项式()n P t 称为切比雪夫(P .L .Tschebyscheff )多项式.运用探究切比雪夫多项式的方法可得( )A .()3343P t t t =-+B .()424881P t t t =-+C .sin18︒=D .cos18︒=28.(2022·全国·高三专题练习)设正整数k 使得关于x 的方程sin kx x =在区间()33ππ-,内恰有5个实根12345x x x x x <<<<,则( )A .123450x x x x x +++=+B .5295122x ππ<< C .55tan x x =D .2x ,4x ,5x 成等差数列 三、填空题29.(2022·安徽淮南·二模(理))ABC 中,120,BAC AO ∠︒=为BC 边上的中线,AO =2AB AC -的取值范围是________.30.(2023·全国·高三专题练习)△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .31.(2022·全国·高三专题练习(文))1643年法国数学家费马曾提出了一个著名的几何问题:已知一个三角形,求作一点,使其到这个三角形的三个顶点的距离之和为最小.它的答案是:当三角形的三个角均小于120°时,所求的点为三角形的正等角中心(即该点与三角形的三个顶点的连线段两两成角120°),该点称为费马点.已知ABC 中,其中60A ∠=︒,1BC =,P 为费马点,则PB PC PA +-的取值范围是__________. 32.(2022·全国·高三专题练习)如图,在边长为2的正方形ABCD 中,M ,N 分别为边BC ,CD 上的动点,以MN 为边作等边PMN ,使得点A ,P 位于直线MN 的两侧,则PN PB ⋅的最小值为______.33.(2021·安徽·六安市裕安区新安中学高三阶段练习(文))设△A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________. 34.(2022·天津西青·高三期末)在等腰直角三角形ABC 中,π2C ∠=,点P 在三角形内,满足2(222)0PA PB PC +++=,则APB ∠=______.35.(2022·全国·高三专题练习(理))函数ππ5sin (1510)55y x x ⎛⎫=+-≤≤ ⎪⎝⎭的图象与函数25(1)22x y x x +=++图象的所有交点的横坐标之和为___________.36.(2022·全国·高三专题练习)△ABC 内接于半径为2的圆,三个内角A ,B ,C 的平分线延长后分别交此圆于1A ,1B ,1C .则111coscos cos 222sin sin sin A B CAA BB CC A B C++++的值为_____________.37.(2022·福建师大附中高三阶段练习)已知非零实数,x y 满足222x yxy x y y x++=-, 则22x y +的最小值为_____.38.(2022·全国·成都七中高三开学考试(文))ABC 的外心为O ,三个内角A B C ,,所对的边分别为1825a b c AO BC a a c ⎛⎫⋅=- ⎪⎝⎭,,,,4b =.则ABC 面积的最大值为____________. 39.(2022·上海·华师大二附中高三开学考试)对开区间(),I a b =,定义Ib a =-,当实数集合M 为n 段(n为正整数)互不相交的开区间12n I I I 、、、的并集时,定义1||nk k M I ==∑,若对任意上述形式的()0,2π的子集A ,总存在Z k ∈,使得k A A λ≥,其中|,|tan 14k k A x x A x π⎧⎫⎛⎫=∈+⎨⎬ ⎪⎝⎭⎩⎭∣,则λ的最大值为___________. 40.(2021·江苏·南京市第一中学高三阶段练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知4C π,222a b -=,则A =____________.41.(2022·安徽·高三开学考试)有下列命题: △函数tan y x =在定义域内是增函数;△函数1π()cos 34f x x ⎛⎫=+ ⎪⎝⎭的最小正周期为3π;△直线πx =为函数()sin(cos )cos f x x x =+图像的一条对称轴;△函数()|sin |cos f x x x =+的值域为[-. 其中所有正确命题的序号为_____.42.(2021·江西南昌·高三阶段练习)已知ABC 的内角,,A B C 所对应的边分别为,,a b c ,且满足2224,4c c a b ==+, 则ABC 的面积取得最大值时,cos C =______.43.(2022·江苏·泗洪县洪翔中学高三阶段练习)在ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sin sin cos cos3sin B C A C A a c =+,且ABC 的面积222)ABC S a b c +-△,则c a b +的取值范围是___________.44.(2022·全国·高三专题练习)已知,0,2παβ⎛⎫∈ ⎪⎝⎭,()sin 22sin αββ+=,则tan β的最大值为________.45.(2022·北京·测试学校四高三)若ABC 三边长为等差数列,则cos cos cos A B C ++的取值范围是___________.46.(2023·全国·高三专题练习)在ABC 中,()2ABCcSa b =-,其外接圆半径2R =,且())224sin sin sin A B b B -=-,则sinsin 22A B C-+=___________. 47.(2022·北京·测试学校四高三)已知凸四边形ABCD 满足50,40ABD BDC CAD ACB ∠∠∠∠====,则符合题意且不相似的凸四边形ABCD 的个数为___________.48.(2023·全国·高三专题练习)已知函数()sin()f x x ωϕ=+,其中0>ω,0πϕ<< ,π()()4f x f ≤恒成立,且()y f x =在区间3π0,8⎛⎫⎪⎝⎭上恰有3个零点,则ω的取值范围是______________.49.