最新圆锥曲线题型总结

合集下载

圆锥曲线基本题型总结

圆锥曲线基本题型总结

锥曲线基本题型总结:提纲:一、定义的应用:1、定义法求标准方程:2、涉及到曲线上的点到焦点距离的问题:3、焦点三角形问题:二、圆锥曲线的标准方程:1、对方程的理解2、求圆锥曲线方程(已经性质求方程)3、各种圆锥曲线系的应用:三、圆锥曲线的性质:1、已知方程求性质:2、求离心率的取值或取值范围3、涉及性质的问题:四、直线与圆锥曲线的关系:1、位置关系的判定:2、弦长公式的应用:3、弦的中点问题:4、韦达定理的应用:一、定义的应用:1.定义法求标准方程:(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)1•设F-F2为泄点,∣F1F2∣=6 ,动点M满足IMF I I+∣M F2I= 6 ,则动点M的轨迹是()1/1C.圆D.线段【注:2a>|Fi F2I是椭圆,2a=∣Fι F2 I是线段】2.设%4, O), C(4,0) ,KZLlSC的周长等于18侧动点/1的轨迹方程为()A.5J+= 1 (yH0) -B.+ ∖ f ( X2,9)=1 (yH 0 )C错误!-错误!=1 G∙≠ 0) °D∙错误! + = 1 (y≠0)【注:检验去点】3.已知力(0, — 5)、B(0,5),昭I 一砂∣=2α,当α=3或5时,P点的轨迹为()A.双曲线或一条直线B.双曲线或两条直线C.双曲线一支或一条直线D.双曲线一支或一条射线【注:2a<|F I F2∣是双曲线,2a=∣ F1F2∣⅛射线,注意一支与两支的判断】4•已知两左点巧(一 3,0),尸2(3.0),在满足下列条件的平而内动点P的轨迹中,是双曲线的是()A↑∖PF i∖-∖PF2 I |=5B.∣ I PFll-I PF2∖ I =6C.∣∣PF1∣-∣PF2∣∣=7D.∣ I PF1∖-∖PF2∖ I =0 【注ι2a<∣Fι F2∣是双曲线】5•平而内有两个泄点Fι(-5,0)和F2( 5 ,0),动点P满足IPF I l-I PF沪6 ,则动点P的轨迹方程是()A.∖ f(x2, 1 6)- 错误! = l(xW-4) "B.错误!∙=l(xW∙3)C- = I(XM 4) 。

圆锥曲线【定点定值】12 大题型(原卷版)

圆锥曲线【定点定值】12 大题型(原卷版)

圆锥曲线中的定点、定值问题1、定值问题解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量—函数—定值”,具体操作程序如下:(1)变量----选择适当的量为变量.(2)函数----把要证明为定值的量表示成变量的函数.(3)定值----化简得到的函数解析式,消去变量得到定值.2、求定值问题常见的方法有两种:(1)从特殊情况入手,求出定值,再证明该定值与变量无关;(2)直接推理、计算,并在计算推理过程中消去变量,从而得到定值.常用消参方法:①等式带用消参:找到两个参数之间的等式关系(,)0F k m =,用一个参数表示另外一个参数()k f m =,即可带用其他式子,消去参数k .②分式相除消参:两个含参数的式子相除,消掉分子和分母所含参数,从而得到定值.③因式相减消参:两个含参数的因式相减,把两个因式所含参数消掉.④参数无关消参:当与参数相关的因式为0时,此时与参数的取值没什么关系,比如:2()0y kg x -+=,只要因式()0g x =,就和参数k 没什么关系了,或者说参数k 不起作用.3、求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.一般解题步骤:①斜截式设直线方程:y kx m =+,此时引入了两个参数,需要消掉一个.②找关系:找到k 和m 的关系:m =()f k ,等式带入消参,消掉m .③参数无关找定点:找到和k 没有关系的点.题型一:面积定值【典例1-1】如图所示,已知椭圆22:14x C y +=,A ,B 是四条直线2x =±,1y =±所围成的矩形的两个顶点.若M ,N 是椭圆C 上的两个动点,且直线OM ,ON 的斜率之积等于直线OA ,OB 的斜率之积,试探求OM N V 的面积是否为定值,并说明理由.【典例1-2】(2024·湖北荆州·三模)从抛物线28y x =上各点向x 轴作垂线段,垂线段中点的轨迹为Γ.(1)求Γ的轨迹方程;(2),,A B C 是Γ上的三点,过三点的三条切线分别两两交于点,,D E F ,①若//AC DF ,求BDBF的值;②证明:三角形ABC 与三角形DEF 的面积之比为定值.【变式1-1】已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1(1,0)F -、2(1,0)F ,M 在椭圆E 上,且12MF F △(1)求椭圆E 的方程;(2)直线:l y kx m =+与椭圆E 相交于P ,Q 两点,且22434k m +=,求证:OPQ △(O 为坐标原点)的面积为定值.【变式1-2】(2024·重庆·三模)已知()2,0F ,曲线C 上任意一点到点F 的距离是到直线12x =的距离的两倍.(1)求曲线C 的方程;(2)已知曲线C 的左顶点为A ,直线l 过点F 且与曲线C 在第一、四象限分别交于M ,N 两点,直线AM 、AN 分别与直线12x =交于P ,H 两点,Q 为PH 的中点.(i )证明:QF MN ^;(ii )记PMQ V ,HNQ V ,MNQ V 的面积分别为1S ,2S ,3S ,则123S S S +是否为定值?若是,求出这个定值;若不是,请说明理由.【变式1-3】(2024·广东广州·模拟预测)已知()1,0A -,()10B ,,平面上有动点P ,且直线AP 的斜率与直线BP 的斜率之积为1.(1)求动点P 的轨迹Ω的方程.(2)过点A 的直线与Ω交于点M (M 在第一象限),过点B 的直线与Ω交于点N (N 在第三象限),记直线AM ,BN 的斜率分别为1k ,2k ,且124k k =.试判断AMN V 与BMN V 的面积之比是否为定值,若为定值,请求出该定值;若不为定值,请说明理由.题型二:向量数量积定值【典例2-1】(2024·高三·江苏盐城·开学考试)已知椭圆C :22142x y +=,()0,1A ,过点A 的动直线l 与椭圆C 交于P 、Q 两点.(1)求线段PQ 的中点M 的轨迹方程;(2)是否存在常数,使得AP AQ OP OQ l ×+×uuu r uuu r uuu r uuu r为定值?若存在,求出l 的值;若不存在,说明理由.【典例2-2】(2024·上海闵行·二模)已知点12F F 、分别为椭圆22:12x y G +=的左、右焦点,直线:l y kx t =+与椭圆G 有且仅有一个公共点,直线12,F M l F N l ^^,垂足分别为点M N 、.(1)求证:2221t k =+;(2)求证:12F M F N ×uuuu r uuuu r为定值,并求出该定值;【变式2-1】(2024·陕西宝鸡·一模)椭圆()2222:10x y C a b a b +=>>经过点P æççè,且两焦点与短轴的两个端点的连线构成一个正方形.(1)求椭圆C 的方程;(2)设5,04M æöç÷èø,过椭圆C 的右焦点F 作直线l 交C 于A 、B 两点,试问:MA MB ×uuu r uuu r 是否为定值?若是,求出这个定值;若不是,请说明理由.【变式2-2】(2024·高三·河南南阳·期末)P 为平面直角坐标系内一点,过P 作x 轴的垂线,垂足为M ,交直线b y x a =-(0a b >>)于Q ,过P 作y 轴的垂线,垂足为N ,交直线by x a=-于R ,若△OMQ ,V ONR 的面积之和为2ab.(1)求点P 的轨迹C 的方程;(2)若2a =,1b =,()4,0A -,(),0G n ,过点G 的直线l 交C 于D ,E 两点,是否存在常数n ,对任意直线l ,使AD AE ×uuu r uuu r为定值?若存在,求出n 的值及该定值,若不存在,请说明理由.【变式2-3】(2024·高三·天津河北·期末)设椭圆2222:1(0)x y E a b a b +=>>的左右焦点分别为12,F F ,短轴的两个端点为,A B ,且四边形12F AF B 是边长为2的正方形.,C D 分别是椭圆的左右顶点,动点M 满足MD CD ^,连接CM ,交椭圆E 于点P .(1)求椭圆E 的方程;(2)求证:OM OP ×uuuu r uuu r为定值.【变式2-4】已知椭圆()2222:10x y C a b a b +=>>的左、右顶点分别为,A B ,右焦点为F ,且3AF =uuu r ,以F为圆心,OF 为半径的圆F 经过点B .(1)求C 的方程;(2)过点A 且斜率为()0k k ¹的直线l 交椭圆C 于P ,(ⅰ)设点P 在第一象限,且直线l 与y x =-交于HHAO Ð,求k 的值;(ⅱ)连接PF 交圆F 于点T ,射线AP 上存在一点Q ,且QT BT ×为定值,已知点Q 在定直线上,求Q 所在定直线方程.题型三:斜率和定值【典例3-1】已知椭圆()222:11x M y a a +=>与双曲线222:1y N x a-=的离心率的平方和为234.(1)求a 的值;(2)过点1,02Q æöç÷èø的直线l 与椭圆M 和双曲线N 分别交于点A ,B ,C ,D ,在x 轴上是否存在一点T ,直线TA ,TB ,TC ,TD 的斜率分别为TA k ,TB k ,TC k ,TD k ,使得1111TA TB TC TDk k k k +++为定值?若存在,请求出点T 的坐标;若不存在,请说明理由.【典例3-2】(2024·河南·二模)已知椭圆2222:1(0)x y C a b a b +=>>的焦距为2,两个焦点与短轴一个顶点构成等边三角形.(1)求椭圆C 的标准方程;(2)设()3,P t ,过点P 的两条直线1l 和2l 分别交椭圆C 于点,D E 和点,M N (1l 和2l .不重合),直线1l 和2l 的斜率分别为1k 和2k .若PM PN PD PE =,判断12k k +是否为定值,若是,求出该值;若否,说明理由.【变式3-1】椭圆C :22221x y a b +=(0a b >>)的左焦点为(),且椭圆C 经过点()0,1P ,直线21y kx k =+-(0k ¹)与C 交于A ,B 两点(异于点P ).(1)求椭圆C 的方程;(2)证明:直线PA 与直线PB 的斜率之和为定值,并求出这个定值.【变式3-2】(2024·宁夏银川·一模)已知1F ,2F 分别是椭圆()2222:10x yC a b a b+=>>的左、右焦点,左顶点为A ,则上顶点为1B ,且1AB 20y -+=.(1)求椭圆C 的标准方程;(2)若P 是直线3x =上一点,过点P 的两条不同直线分别交C 于点D ,E 和点M ,N ,且PD PMPN PE=,求证:直线DE 的斜率与直线MN 的斜率之和为定值.题型四:斜率积定值【典例4-1】(2024·高三·陕西·开学考试)已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为F ,左顶点为E ,虚轴的上端点为P ,且3PF =,PE =(1)求双曲线C 的标准方程;(2)设M N 、是双曲线C 上不同的两点,Q 是线段MN 的中点,O 是原点,直线MN OQ 、的斜率分别为12k k 、,证明:12k k ×为定值.