(2022·上海金山·二模)设()sin f x a x =+,若存在125,,,,36n x x x ππ⎡⎤∈⎢⎥⎣⎦,使()()()()121n n f x f x f x f x -+++=成立的最大正整数n 为9,则实数a 的取值范围是__________.50.(2023·全国·高三专题练习)已知锐角三角形ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且A B >,若7sin 2cos sin 25C A B =+,则tan B 的取值范围为_______. 四、双空题51.(2022·辽宁·东北育才双语学校一模)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知222222a b a b c c ab -+-=,若4C π,则A =___________;若ABC 为锐角三角形,则2cos ab B的取值范围是___________.52.(2022·广东佛山·高三期末)菱形ABCD 中,ππ1,,32AB A ⎡⎤=∈⎢⎥⎣⎦,点E ,F 分别是线段,AD CD 上的动点(包括端点),AE CF =,则()AE CF AC +⋅=___________,ED EB ⋅的最小值为___________. 53.(2022·全国·高三专题练习)在ABC 中,D 是BC 边上一点,且6B π=,12AD BD =,若D 是BC 的中点,则ACAB=______;若AC =ADC 的面积的最大值为_________.。
高三数学总复习 专题二三角函数教学案

芯衣州星海市涌泉学校赣榆县智贤中学高三数学总复习专题二第1讲三角函数〔1〕教学案教学内容:三角函数的图象与性质〔1〕教学目的:1三角函数的图象与解析式2.利用三角函数的图象与解析式教学重点:1.求三角函数的解析式;教学难点:三角函数的图象与解析式教学过程:一、知识点复习:1.必记的概念与定理(1)同角关系:sin2α+cos2α=1,=tanα.(2)诱导公式:在+α,k∈Z的诱导公式中“奇变偶不变,符号看象限〞.(3)三角函数的图象及常用性质函数y=sinx y=cosx y=tanx图象单调性在[-+2kπ,+2kπ](k∈Z)上单调递增;在[+2kπ,+2kπ](k∈Z)上单调递减在[-π+2kπ,2kπ](k∈Z)上单调递增;在[2kπ,π+2kπ](k∈Z)上单调递减在(-+kπ,+kπ)(k∈Z)上单调递增对称性对称中心:(kπ,0)(k∈Z);对称轴:x=+kπ(k∈Z)对称中心:(+kπ,0)(k∈Z);对称轴:x=kπ(k∈Z)对称中心:(,0)(k∈Z)2.记住几个常用的公式与结论对于函数y=Asin(ωx+φ)(A>0,ω>0)要记住下面几个常用结论:(1)定义域:R.(2)值域:[-A,A].当x=(k∈Z)时,y取最大值A;当x=(k∈Z)时,y取最小值-A.(3)周期性:周期函数,周期为.(4)单调性:单调递增区间是(k∈Z);单调递减区间是(k∈Z).(5)对称性:函数图象与x轴的交点是对称中心,即对称中心是(,0),对称轴与函数图象的交点纵坐标是函数的最值,即对称轴是直线x=,其中k∈Z.(6)函数y=Asin(ωx+φ)(A>0,ω>0)中,A影响函数图象的最高点和最低点,即函数的最值;ω影响函数图象每隔多少重复出现,即函数的周期;φ影响函数的初相.(7)对于函数y=Asin(ωx+φ)(A>0,ω>0)的图象,相邻的两个对称中心或者者两条对称轴相距半个周期;相邻的一个对称中心和一条对称轴相距周期的四分之一.复备栏3.需要关注的易错易混点三角函数图象平移问题(1)看平移要求:拿到这类问题,首先要看题目要求由哪个函数平移到哪个函数,这是判断挪动方向的关键点.(2)看挪动方向:在学习中,挪动的方向一般我们会记为“正向左,负向右〞,其实,这样不理解的记忆是很危险的.上述规那么不是简单地看y=Asin(ωx+φ)中φ的正负,而是和它的平移要求有关.正确地理解应该是:平移变换中,将x变换为x+φ,这时才是“正向左,负向右〞.(3)看挪动单位:在函数y=Asin(ωx+φ)中,周期变换和相位变换都是沿x轴方向的,所以ω和φ之间有一定的关系,φ是初相位,再经过ω的压缩,最后挪动的单位是||.二、根底训练:1.函数y=tan的定义域是________.解析:∵x-≠kπ+,∴x≠kπ+,k∈Z.答案:2.(2021·模拟)函数f(x)=sinxcosx的最小正周期是________.解析:由题知f(x)=sin2x,所以T==π.答案:π3.将函数y=2sinx的图象上每一点向右平移1个单位长度,再将所得图象上每一点的横坐标扩大为原来的倍(纵坐标保持不变),得函数y=f(x)的图象,那么f(x)的解析式为________.解析:函数y=2sinx向右平移1个单位得y=2sin(x-1)=2sin,将所得图象上每一点的横坐标扩大为原来的倍(纵坐标保持不变),那么y=2sin,即y=2sin.答案:y=2sin4.(2021·模拟)函数f(x)=2sin,x∈[-π,0]的单调增区间为________.解析:当x-∈,k∈Z时,f(x)单调递增,又因为x∈[-π,0],故取k=0得x∈.答案:1三、例题教学:例1、(2021·模拟)假设函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如下列图,这个函数的解析式为________.[解析]由题意知:周期T=2(-)=π,ω==2,设f(x)=Asin(2x+φ),点(,0)为五点作图中的第三点,所以2×+φ=π,即φ=.设f(x)=Asin(2x+),因为点(0,)在原函数的图象上,故Asin=,所以A=,综上知:f(x)=sin(2x+).[答案]f(x)=sin(2x+)变式训练:1.(2021·高考卷)函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,那么φ的值是________.解析:由题意,得sin=cos,因为0≤φ<π,所以φ=.答案:例2、2021·模拟)函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的图象如下列图,直线x=,x =是其两条对称轴.(1)求函数f(x)的解析式并写出函数的单调增区间;(2)假设f(α)=,且<α<,求f(+α)的值.[解](1)由题意,=-=,∴T=π,又ω>0,故ω=2,∴f(x)=2sin(2x+φ),由f()=2sin(+φ)=2,解得φ=2kπ-(k∈Z),又-<φ<,∴φ=-,∴f(x)=2sin(2x-),由2kπ-≤2x-≤2kπ+(k∈Z)知,kπ-≤x≤kπ+,(k∈Z),∴函数f(x)的单调增区间为[kπ-,kπ+](k∈Z).(2)依题意得:2sin(2α-)=,即sin(2α-)=,∵<α<,∴0<2α-<,∴cos(2α-)===,f(+α)=2sin[(2α-)+],∵sin[(2α-)+]=sin(2α-)cos+cos(2α-)sin=(+)=,∴f(+α)=.稳固练习:完成专题强化训练。