【典例4-2】已知椭圆2222:1(0)x y E a b a b +=>>,过点,A ,B 分别是E 的左顶点和下顶点,F 是E右焦点,π3AFB Ð=.(1)求E 的方程;(2)过点F 的直线与椭圆E 交于点P ,Q ,直线AP ,AQ 分别与直线4x =交于不同的两点M ,N .设直线FM ,FN 的斜率分别为1k ,2k ,求证:12k k 为定值.【变式4-1】已知椭圆22122:1(0)22x y C a b a b +=>>左右焦点12,F F 分别为椭圆22222:1(0)x y C a b a b +=>>的左右顶点,过点1F 且斜率不为零的直线与椭圆1C 相交于,A B 两点,交椭圆2C 于点M ,且2ABF △与12BF F △的周长之差为4-(1)求椭圆1C 与椭圆2C 的方程;(2)若直线2MF 与椭圆1C 相交于,D E 两点,记直线1MF 的斜率为1k ,直线2MF 的斜率为2k ,求证:12k k 为定值.【变式4-2】(2024·湖南长沙·二模)如图,双曲线22122:1(0,0)x y C a b a b -=>>的左、右焦点1F ,2F 分别为双曲线22222:144x y C a b -=的左、右顶点,过点1F 的直线分别交双曲线1C 的左、右两支于,A B 两点,交双曲线2C 的右支于点M (与点2F 不重合),且12BF F △与2ABF △的周长之差为2.(1)求双曲线1C 的方程;(2)若直线2MF 交双曲线1C 的右支于,D E 两点.①记直线AB 的斜率为1k ,直线DE 的斜率为2k ,求12k k 的值;②试探究:DE AB -是否为定值?并说明理由.【变式4-3】已知双曲线C:x 2a 2―y 2b 2=1(a >0,b >0)过点((1)求双曲线C 的标准方程;(2)设过点()2,0P 且斜率不为0的直线l 与双曲线C 的左右两支交于A ,B 两点.问:在x 轴上是否存在定点Q ,使直线QA 的斜率1k 与QB 的斜率2k 的积为定值?若存在,求出该定点坐标;若不存在,请说明理由.题型五:斜率比定值【典例5-1】设抛物线2:2(0)C y px p =>的焦点为F ,点(),0M p ,过点F 且斜率存在的直线交C 于不同的,A B 两点,当直线AM 垂直于x 轴时,3AF =.(1)求C 的方程;(2)设直线,AM BM 与C 的另一个交点分别为,D E ,设直线,AB DE 的斜率分别为12,k k ,证明:(ⅰ)12k k 为定值;(ⅱ)直线DE 恒过定点.【典例5-2】如图所示,已知点()1,0K ,F 是椭圆22195x y+=的左焦点,过F 的直线与椭圆交于,A B 两点,直线,AK BK 分别与椭圆交于,P Q 两点.(1)证明:直线PQ 过定点.(2)证明:直线PQ 和直线AB的斜率之比为定值.【变式5-1】(2024·重庆·模拟预测)如图,DM x ^轴,垂足为D ,点P 在线段DM 上,且||1||2DP DM =.(1)点M 在圆224x y +=上运动时,求点P 的轨迹方程;(2)记(1)中所求点P 的轨迹为,(0,1)A G ,过点10,2æöç÷èø作一条直线与G 相交于,B C 两点,与直线2y =交于点Q .记,,AB AC AQ 的斜率分别为123,,k k k ,证明:123k k k +是定值.【变式5-2】(2024·云南·二模)已知椭圆EO ,焦点在x 轴上,右焦点为F ,A 、B 分别是E 的上、下顶点.E 的短半轴长是圆O 的半径,点M 是圆O 上的动点,且点M 不在y 轴上,延长BM 与E 交于点,N AM AN ×uuuu r uuu r的取值范围为(0,4).(1)求椭圆E 、圆O 的方程;(2)当直线BM 经过点F 时,求AFN V 的面积;(3)记直线AM 、AN 的斜率分别为12k k 、,证明:21k k 为定值.【变式5-3】(2024·河南·三模)已知点())A B ,,动点V 满足直线VA 与直线VB 的斜率之积为13,动点V 的轨迹为曲线C .(1)求曲线C 的方程:(2)直线PQ 与曲线C 交于,P Q 两点,且BP BQ BM PQ ^^,交PQ 于点M ,求定点N 的坐标,使MN 为定值;(3)过(2)中的点N 作直线交曲线C 于,G H 两点,且两点均在y 轴的右侧,直线,AG BH 的斜率分别为12,k k ,求12k k 的值.题型六:斜率差定值【典例6-1】已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为()()122,0,2,0F F -,D 为椭圆C 的右顶点,且124DF DF ×=uuu u r uuuu r.(1)求椭圆C 的方程;(2)设()4,2M -,过点()4,0Q -的直线与椭圆C 交于A ,B 两点(A 点在B 点左侧),直线AM 与直线2x =-交于点N ,设直线NA ,NB 的斜率分别为1k ,2k ,求证:21k k -为定值.【典例6-2】已知双曲线2222;1(0,0)x y C a b a b -=>>经过点æççè,右焦点为(),0F c ,且222,,c a b 成等差数列.(1)求C 的方程;(2)过F 的直线与C 的右支交于,P Q 两点(P 在Q 的上方),PQ 的中点为,M M 在直线:2l x =上的射影为,N O 为坐标原点,设POQ △的面积为S ,直线,PN QN 的斜率分别为12,k k ,试问12k k S-是否为定值,如果是,求出该定值,如果不是,说明理由.【变式6-1】已知椭圆()2222:10x y M a b a b+=>>的离心率为12,A ,B ,C 分别为椭圆的左顶点,上顶点和右顶点,1F 为左焦点,且1ABF V P 是椭圆M 上不与顶点重合的动点,直线AB 与直线CP 交于点Q ,直线BP 交x 轴于点N .(1)求椭圆M 的标准方程;(2)求证:2QN QC k k -为定值,并求出此定值(其中QN k 、QC k 分别为直线QN 和直线QC 的斜率).【变式6-2】(2024·高三·上海闵行·期中)已知双曲线C :()222210,0x y a b a b-=>>,点()3,1-在双曲线C 上.过C 的左焦点F 作直线l 交C 的左支于A 、B 两点.(1)求双曲线C 的方程;(2)若()2,0M -,试问:是否存在直线l ,使得点M 在以AB 为直径的圆上?请说明理由.(3)点()4,2P -,直线AP 交直线2x =-于点Q .设直线QA 、QB 的斜率分别1k 、2k ,求证:12k k -为定值.题型七:线段定值【典例7-1】(2024·高三·山西·期末)已知椭圆E :()2221024x y b b +=<<.(1)若椭圆E 22y x =-与椭圆E 交于M ,N 两点,求证:OM ON ^;(2)P 为直线l :4x =上的一个动点,A ,B 为椭圆E 的左、右顶点,PA ,PB 分别与椭圆E 交于C ,D 两点,证明CA PD PC BD××为定值,并求出此定值.【典例7-2】如图,已知圆22:210T x y ++-=,圆心是点T ,点G 是圆T 上的动点,点H 的坐标为),线段CH 的垂直平分线交线段TC 于点R ,记动点R 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点H 作一条直线与曲线E 相交于A ,B 两点,与y 轴相交于点C ,若CA AH l =uuu r uuur ,CB BH m =uuur uuur ,试探究l m +是否为定值?若是,求出该定值;若不是,请说明理由;(3)过点()2,1M 作两条直线MP ,MQ ,分别交曲线E 于P ,Q 两点,使得1MP MQ k k ×=.且MD PQ ^,点D 为垂足,证明:存在定点F ,使得DF 为定值.【变式7-1】已知点N 在曲线22:11612x y C +=上,O 为坐标原点,若点M 满足2ON OM =uuu r uuuu r ,记动点M 的轨迹为G .(1)求G 的方程;(2)设,C D 是上G 的两个动点,且以CD 为直径的圆经过点O ,证明:2211OCOD+为定值.【变式7-2】(2024·湖北·模拟预测)平面直角坐标系xOy 中,动点(,)P x y 满足=,点P 的轨迹为C ,过点(2,0)F 作直线l ,与轨迹C 相交于A ,B 两点.(1)求轨迹C 的方程;(2)求OAB △面积的取值范围;(3)若直线l 与直线1x =交于点M ,过点M 作y 轴的垂线,垂足为N ,直线NA ,NB 分别与x 轴交于点S ,T ,证明:||||SF FT 为定值.【变式7-3】(2024·浙江宁波·模拟预测)已知12(2,0),(2,0),(1,0),(1,0)A B F F --,动点P 满足34PA PB k k ×=-,动点P 的轨迹为曲线1,PF t 交t 于另外一点2,Q PF 交t 于另外一点R .