高三数学第二轮专题复习 三角函数(有答案)

高三数学第二轮专题复习 三角函数 班级 姓名1.cos300︒=( )A.312 C .1232.cos13计算sin43cos 43-sin13的值等于( )A .12B 3C .22D 33.设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是A .23 B. 43 C . 32D. 3 4.已知2sin 3α=,则cos(2)x α-=A.5- B .19- C.1955.为了得到函数的图像,只需把函数的图像 A.向左平移个长度单位 B .向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位6.下列函数中,周期为π,且在[,]42ππ上为减函数的是 A.sin(2)2y x π=+B.cos(2)2y x π=+C.sin()2y x π=+D.cos()2y x π=+ 7.已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则A. ω=1 ϕ= 6πB. ω=1 ϕ=- 6πC. ω=2 ϕ= 6π D . ω=2 ϕ= -6π8.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=( )A.()f xB.()f x -C. ()g x D .()g x -9.在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若223a b bc -=,sin 23C B =,则A=A .030 B.060 C.0120 D.0150sin(2)3y x π=-sin(2)6y x π=+4π4π2π2π10.函数2()sin(2)4f x x x π=--的最小正周期是__________________ .11.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2b =,sin cos B B +=则角A 的大小为 .12.已知α为第二象限的角,3sin 5a =,则tan 2α= .13.在ABC ∆中,4π=A ,1010cos =B .(Ⅰ)求C cos ;(Ⅱ)设5=BC ,求CB CA ⋅的值.14.在ABC ∆中,AB =1BC =,3cos 4C =.(1)求sin A 的值; (2)求CA BC ⋅的值.15.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2a =,3c =,1cos 4B =. (1)求b 的值; (2)求sinC 的值.16,已知向量(cos sin ,sin )a x x x =+,(cos sin ,2cos )b x x x =-, 设()f x a b =⋅.(1)求函数()f x 的最小正周期. (2)当,44x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的最大值及最小17.已知函数22()sin 2sin cos 3cos f x x x x x =++,x R ∈.求: (I) 函数()f x 的最大值及取得最大值的自变量x 的集合;(II) 函数()f x 的单调增区间.18.已知函数2()sin 22sin f x x x =- (I )求函数()f x 的最小正周期. (II) 求函数()f x 的最大值及()f x 取最大值时x 的集合。
高三理科数学最值微专题(2)三角函数篇

高三理科数学二轮复习最值专题(2)三角函数篇类型一:形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值)。
例1.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .0 D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22,故选B. 例2.已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解:(1)因为f (x )=sin 2x +cos 2x +2sin x cos x +cos 2x =1+sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4+1, 所以函数f (x )的最小正周期T =2π2=π. (2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π4∈⎣⎡⎦⎤π4,5π4,由正弦函数y =sin x 在⎣⎡⎦⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f (x )取最大值2+1;当2x +π4=5π4,即x =π2时,f (x )取最小值0.综上,f (x )在⎣⎡⎦⎤0,π2上的最大值为2+1,最小值为0.类型二:形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值)。
例3、求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. [思路点拨] 利用换元法求解,令t =sin x .转化为二次函数最值问题.[解]:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22.∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54,∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. 类型三:形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).例4、求函数y =sin x +cos x +3cos x sin x 的最值.[解] 令t =sin x +cos x ,∴t ∈[-2, 2 ].又(sin x +cos x )2-2sin x cos x =1,∴sin x cos x =t 2-12, ∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝⎛⎭⎫-13=32×19-13-32=-53,y 大=f (2)=32+ 2. 类型四:“逆向题”,即已知函数的最值去求某参数的值。
大题专项训练6:三角函数与解三角形(综合练习二)-2021届高三数学二轮复习

二轮大题专练6—三角函数与解三角形(综合练习二)1.在△ABC中,角A,B,C的对边分别为a,b,c,已知.(1)若a,b,c成等差数列,求cos B的值;(2)是否存在△ABC满足B为直角?若存在,求sin A的值;若不存在,请说明理由.2.已知△ABC的内角A,B,C的对边分别为a,b,c,且a cos C﹣c sin A=b.(1)求A;(2)若c=2,且BC边上的中线长为,求b.3.设函数f(x)=sin(ωx+φ)(ω>0,﹣<φ<)最小正周期为2π,且f(x)的图象过坐标原点.(1)求ω、φ的值;(2)在△ABC中,若2f2(B)+3f2(C)=2f(A)•f(B)•f(C)+f2(4),且三边a、b、c所对的角依次为A、B、C,试求的值.4.已知在△ABC中,sin(A+B)=1+2sin2.(1)求角C的大小;(2)若∠BAC与∠ABC的内角平分线交于点Ⅰ,△ABC的外接圆半径为2,求△ABI周长的最大值.5.已知f(x)=cos2x﹣1+sin x cos x,x∈R.(1)求f(x)的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若c cos B+b cos C=1且f(A)=0,求△ABC的面积的最大值.6.已知函数的最小值为﹣2,其图象经过点(0,﹣1),且图象上相邻的最高点与最低点的横坐标之差的绝对值为.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若关于x的方程f(x)﹣k=0在上有且仅有两个实数根x1,x2,求实数k的取值范围,并求出x1+x2的值.7.已知函数21()sin sin()cos ()6122f x x x x ππ=++--. (1)求函数()f x 的最小正周期及单调递减区间;(2)已知锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且3(),32B f b ==,求cos cos a B b C -的取值范围.8.已知函数f (x )=4cos ωx sin (ωx +φ)﹣1(0<φ<π,ω>0)的图象关于直线对称,且两相邻对称中心之间的距离为. (Ⅰ)求函数y =f (x )的单调递增区间;(Ⅱ)若x ∈[0,π]时,函数g (x )=f (x )﹣b 有两个不同的零点x 1,x 2,求b 的取值范围及x 1+x 2的值.二轮大题专练6—三角函数与解三角形(综合练习二)答案1.解:(1)若a ,b ,c 成等差数列,所以a +c =2b ,由于.所以cos B ==,由于,所以.(2)假设B为直角,则sin B=1,sin C=cos A,由于,根据正弦定理(sin A+sin C)sin B=,即sin A+cos A=,上式两边平方得:,所以(9sin2A+5)(4sin2A﹣5)=0,由于0<sin2A≤1,所以9sin2A+5>0,4sin2A﹣5<0,与(9sin2A+5)(4sin2A﹣5)=0矛盾,故不存在△ABC满足B为直角.2.解:(1)因为a cos C﹣c sin A=b,由正弦定理可得sin A cos C﹣sin C sin A=sin B,因为B=π﹣A﹣C,所以sin A cos C﹣sin C sin A=sin A cos C+cos A sin C,可得﹣sin C sin A=cos A sin C,因为sin C≠0,所以sin A=﹣cos A,可得tan A=﹣,又因为A∈(0,π),可得A=.(2)由余弦定理可得a2=b2+c2﹣2bc cos A=b2+4+2b,①又在△ABC中,cos B==,设BC的中点为D,在△ABD中,cos B==,可得=,可得a2+4﹣2b2=0,②由①②可得b2﹣2b﹣8=0,解得b=4.3.解:(1)依题意,得,ω=1.故f(x)=sin(x+φ).因为f(x)的图象过坐标原点,所以f(0)=0,即sinφ=0,∵﹣<φ<,∴φ=0.(2)由(1)知f(x)=sin x,因为2f2(B)+3f2(C)=2f(A)•f(B)•f(C)+f2(4),所以2sin2B+3sin2C=2sin A sin B sin C+sin2A,由正弦定理可得:2b2+3c2=2sin A•bc+a2,又a2=b2+c2﹣2bc cos A,∴=,又,∴sin A﹣cos A=,且b=,∴A=.∴==.4.解:(1)∵sin(A+B)=1+2sin2,且A+B+C=π,∴sin C=1+1﹣cos C=2﹣cos C,即sin C+cos C=2,∴2sin(C+)=2.∵C∈(0,π),∴C+∈(,),∴C+=,即C=.