(1)求曲线t 的标准方程;(2)已知1212PF PF QF RF +是定值,求该定值;题型八:坐标定值【典例8-1】(2024·陕西安康·模拟预测)已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,上顶点为A ,122AF AF AF -=uuur uuuu r uuuu r ,12AF F △(1)求C 的方程;(2)B 是C 上位于第一象限的一点,其横坐标为1,直线l 过点2F 且与C 交于M ,N 两点(均异于点B ),点P 在l 上,设直线BM ,BP ,BN 的斜率分别为1k ,2k ,3k ,若2312k k k -=,问点P 的横坐标是否为定值?若为定值,求出点P 的横坐标;若不为定值,请说明理由.【典例8-2】(2024·全国·模拟预测)一般地,抛物线的三条切线围成的三角形称为抛物线的切线三角形,对应的三个切点形成的三角形称为抛物线的切点三角形.如图,012P PP V ,ABC V 分别为抛物线y 2=2px(p >0)的切线三角形和切点三角形,F 为该抛物线的焦点.当直线AB 的斜率为1-时,AB 中点的纵坐标为2-.(1)求p .(2)若直线AC 过点F ,直线,AB BC 分别与该抛物线的准线交于点,D E ,记点,D E 的纵坐标分别为,D E y y ,证明:D E y y 为定值.(3)若,,A B C 均不与坐标原点重合,证明:012FA FB FC FP FP FP ××=××【变式8-1】(2024·四川凉山·三模)已知平面内动点P 与两定点()11,0A -,()21,0A 连线的斜率之积为3.(1)求动点P 的轨迹E 的方程:(2)过点()2,0的直线与轨迹E 交于A ,B 两点,点A ,B 均在y 轴右侧,且点A 在第一象限,直线2AA 与1BA 交于点M ,证明:点M 横坐标为定值.题型九:角度定值【典例9-1】抛物线C :()20x py p =>的焦点为()0,1F ,直线l 的倾斜角为a 且经过点F ,直线l 与抛物线C 交于两点A ,B .(1)若16AB =,求角a ;(2)分别过A ,B 作抛物线C 的切线1l ,2l ,记直线1l ,2l 的交点为E ,直线EF 的倾斜角为b .试探究a b -是否为定值,并说明理由.【典例9-2】(2024·高三·广东广州·期中)已知椭圆C :()222210+=>>x y a b a b的离心率为12,焦距为2.(1)求椭圆C 的方程;(2)若椭圆C 的左顶点为A ,过右焦点F 的直线l 与椭圆C 交于B ,D (异于点A )两点,直线AB ,AD 分别与直线4x =交于M ,N 两点,试问MFN Ð是否为定值?若是,求出该定值;若不是,请说明理由.【变式9-1】(2024·辽宁沈阳·模拟预测)在平面直角坐标系xOy 中,利用公式x ax byy cx dy¢=+ìí¢=+î①(其中a ,b ,c ,d 为常数),将点(,)P x y 变换为点(),P x y ¢¢¢的坐标,我们称该变换为线性变换,也称①为坐标变换公式,该变换公式①可由a ,b ,c ,d 组成的正方形数表a b c d æöç÷èø唯一确定,我们将a b c d æöç÷èø称为二阶矩阵,矩阵通常用大写英文字母A ,B ,…表示.(1)如图,在平面直角坐标系xOy 中,将点(,)P x y 绕原点O 按逆时针旋转a 角得到点(),P x y ¢¢¢(到原点距离不变),求坐标变换公式及对应的二阶矩阵A ;(2)在平面直角坐标系xOy 中,求双曲线1xy =绕原点O 按逆时针旋转π4(到原点距离不变)得到的双曲线方程C ;(3)已知由(2)得到的双曲线C ,上顶点为D ,直线l 与双曲线C 的两支分别交于A ,B 两点(B 在第一象限),与x 轴交于点T ö÷÷ø.设直线DA ,DB 的倾斜角分别为a ,b ,求证:a b +为定值.【变式9-2】已知椭圆()2222:10x y C a b a b +=>>上的点到它的两个焦点的距离之和为4,以椭圆C 的短轴为直径的圆O 经过这两个焦点,点A ,B 分别是椭圆C 的左、右顶点.(1)求圆O 和椭圆C 的方程;(2)已知P ,Q 分别是椭圆C 和圆O 上的动点(P ,Q 位于y 轴两侧),且直线PQ 与x 轴平行,直线AP ,BP 分别与y 轴交于点M ,N .求证:MQN Ð为定值.题型十:直线过定点【典例10-1】(2024·陕西·模拟预测)已知动圆M 经过定点1(F ,且与圆222:(16F x y +=内切.(1)求动圆圆心M 的轨迹C 的方程;(2)设轨迹C 与x 轴从左到右的交点为点A ,B ,点P 为轨迹C 上异于A ,B 的动点,设直线PB 交直线4x =于点T ,连接AT 交轨迹C 于点Q ;直线AP ,AQ 的斜率分别为AP k ,AQ k .(i )求证:AP AQ k k ×为定值;(ii )设直线:PQ x ty n =+,证明:直线PQ 过定点.【典例10-2】(2024·广西·模拟预测)已知圆E 恒过定点()1,0,且与直线=1x -相切,记圆心E 的轨迹为G ,直线11:10l x m y --=与G 相交于A ,B 两点,直线22:10l x m y --=与G 相交于C ,D 两点,且121m m =-,M ,N 分别为弦,AB CD 的中点,其中A ,C 均在第一象限,直线AC 与直线BD 的交点为G .(1)求圆心E 的轨迹G 的方程;(2)直线MN 是否恒过定点?若是,求出定点坐标?若不是,请说明理由.【变式10-1】(2024·江西·二模)已知()12,0F -,()22,0F ,M 是圆O :221x y +=上任意一点,1F 关于点M 的对称点为N ,线段1F N 的垂直平分线与直线2F N 相交于点T ,记点T 的轨迹为曲线C .(1)求曲线C 的方程;(2)设(),0E t (0t >)为曲线C 上一点,不与x 轴垂直的直线l 与曲线C 交于G ,H 两点(异于E 点).若直线GE ,HE 的斜率之积为2,求证:直线l 过定点.【变式10-2】在平面直角坐标系xoy 中,已知椭圆C :()222210x y a b a b +=>>,F 是椭圆的右焦点且椭圆C与圆M :()22616x y -+=外切,又与圆N :(223x y +-=外切.(1)求椭圆C 的方程.(2)已知A ,B 是椭圆C 上关于原点对称的两点,A 在x 轴的上方,连接AF ,BF 并分别延长交椭圆C 于D ,E 两点,证明:直线DE 过定点.题型十一:动点在定直线上【典例11-1】已知椭圆()2222:10x y C a b a b +=>>,A ,B 分别为C 的上、下顶点,O 为坐标原点,直线4y kx =+与C 交于不同的两点M ,N .(1)设点P 为线段MN 的中点,证明:直线OP 与直线MN 的斜率之积为定值;(2)若AB 4=,证明:直线BM 与直线AN 的交点G 在定直线上.【典例11-2】已知椭圆2222:1(0)x y C a b a b+=>>经过点31,2H æö-ç÷èø,离心率12e =.(1)求椭圆C 的标准方程;(2)设过点()4,3P 且倾斜角为135o 的直线l 与x 轴,y 轴分别交于点,M N ,点R 为椭圆C 上任意一点,求RMN V 面积的最小值.(3)如图,过点()4,3P 作两条直线,AB CD 分别与椭圆C 相交于点,,,A B C D ,设直线AD 和BC 相交于点Q .证明点Q 在定直线上.【变式11-1】已知A ,B 分别是双曲线2222:1(0,0)x y C a b a b -=>>的左、右顶点,P 是C 上异于A ,B 的一点,直线PA ,PB 的斜率分别为12,k k ,且12||4k k AB ==.(1)求双曲线C 的方程;(2)已知过点(4,0)的直线:4l x my =+,交C 的左,右两支于D ,E 两点(异于A ,B ).(i )求m 的取值范围;(ii )设直线AD 与直线BE 交于点Q ,求证:点Q 在定直线上.【变式11-2】已知椭圆G :()222210+=>>x y a b a b 的右焦点为F ,过点F 作x 轴的垂线交椭圆G 于点3(1,)2P .过点P 作椭圆G 的切线,交x 轴于点Q .(1)求点Q 的坐标;(2)过点Q 的直线(非x 轴)交椭圆G 于A 、B 两点,过点A 作x 轴的垂线与直线BP 交于点D ,求证:线段AD 的中点在定直线上.【变式11-3】(2024·河北·三模)已知椭圆C 的中心在原点O 、对称轴为坐标轴,A æççè、12B ö÷÷ø是椭圆上两点.(1)求椭圆C 的标准方程;(2)椭圆C 的左、右顶点分别为1A 和2A ,M ,N 为椭圆上异于1A 、2A 的两点,直线MN 不过原点且不与坐标轴垂直.点M 关于原点的对称点为S ,若直线1A S 与直线2A N 相交于点T .(i )设直线1MA 的斜率为1k ,直线2MA 的斜率为2k ,求12k k -的最小值;(ii )证明:直线OT 与直线MN 的交点在定直线上.题型十二:圆过定点【典例12-1】已知椭圆2222:1(0)x y C a b a b +=>>A 、B 分点是椭圆C 的左、右顶点,P 是椭圆C 上不同于A 、B 的一点,ABP V 面积的最大值是2.(1)求椭圆C 的标准方程;(2)记直线AP 、BP 的斜率分别为1k 、2k ,且直线AP 、BP 与直线6x =分别交于D 、E 两点.①求D 、E 的纵坐标之积;②试判断以DE 为直径的圆是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.【典例12-2】(2024·西藏拉萨·二模)已知抛物线2:2(0)C x py p =>上的两点,A B 的横坐标分别为4,8,AB -=.(1)求抛物线C 的方程;(2)若过点()0,8Q 的直线l 与抛物线C 交于点,M N ,问:以MN 为直径的圆是否过定点?若过定点,求出这个定点;若不过定点,请说明理由.【变式12-1】已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,离心率为12,点P 是椭圆上异于顶点的任意一点,过点P 作椭圆的切线l ,交y 轴于点A ,直线l ¢过点P 且垂直于l ,交y 轴于点B .(1)求椭圆的方程;(2)试判断以AB 为直径的圆能否过定点?若能,求出定点坐标;若不能,请说明理由.【变式12-2】(2024·山东泰安·模拟预测)已知抛物线2:2(0)E x py p =>,焦点为F ,点(2,1)C 在E 上,直线1l ∶1y kx =+(0)k ¹与E 相交于,A B 两点,过,A B 分别向E 的准线l 作垂线,垂足分别为11,A B .(1)设1111,,FA B FAA FBB V V V 的面积分别为123,,S S S ,求证:21234S S S =×;(2)若直线AC ,BC 分别与l 相交于,M N ,试证明以MN 为直径的圆过定点P ,并求出点P 的坐标.1.(2024·全国·模拟预测)已知复平面上的点Z 对应的复数z 满足2297z z --=,设点Z 的运动轨迹为W .点O 对应的数是0.(1)证明W 是一个双曲线并求其离心率e ;(2)设W 的右焦点为1F ,其长半轴长为L ,点Z 到直线Lx e=的距离为d (点Z 在W 的右支上),证明:1ZF ed =;(3)设W 的两条渐近线分别为12l l ,,过Z 分别作12l l ,的平行线34l l ,分别交21l l ,于点P Q ,,则平行四边形OPZQ 的面积是否是定值?若是,求该定值;若不是,说明理由.2.(2024·湖南常德·三模)已知O 为坐标原点,椭圆C :2221(1)x y a a +=>的上、下顶点为A 、B ,椭圆上的点P 位于第二象限,直线PA 、PB 、PO 的斜率分别为123,,k k k ,且312114k k k =-+.(1)求椭圆C 的标准方程;(2)过原点O 分别作直线PA 、PB 的平行线与椭圆相交,得到四个交点,将这四个交点依次连接构成一个四边形,则此四边形的面积是否为定值?若为定值,请求出该定值;否则,请求出其取值范围.3.已知一张纸上画有半径为4的圆E ,在圆E 内有一个定点F ,且EF =,折叠纸片,使圆上某一点F ¢刚好与F 点重合,这样的每一种折法,都留下一条直线折痕,当F ¢取遍圆上所有点时,所有折痕与EF ¢的交点形成的曲线为C .(1)若曲线C 的焦点在x 轴上,求其标准方程;(2)在(1)的条件下,是否存在圆心在原点的圆,使得该圆的任意一条切线与曲线C 恒有两个交点,A B ,且OA OB ^,(O 为坐标原点),若存在,求出该圆的方程;若不存在,说明理由;(3)在(1)的条件下,P 是曲线C 上异于上顶点1A 、下顶点2A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T ,证明:线段OT 的长为定值,并求出定值.4.(2024·全国·模拟预测)已知椭圆()2222:10x y C a b a b +=>>,短轴长为1F ,2F ,P 是椭圆C 上的一个动点,12PFF V 面积的最大值为2.(1)求椭圆C 的方程;(2)求12PF PF ×uuu r uuu u r的取值范围;(3)过椭圆的左顶点A 作直线l x ^轴,M 为直线l 上的动点,B 为椭圆右顶点,直线BM 交椭圆C 于点Q .试判断数量积AQ OM ×uuu v uuuu v ,OQ OM ×uuu v uuuu v是否为定值,如果为定值,求出定值;如果不是定值,说明理由.5.(2024·重庆沙坪坝·模拟预测)如图, 在平面直角坐标系xOy 中,双曲线()222210,0y x a b a b -=>>的上下焦点分别为()10,F c ,()20,F c -. 已知点(e 和(都在双曲线上, 其中e 为双曲线的离心率.(1)求双曲线的方程;(2)设,A B 是双曲线上位于y 轴右方的两点,且直线1AF 与直线2BF 平行,2AF 与1BF 交于点P .(i) 若122AF BF -=,求直线1AF 的斜率;(ii) 求证:12PF PF +是定值.6.已知椭圆22142x y +=,设动点P 满足OP OM ON =+uuu r uuuu r uuu r ,其中M ,N 是椭圆上的点,直线OM 与ON 的斜率之积为12-.问:是否存在两个点1F ,2F ,使得21PF PF +为定值?若存在,求1F ,2F 的坐标;若不存在,请说明理由.7.(2024·黑龙江齐齐哈尔·三模)已知双曲线2222:1(0,0)x y C a b a b -=>>的实轴长为2,设F 为C 的右焦点,T 为C 的左顶点,过F 的直线交C 于A ,B 两点,当直线AB 斜率不存在时,TAB △的面积为9.(1)求C 的方程;(2)当直线AB 斜率存在且不为0时,连接TA ,TB 分别交直线12x =于P ,Q 两点,设M 为线段PQ 的中点,记直线AB ,FM 的斜率分别为12,k k ,证明:12k k 为定值.8.(2024·辽宁葫芦岛·一模)已知抛物线2:2(0)C y px p =>的焦点为F ,(,2)M m 是抛物线C 上一点,且||2MF =.(1)求抛物线C 的方程.(2)若()()004,0P y y >是抛物线C 上一点,过点(1,4)Q -的直线与拋物线C 交于,A B 两点(均与点P 不重合),设直线,PA PB 的斜率分别为12,k k ,试问12k k 是否为定值?若是,求出该定值;若不是,请说明理由.9.(2024·河南新乡·三模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别是12,A A ,椭圆C 的焦距是2,P (异于12,A A )是椭圆C 上的动点,直线1A P 与2A P 的斜率之积为34-.(1)求椭圆C 的标准方程;(2)12,F F 分别是椭圆C 的左、右焦点,Q 是12PFF V 内切圆的圆心,试问平面上是否存在定点,M N ,使得QM QN +为定值?若存在,求出该定值;若不存在,请说明理由.10.(2024·江苏盐城·一模)已知抛物线O :2x y =,圆C :()2221x y +-=,O 为坐标原点.(1)若直线l :()0y kx m k =+¹分别与抛物线O 相交于点A ,B (A 在B 的左侧)、与圆C 相交于点S ,T (S 在T 的左侧),且OAT !与OBS V 的面积相等,求出m 的取值范围;(2)已知1A ,2A ,3A 是抛物线O 上的三个点,且任意两点连线斜率都存在.其中12A A ,13A A 均与圆C 相切,请判断此时圆心C 到直线23A A 的距离是否为定值,如果是定值,请求出定值;若不是定值,请说明理由.11.设椭圆()2222:10x y C a b a b +=>>,1F ,2F 分别是C 的左、右焦点,C 上的点到1F 的最小距离为1,P是C 上一点,且12PFF V 的周长为6.(1)求C 的方程;(2)过点2F 且斜率为k 的直线l 与C 交于M ,N 两点,过原点且与l 平行的直线与C 交于A ,B 两点,求证:2ABMN为定值.12.(2024·内蒙古赤峰·三模)已知点P 为圆()22:24C x y -+=上任意一点,()2,0A -,线段PA 的垂直平分线交直线PC 于点M ,设点M 的轨迹为曲线H .(1)求曲线H 的方程;(2)若过点M 的直线l 与曲线H 的两条渐近线交于S ,T 两点,且M 为线段ST 的中点.(i )证明:直线l 与曲线H 有且仅有一个交点;(ii ) 求证:OS OT ×是定值.13.(2024·湖北·模拟预测)已知F 为抛物线G :()20y mx m =>的焦点,A ,B ,C 是G 上三个不同的点,直线AB ,BC ,AC 分别与x 轴交于F ,D ,E ,其中AB 的最小值为4.(1)求G 的标准方程;(2)ABC V 的重心G 位于x 轴上,且D ,G ,E 的横坐标分别为d ,g ,e ,32g d e --是否为定值?若是,请求出该定值;若不是,请说明理由.14.(2024·湖南岳阳·三模)已知动圆P 过定点(0,1)F 且与直线3y =相切,记圆心P 的轨迹为曲线E .(1)已知A 、B 两点的坐标分别为(2,1)-、(2,1),直线AP 、BP 的斜率分别为1k 、2k ,证明:121k k -=;(2)若点()11,M x y 、()22,N x y 是轨迹E 上的两个动点且124x x =-,设线段MN 的中点为Q ,圆P 与动点Q 的轨迹G 交于不同于F 的三点C 、D 、G ,求证:CDG V 的重心的横坐标为定值.。