(2)∵△ABC的外接圆半径为2,∴由正弦定理知,==2×2=4,∴AB=,∵∠ACB=,∴∠ABC+∠BAC=,∵∠BAC与∠ABC的内角平分线交于点Ⅰ,∴∠ABI+∠BAI=,∴∠AIB=,设∠ABI=θ,则∠BAI=﹣θ,且0<θ<,在△ABI中,由正弦定理得,====4,∴BI=4sin(﹣θ),AI=4sinθ,∴△ABI的周长为2+4sin(﹣θ)+4sinθ=2+4(cosθ﹣sinθ)+4sinθ=2+2cosθ+2sinθ=4sin(θ+)+2,∵0<θ<,∴<θ+<,∴当θ+=,即时,△ABI的周长取得最大值,为4+2,故△ABI的周长的最大值为4+2.5.解:(1)f(x)=cos2x﹣1+sin x cos x=cos2x﹣+sin2x=sin(2x+)﹣,令2x+∈[+2kπ,+2kπ],k∈Z,则x∈[+kπ,+kπ],k∈Z,∴f(x)的单调递增区间为[+kπ,+kπ],k∈Z.(2)∵f(A)=sin(2A+)﹣=0,∴sin(2A+)=,∵A∈(0,π),∴A=,∵c cos B+b cos C=1,∴c•+b•=1,即a2=a,∵a≠0,∴a=1,由正弦定理知,====,∴b=sin B,c=sin C,∴bc=sin B sin C=sin B sin(+B)=sin B(cos B+sin B)=sin2B﹣cos2B+=sin(2B﹣)+,∵B∈(0,),∴2B﹣∈(﹣,),sin(2B﹣)∈(,1],∴bc≤1,∴△ABC的面积S=bc sin A≤×1×sin=,故△ABC的面积的最大值为.6.解:(Ⅰ)由题意,得A=2,.∴T=π,.∴f(x)=2sin(2x+φ).又函数f(x)的图象经过点(0,﹣1),则2sinφ=﹣1.由,得.∴.(Ⅱ)由题意,关于x的方程f(x)﹣k=0在上有且仅有两个实数根x1,x2,即函数y=f(x)与y=k的图象在上有且仅有两个交点.由(Ⅰ)知.令,则y=2sin t.∵,∴.则y∈[﹣2,2].其函数图象如图所示.由图可知,实数k的取值范围为.①当k ∈[1,2)时,t 1,t 2,关于对称,则. 解得.②当时,t 1,t 2关于对称,则. 解得.综上,实数k 的取值范围为,x 1+x 2的值为或.7.解:(1)由题意可得21()sin sin()cos ()6122f x x x x ππ=++-- 311sin (cos )cos(2)226x x x x π++- 3(1cos2)131sin 2sin 244x x x x -=++ 13sin 22x =+, 所以函数()f x 的最小正周期22T ππ==, 令322222k x k ππππ++,k Z ∈,解得344k x k ππππ++,k Z ∈, 故函数()f x 的单调递减区间为[4k ππ+,3]4k ππ+,k Z ∈.(2)由(1)知133()sin 22B f B =+=,解得3sin B =, 因为(0,)2B π∈,所以3B π=, 由正弦定理可知32sin sin sin 3a b c A B C ====,则2sin a A =,2sin c C =, 所以3331cos cos 3cos sin 3cos()sin 3cos()sin cos sin cos sin cos()233226a a B b C C A A A A A A A A A A ππππ-=-=---=++=+-=-=+,在锐角ABC ∆中,可得230,202A C A C πππ+=⎧⎪<<⎪⎨⎪<<⎪⎩可得62A ππ<<, 因此2363A πππ<+<,则1cos()(62A π+∈-,1)2, 故cos cos a B b C -的取值范围为1(2-,1)2. 8.解:(Ⅰ)f (x )=4cos ωx sin (ωx +φ)﹣1=4cos ωx (sin ωx cos φ+cos ωx sin φ)﹣1=4sin ωx cos ωx cos φ+4cos 2ωx sin φ﹣1=2sin2ωx cos φ+2(1+cos2ωx )sin φ﹣1=2sin2ωx cos φ+2cos2ωx sin φ+2sin φ﹣1=2sin (2ωx +φ)+2sin φ﹣1,因为两相邻对称中心之间的距离为,所以函数f (x )的周期为π,则,所以ω=1,则f(x)=2sin(2x+φ)+2sinφ﹣1,又f(x)的图象关于直线对称,所以有φ=,解得φ=,因为0<φ<π,所以φ=,故,令,解得,所以函数y=f(x)的单调递增区间为;(Ⅱ)当x∈[0,π]时,函数g(x)=f(x)﹣b有两个不同的零点x1,x2,即当x∈[0,π]时,方程=有两个不同的根x1,x2,令t=,则t∈,所以方程sin t=在上有两个不同的根t1,t2,作出函数的图象如图所示,①当,即1<b<2时,y=与y=sin t有两个交点,则t1+t2=,即,解得;②当,即﹣2<b<0时,y=与y=sin t有两个交点,则t1+t2=,即,解得;综上可得,当﹣2<b<0时,;当1<b<2时,.。
专题:三角函数(高三用)

三角函数复习专题(一)一、 核心知识点归纳: 1.弧长、扇形面积的公式:设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,则弧长公式l = ,扇形的面积公式S = = . 2.(1)三角函数定义(角α终边上任一点(),Px y ):其中r =sin α= ;cos α= ; tan α= (2)符号规律:sin α cos α tan α(3)同角三角函数的基本关系:①倒数关系: ②商数关系: ,③平方关系:注意三兄弟(三剑客)的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二. (4)特殊角的三角函数值表:(5)诱导公式:(奇变偶不变,符号看象限)k ·π/2+a 所谓奇偶指的是整数k 的奇偶性:①sin(2)cos(2)tan(2)k k k παπαπα±=⎧⎪±=⎨⎪±=⎩ ;②sin()cos()tan()παπαπα+=⎧⎪+=⎨⎪+=⎩ ;③sin()cos()tan()ααα-=⎧⎪-=⎨⎪-=⎩④sin()cos()tan()παπαπα-=⎧⎪-=⎨⎪-=⎩ ; ⑤sin(2)cos(2)tan(2)παπαπα-=⎧⎪-=⎨⎪-=⎩ ;⑥sin()2cos()2παπα⎧-=⎪⎪⎨⎪-=⎪⎩ ⑦sin()2cos()2παπα⎧+=⎪⎪⎨⎪+=⎪⎩ ;⑧3sin()23cos()2παπα⎧-=⎪⎪⎨⎪-=⎪⎩ :⑨3sin()23cos()2παπα⎧+=⎪⎪⎨⎪+=⎪⎩5.