圆锥曲线十大题型全归纳

圆锥曲线十大题型全归纳

目录圆锥曲线十大题型全归纳题型一弦的垂直平分线问题 (2)题型二动弦过定点的问题 (3)题型三过已知曲线上定点的弦的问题 (4)题型四共线向量问题 (5)题型五面积问题 (7)题型六弦或弦长为定值、最值问题 (10)题型七直线问题 (14)题型八轨迹问题 (16)题型九对称问题 (19)题型十存在性问题 (21)圆锥曲线题型全归纳题型一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。

题型二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程;(II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。

(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x =对称,求直线PQ 的斜率。

题型四:共线向量问题1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FH FG λ=,求λ的取值范围.2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率为5.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.题型五:面积问题例题1、已知椭圆C :12222=+by a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。

圆锥曲线:弦长公式与面积的12类题型考法总结 高考数学

圆锥曲线:弦长公式与面积的12类题型考法总结 高考数学

PQ = 3.
【答案】(1)求椭圆C的方程;(2)求△ 面积的取值范围.
试卷讲评课件
【详解】(1)依题意, = ,当直线的斜率不存在时,由 = ,
得直线过点



+



,


,于是

+


= ,解得 = ,所以椭圆的方程
= .
(2)依题意,直线不垂直于轴,设直线的方程为
【解析】 = .
试卷讲评课件
(3)是否存在常数,使得 + = ⋅ 恒成立?若存在,
求的值;若不存在,请说明理由.
【解析】由于PF 的方程为 = �� + ,将其代入椭圆方程得
+ − + − = ,由违达定理得

+

+


− − +
− +
+
=
试卷讲评课件
3.特殊方法:拆分法,可以将三角形沿着轴或者轴拆分成两个三角形,
不过在拆分的时候给定的顶点一般在轴或者轴上,此时,便于找到两
个三角形的底边长.