两角和与差的三角函数: (1)和(差)角公式:①sin()αβ+= ;sin()αβ-= ②cos()αβ+= ;cos()αβ-= ③tan()αβ+= ;tan()αβ-= 注:公式的逆用或者变形.........(2)二倍角公式:=a 2sin =a 2cos=a 2tan从二倍角的余弦公式里面可得出降幂公式:=a 2cos , =a 2sin6.辅助角公式:sin cos a b αα+=三、基础练习 1、(1)弧长为3π,圆心角为135°的扇形半径为________,面积为________ (2)已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大?2、(1)求值:sin(-1 200°)·cos 1 290°+cos(-1020°)·sin(-1 050°)+tan 945°.点评:利用诱导公式化简求值时的原则—3、已知f (x )=a sin(πx +α)+b cos(πx +β)+4 (其中a ,b ,α,β为非零实数), f (2 011)=5,则f (2 012)= ( )A .3B .5C .1D .不能确定四、典型例题考点一:三角函数的概念例1若P (4,y )是角θ终边上一点,且sin θ=-255,则y =____.练习1.(2012·潍坊质检)已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于 ( )A .-114 B.114C .-4D .4练习2. 若角α的终边经过点P (1,-2),则tan 2α的值为 .变:若角α的终边与单位圆交于点255,55p ⎛⎫-- ⎪⎪⎝⎭,则sin 2a 的值为 . 考点二、同角三角函数的关系(注意22sin cos 1αα+=,这是一个隐含条件)例2、(2011·全国卷)已知α∈⎝ ⎛⎭⎪⎫π,3π2,tan α=2,则cos α=________.变式:若例题中条件变为“若sin θ=-45,tan θ>0”,则cos θ=________.练:若cos 2sin 5,αα+=-则tan α=( )(A )21 (B )2 (C )21- (D )2- 例3、已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值是 ( )A.25 B .-25C .-2D .2练习1.若tan α=2,则2sin α-cos αsin α+2cos α的值为 ( )A .0 B.34 C .1 D.54练习2.(2011·杭州师大附中月考)如果f (tan x )=sin 2x -5sin x cos x ,那么f (5)=________. 巩固练习:1、已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( )A .1或4B .1C .4D .82、已知1+tan π+α1+tan 2π-α=3+22,求cos 2(π-α)+sin ⎝ ⎛⎭⎪⎫3π2+α·cos ⎝ ⎛⎭⎪⎫π2+α+2sin 2(α-π)的值.3、已知函数2()322sin f x x x =-.(Ⅰ)若点(1,3)P -在角α的终边上,求()f α的值; (Ⅱ)若[,]63x ππ∈-,求()f x 的值域.三角函数复习专题(二)sin y x =cos y x = tan y x =图象定义域 值域最值周期性 奇偶性单调性对称性函 数 性 质题型一:三角函数的定义域、值域例1.(2012·珠海模拟)函数y =lg(2sin x -1)+1-2cos x 的定义域为_ 练习1.函数y =tan ⎝ ⎛⎭⎪⎫π4-x 的定义域是 ( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠π4,x ∈RB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-π4,x ∈R C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π+π4,k ∈Z ,x ∈R D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π+3π4,k ∈Z ,x ∈R 例2 (2010·江西高考)函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B .[-54,-1] C .[-54,1] D .[-1,54]变式:若例2中函数变为“y =2cos 2x +5sin x -4”试求值域. 练习2. y =2-3cos ⎝ ⎛⎭⎪⎫x +π4的最大值为________.此时x =________.练习3.(2012·湛江)函数y =2sin ⎝⎛⎭⎪⎫2x +π3⎝ ⎛⎭⎪⎫-π6<x <π6的值域为____ ____.题型二:三角函数的单调性:注意区分下列两种形式的单调增区间不同(1)y =sin ⎝ ⎛⎭⎪⎫2x -π4; (2)y =sin ⎝ ⎛⎭⎪⎫π4-2x .例3 (2011·全国卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+cos ⎝ ⎛⎭⎪⎫2x +π4,则 ( )A .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递增,其图象关于直线x =π4对称B .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递增,其图象关于直线x =π2对称C .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递减,其图象关于直线x =π4对称D .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递减,其图象关于直线x =π2对称练习4.函数y =|sin x |的一个单调增区间是 ( )A.⎝ ⎛⎭⎪⎫-π4,π4B.⎝ ⎛⎭⎪⎫π4,3π4C.⎝ ⎛⎭⎪⎫π,3π2D.⎝⎛⎭⎪⎫3π2,2π 练习5.(2012·华南师大附中模拟)已知函数y =sin ⎝ ⎛⎭⎪⎫π3-2x ,求:(1)函数的周期; (2)求函数在[-π,0]上的单调递减区间.题型三:三角函数的周期性和奇偶性例4.(2010湖北高考)函数f (x )=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为 ( )A.π2B .πC .2πD .4π练习6.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是 ( )A .y =sin ⎝ ⎛⎭⎪⎫2x +π2B .y =cos ⎝ ⎛⎭⎪⎫2x +π2C .y =sin ⎝ ⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2练习7. (2011·北京高考)已知函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期; (2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值.题型四:利用图像解题例5.(1)设2sin7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c << B .a c b << C .b c a << D .b a c << (2).函数y =-x ·cos x 的部分图象是( )练习8.在(0,2π)内,使sin x >c os x 成立的x 取值范围为( )A .(4π,2π)∪(π,45π) B .(4π,π) C .(4π,45π) D .(4π,π)∪(45π,23π) 练习9.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是( )yx π2- π2Oyx π2-π2Oyx π2-π2Oyxπ2-π2OA .B .C .D .三角函数复习专题(三)1、函数B x A y ++=)sin(ϕω),(其中00>>ωA(1).最大值是 ,最小值是 ,周期是 ,频率是 ,相位是 ,初相是 ; y =A sin(ωx +φ)+B 的图象有无穷多条对称轴,可由方程 (k ∈Z)解出x 的值就是对称轴;它还有无穷多个对称中心,它们是图象与x 轴的交点,可由 (k ∈Z),解得x =k π-φω(k ∈Z)的值作为对称中心横坐标,即其对称中心为(k π-φω,0)(k ∈Z). (2).相邻两对称轴间的距离为T2,相邻两对称中心间的距离也为T2.(3).由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三复习数学同步练习 ——三角函数(二)班级: 姓名: 总分:命题人:邓少奎一、选择题1.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数2.(2011·天津高考)已知函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( )A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数3.将函数y =sin 2x 的图象向左平移π12个单位,得到函数y =sin(2x +φ)⎝⎛⎭⎫0<φ<π2的图象,则φ=( ) A.π3 B.π4 C.π6D.π124.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ) A .关于直线x =π3对称 B .关于点⎝⎛⎭⎫π3,0对称 C .关于直线x =-π6对称 D .关于点⎝⎛⎭⎫π6,0对称 5.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如图所示,则当t =1100秒时,电流强度是( )A .-5安B .5安C .53安D .10安 6.函数y =2sin x -1的定义域为( )A.⎣⎡⎦⎤π6,5π6B.⎣⎡⎦⎤2k π+π6,2k π+5π6(k ∈Z) C.⎝⎛⎭⎫2k π+π6,2k π+5π6(k ∈Z) D.⎣⎡⎦⎤k π+π6,k π+5π6(k ∈Z) 7.下列区间是函数y =2|cos x |的单调递减区间的是( )A .(0,π) B.⎝⎛⎭⎫-π2,0 C.⎝⎛⎭⎫3π2,2π D.⎝⎛⎭⎫-π,-π2 8.如图所示,点P 是函数y =2sin(ωx +φ)(x ∈R ,ω>0)的图象的最高点,M 、N 是图象与x 轴的交点,若PM ·PN =0,则ω=( ) A .8 B.π8 C.π4 D .4二、填空题9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈[0,π2]时,f (x )=sin x ,则f ⎝⎛⎭⎫5π3的值为________.10.给出下列六种图象变换方法:(1)图象上所有点的纵坐标不变,横坐标缩短到原来的12;(2)图象上所有点的纵坐标不变,横坐标伸长到原来的2倍;(3)图象向右平移π3个单位;(4)图象向左平移π3个单位;(5)图象向右平移2π3个单位;(6)图象向左平移2π3个单位.请用上述变换中的两种变换,将函数y =sin x 的图象变换到函数y =sin ⎝⎛⎭⎫x 2+π3的图象,那么这两种变换正确的标号是________(要求按变换先后顺序填上一种你认为正确的标号即可). 三、解答题11.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8.(1)求φ;(2)求函数y =f (x )的单调递增区间.12.已知函数y =3sin ⎝⎛⎭⎫12x -π4,(1)用五点法作出函数的图象; (2)说明此图象是由y =sin x 的图象经过怎么样的变化得到的;(3)求此函数的振幅、周期和初相;(4)求此函数图象的对称轴方程、对称中心.答案1.解析:∵f (x )=sin ⎝⎛⎭⎫2x -π2=-cos 2x ,∴T =2π2,且f (x )为偶函数.答案:B 2.