= + = ∣ ∣∣ − ∣






由 >,得0< < ,所以 <<.综上可得:





≤ ,即 ∈

( ,

].
试卷讲评课件
例2.已知 P 为椭圆
x2
8
+
y2
2
= 1 上的一个

(自己整理)圆锥曲线常考题型总结——配有大题和练习

(自己整理)圆锥曲线常考题型总结——配有大题和练习

圆锥曲线大综合第一部分 圆锥曲线常考题型和热点问题一.常考题型题型一:数形结合确定直线和圆锥曲线的位置关系 题型二:弦的垂直平分线问题 题型三:动弦过定点问题题型四:过已知曲线上定点的弦的问题 题型五:共线向量问题 题型六:面积问题题型七:弦或弦长为定值的问题 题型八:角度问题 题型九:四点共线问题题型十:范围为题(本质是函数问题)题型十一:存在性问题(存在点,存在直线y kx m =+,存在实数,三角形(等边、等腰、直角),四边形(矩形,菱形、正方形),圆)二.热点问题 1.定义与轨迹方程问题2.交点与中点弦问题3.弦长及面积问题4.对称问题5.范围问题6.存在性问题7.最值问题8.定值,定点,定直线问题第二部分 知识储备一. 与一元二次方程20(0)ax bx c a ++=≠相关的知识(三个“二次”问题)1. 判别式:24b ac ∆=-2.韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不等的实数根12,x x ,则12b x x a +=-,12c x x a⋅= 3.求根公式:若一元二次方程20(0)ax bx c a ++=≠有两个不等的实数根12,x x ,则1,22b x a-=二.与直线相关的知识1. 直线方程的五种形式:点斜式,斜截式,截距式,两点式,一般式2.与直线相关的重要内容:①倾斜角与斜率:tan y θ=,[0,)θπ∈;②点到直线的距离公式:d =或d =(斜截式)3.弦长公式:直线y kx b =+上两点1122(,),(,)A x y B x y 间的距离:1212)AB x AB y =-==-或 4.两直线1111122222:,:l y k x b l y k x b =+=+的位置关系:① 12121l l k k ⊥⇔⋅=- ②121212//l l k k b b ⇔=≠且5. 中点坐标公式:已知两点1122(,),(,)A x y B x y ,若点(),M x y 线段AB 的中点,则1112,22x x y y x y ++== 三.圆锥曲线的重要知识考纲要求:对它们的定义、几何图形、标准方程及简单性质,文理要求有所不同。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)

题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。

2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。

有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。

2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。

圆锥曲线经典题型总结(含答案)

圆锥曲线经典题型总结(含答案)

圆锥曲线整理1.圆锥曲线的定义:(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d .圆锥曲线的定义是本部分的一个重点内容,在解题中有广泛的应用,在理解时要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。

若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。

若去掉定义中的绝对值则轨迹仅表示双曲线的一支。

2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。

%(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222b x a y -=1(0,0a b >>)。

(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。

注意:1.圆锥曲线中求基本量,必须把圆锥曲线的方程化为标准方程。

2.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):椭圆:由x2,y 2分母的大小决定,焦点在分母大的坐标轴上。

(完整版)圆锥曲线常见题型及答案

(完整版)圆锥曲线常见题型及答案

圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。

此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。

此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线题型总结直线和圆锥曲线常考题型 运用的知识: 1、中点坐标公式:1212,y 22x x y yx ++==,其中,x y 是点1122(,)(,)A x y B x y ,的中点坐标。

2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上,则1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一,AB ====或者AB ==== 3、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-两条直线垂直,则直线所在的向量120v v =4、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b cx x x x a a+=-=。

常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线:1l y kx =+与椭圆22:14x y C m+=始终有交点,求m 的取值范围解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22:14x y C m +=过动点04m ≠(,且,如果直线:1l y kx =+和椭圆22:14x y C m+=14m ≥≠,且,即14m m ≤≠且。

规律提示:通过直线的代数形式,可以看出直线的特点::101l y kx =+⇒过定点(,) :(1)1l y k x =+⇒-过定点(,0) :2(1)1l y k x -=+⇒-过定点(,2)题型二:弦的垂直平分线问题例题2、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。

解:依题意知,直线的斜率存在,且不等于0。

设直线:(1)l y k x =+,0k ≠,11(,)A x y ,22(,)B x y 。

由2(1)y k x y x =+⎧⎨=⎩消y 整理,得 2222(21)0k x k x k +-+= ①由直线和抛物线交于两点,得2242(21)4410k k k ∆=--=-+> 即2104k <<② 由韦达定理,得:212221,k x x k -+=-121x x =。

则线段AB 的中点为22211(,)22k k k--。

线段的垂直平分线方程为:221112()22k y x k k k--=-- 令y=0,得021122x k =-,则211(,0)22E k - ABE ∆为正三角形,∴211(,0)22E k -到直线AB 的距离d AB 。

AB =221k k =+2d k=22122k k k+=解得13k =±满足②式 此时053x =。

题型三:动弦过定点的问题例题3、已知椭圆C :22221(0)x y a b a b+=>>的离心率为3,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。

(I )求椭圆的方程; (II )若直线:(2)l xt t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN是否通过椭圆的焦点?并证明你的结论 解:(I )由已知椭圆C 的离心率32c ea ==,2a =,则得3,1c b ==。

从而椭圆的方程为2214x y += (II )设11(,)M x y ,22(,)N x y ,直线1A M 的斜率为1k ,则直线1A M的方程为1(2)y k x =+,由122(2)44y k x x y =+⎧⎨+=⎩消y 整理得222121(14)161640k x k x k +++-=12x -和是方程的两个根,21121164214k x k -∴-=+ 则211212814k x k -=+,1121414k y k =+,即点M 的坐标为2112211284(,)1414k k k k -++,同理,设直线A 2N 的斜率为k 2,则得点N 的坐标为2222222824(,)1414k k k k --++ 12(2),(2)p p y k t y k t =+=- 12122k k k k t-∴=-+,直线MN 的方程为:121121y y y y x x x x --=--,∴令y=0,得211212x y x y x y y -=-,将点M 、N 的坐标代入,化简后得:4x t=又2t >,∴402t<< 椭圆的焦点为(3,0) 43t∴=,即43t =故当43t =时,MN 过椭圆的焦点。