解析:∵f (x )的最小正周期为6π,∴ω=13,∵当x =π2时,f (x )有最大值,∴13×π2+φ=π2+2k π(k ∈Z),φ=π3+2k π,∵-π<φ≤π,∴φ=π3. ∴f (x )=2sin ⎝⎛⎭⎫x 3+π3,由此函数图象易得,在区间[-2π,0]上是增函数,而在区间[- 3π,-π]或[3π,5π]上均没单调性,在区间[4π,6π]上是单调增函数.答案:A3.解析:将函数y =sin 2x 的图象向左平移π12个单位,得到函数y =sin 2⎝⎛⎭⎫x +π12=sin ⎝⎛⎭⎫2x +π6的图象,故φ=2k π+π6(k ∈Z),又0<φ<π2,所以φ=π6.答案:C4.解析:由题意知T =2πω=π,则ω=2,所以f (x )=sin ⎝⎛⎭⎫2x +π3,又f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫23π+π3=sin π=0.答案:B5.解析:由函数图象知A =10,T 2=4300-1300=1100.∴T =150=2πω,∴ω=100π.∴I =10sin(100πt +φ).又∵点⎝⎛⎭⎫1300,10在图象上,∴10=10sin ⎝⎛⎭⎫100π×1300+φ ∴π3+φ=π2,∴φ=π6,∴I =10sin ⎝⎛⎭⎫100πt +π6. 当t =1100时,I =10sin ⎝⎛⎭⎫100π×1100+π6=-5.答案:A 6.解析:由2sin x -1≥0得sin x ≥12,所以2k π+π6≤x ≤2k π+5π6,k ∈Z.即函数的定义域为⎣⎡⎦⎤2k π+π6,2k π+5π6(k ∈Z).答案:B 7.解析:作出函数y =2|cos x |的图象,结合图象判断.答案:D8.解析:由PM ·PN =0得PM ⊥PN ,又PM =PN , 所以△PMN 为等腰直角三角形,因此MN =2y P =4,T =8=2πω,得ω=π4.答案:C9.解析:f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32.答案:3210.解析:y =sin x ――→(4) y =sin ⎝⎛⎭⎫x +π3――→(2)y =sin ⎝⎛⎭⎫x 2+π3,或y =sin x ――→(2)y =sin 12x ――→(6) y =sin 12⎝⎛⎭⎫x +2π3=sin ⎝⎛⎭⎫x 2+π3.答案:(4)(2)或(2)(6) 11.解:(1)∵x =π8是函数y =f (x )的图象的对称轴,∴sin ⎝⎛⎭⎫2×π8+φ=±1. ∴π4+φ=k π+π2,k ∈Z.∴φ=k π+π4,k ∈Z.又∵-π<φ<0,∴φ=-3π4. (2)由(1)知y =sin ⎝⎛⎭⎫2x -3π4,由题意得2k π-π2≤2x -3π4≤2k π+π2,k ∈Z , ∴k π+π8≤x ≤k π+5π8,k ∈Z.∴函数y =sin(2x -3π4)的单调递增区间为⎣⎡⎦⎤k π+π8,k π+5π8,k ∈Z. 12.解:(1)列表:(2)“先平移,后伸缩”.先把y =sin x 的图象上所有点向右平移π4个单位,得到y =sin ⎝⎛⎭⎫x -π4的图象;再把y =sin ⎝⎛⎭⎫x -π4的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫12x -π4的图象,最后将y =sin ⎝⎛⎭⎫12x -π4的图象上所有点的纵坐标伸长到原来的3倍(横坐标不变),就得到y =3sin ⎝⎛⎭⎫12x -π4的图象.(3)周期T =2πω=2π12=4π,振幅A =3,初相是-π4.(4)令12x -π4=π2+k π(k ∈Z),得x =2k π+32π(k ∈Z),此为对称轴方程.令12x -π4=k π(k ∈Z),得x =π2+2k π(k ∈Z).对称中心为⎝⎛⎭⎫2k π+π2,0(k ∈Z). 一、选择题4.若函数y =2cos ωx 在区间[0,2π3]上递减,且有最小值1,则ω的值可以是( )A .2 B.12C .3 D.13解析:由y =2cos ωx 在[0,23π]上是递减的,且有最小值为1,则有f ⎝⎛⎭⎫23π=1,即2×cos(ω×23π)=1⇒cos 2π3ω=12.检验各数据,得出B 项符合.答案:B3.为把函数y =sin x 的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图象向左平移π4个单位,这时对应于这个图象的解析式( )A .y =cos 2xB .y =-sin 2xC .y =sin(2x -π4)D .y =sin(2x +π4)解析:函数y =sin x 的图象上所有点的横坐标缩为原来的一半得到函数y =sin 2x 的图象,再把图象向左平移π4个单位,得到函数y =sin 2⎝⎛⎭⎫x +π4=sin ⎝⎛⎭⎫2x +π2=cos 2x 的图象. 答案:A3.已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A .2 2B .8 2 C. 2 D.22解析:∵a sin A =b sin B =c sin C =2R =8,∴sin C =c8.∴S △ABC =12ab sin C =116abc =116×162= 2.答案:C10.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,则ω=________.解析:由已知两相邻最高点和最低点的距离为22,而f (x )max -f (x )min =2,由勾股定理可得T2=(22)2-22=2,∴T =4,∴ω=2πT =π2.答案:π211.已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π2上的最大值和最小值. 解:(1)∵f (x )=2sin(π-x )cos x =2sin x cos x =sin 2x ∴函数f (x )的最小正周期为π. (2)∵-π6≤x ≤π2,∴-π3≤2x ≤π,则-32≤sin 2x ≤1.所以f (x )在区间⎣⎡⎦⎤-π6,π2上的最大值为1,最小值为-32.。