题型四:过已知曲线上定点的弦的问题例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC=,如图。

(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x=对称,求直线PQ 的斜率。

解:(I)2BC AC =,且BC 过椭圆的中心O OC AC∴=0AC BC = 2ACO π∴∠=又A (23,0) ∴点C 的坐标为(3,3)。

A (23,0)是椭圆的右顶点, 3a ∴=222112x y b += 将点C 3,3)代入方程,得24b =, ∴椭圆E 的方程为221124x y += (II)直线PC 与直线QC 关于直线3x =∴设直线PC 的斜率为k ,则直线QC 的斜率为k -,从而直线PC 的方程为:3(3)y k x =-,即 3(1)y kx k =+-,由223(1)3120y kx k x y ⎧=+-⎪⎨+-=⎪⎩消y ,整理得: 222(13)3(1)91830k x k k x k k ++-+--=3x =是方程的一个根,229183313Pk k x k --∴=+ 即223(13)P x k =+同理可得: 223(13)Q x k =+3(1)3(1)P Q P Q y y kx k kx k -=-++=()23P Q k x x k +-23(13)k + 22223(13)3(13)P Q x x k k -=++23(13)k + 13P Q PQ P Qy y k x x -∴==- 则直线PQ 的斜率为定值13。

题型五:共线向量问题例题5、设过点D(0,3)的直线交曲线M :22194x y +=于P 、Q 两点,且DP DQ ,求实数的取值范围。

解:设P(x 1,y 1),Q(x 2,y 2),DP DQ (x 1,y 1-3)=(x 2,y 2-3 即12123(3)x x y y方法一:方程组消元法 又P 、Q 是椭圆29x +24y =1上的点22222222194()(33)194x y x y 消去x 2, 可得222222(33)14y y即y 2=1356又-2y 2 2 -213562 解之得:155λ≤≤ 则实数的取值范围是1,55⎡⎤⎢⎥⎣⎦。

方法二:判别式法、韦达定理法、配凑法 设直线PQ 的方程为:3,0y kx k =+≠,由2234936y kx x y =+⎧⎨+=⎩消y 整理后,得 22(49)54450k x kx +++= P 、Q 是曲线M 上的两点 22(54)445(49)k k ∴∆=-⨯+=2144800k -≥ 即295k ≥ ①由韦达定理得:1212225445,4949k x x x x k k +=-=++212121221()2x x x x x x x x +=++ 222254(1)45(49)k k λλ+∴=+ 即22223694415(1)99k k k λλ+==++ ②由①得211095k <≤,代入②,整理得 236915(1)5λλ<≤+,解之得155λ<< 当直线PQ 的斜率不存在,即0x=时,易知5λ=或15λ=。

总之实数的取值范围是1,55⎡⎤⎢⎥⎣⎦。

题型六:面积问题例题6、已知椭圆C :12222=+by a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。

(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 交于A 、B 两点,坐标原点O 到直线l 的距离为23,求△AOB 面积的最大值。

解:(Ⅰ)设椭圆的半焦距为c,依题意3c a a ⎧=⎪⎨⎪=⎩1b ∴=,∴所求椭圆方程为2213x y +=。

(Ⅱ)设11()A x y ,,22()B x y ,。

(1)当AB x ⊥轴时,AB =。

(2)当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+。

=,得223(1)4m k =+。

把y kx m =+代入椭圆方程,整理得222(31)6330k x kmx m +++-=,122631kmx x k -∴+=+,21223(1)31m x x k -=+。

22221(1)()AB k x x ∴=+-22222223612(1)(1)(31)31k m m k k k ⎡⎤-=+-⎢⎥++⎣⎦22222222212(1)(31)3(1)(91)(31)(31)k k m k k k k ++-++==++ 2422212121233(0)34196123696k k k k k k=+=+≠+=++⨯+++≤。

当且仅当2219kk =,即3k =±时等号成立。

当0k =时,AB ,综上所述max 2AB =。

∴当AB最大时,AOB △面积取最大值max 1222SAB =⨯⨯=。

题型七:弦或弦长为定值问题例题7、在平面直角坐标系xOy 中,过定点C (0,p )作直线与抛物线x 2=2py (p>0)相交于A 、B 两点。

(Ⅰ)若点N 是点C 关于坐标原点O 的对称点,求△ANB 面积的最小值;(Ⅱ)是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由。

(Ⅰ)依题意,点N 的坐标为N (0,-p ),可设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y=kx+p,与x 2=2py 联立得⎩⎨⎧+==.22p kx y pyx 消去y 得x 2-2pkx-2p 2=0.由韦达定理得x 1+x 2=2pk,x 1x 2=-2p 2. 于是21221x x p S S S ACN BCN ABN-⋅=+=∆∆∆=21221214)(x x x x p x x p -+=-=.228422222+=+k p p k p p222min 0p S k ABN ==∴∆)时,(当.(Ⅱ)假设满足条件的直线l 存在,其方程为y=a,AC 的中点为为直与AC t O ,'径的圆相交于点P 、Q ,PQ 的中点为H ,则)点的坐标为(2,2,11p y x O PQ H O +'⊥'2121)(2121p y x AC P O -+=='=22121p y +. ,221211p y a p y a H O --=+-=' 222HO P O PH '-'=∴=21221)2(41)(41p y a p y ---+ =),()2(1a p a y pa -+-22)2(PH PQ =∴=.)()2(42⎥⎦⎤⎢⎣⎡-+-a p a y p a 令02=-p a ,得p PQ p a ==此时,2为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得22222122122128414)(11p k p k x x x x k x x k AB +⋅+=-+⋅+=-+==.21222+⋅+k k p又由点到直线的距离公式得212kp d+=.从而,,2212212212122222+=+⋅+⋅+⋅=⋅⋅=∆k p k pk k p AB d S ABN.22max 02p S k ABN ==∴∆)时,(当(Ⅱ)假设满足条件的直线t 存在,其方程为y=a ,则以AC 为直径的圆的方程为,0))(())(0(11=-----y y p y x x x 将直线方程y=a 代入得).(1)2(4))((4,0))((121112a p a y p a y a p a x y a p a x x x -+⎥⎦⎤⎢⎣⎡-=---∆=----=则 设直线l 与以AC 为直径的圆的交点为P (x 2,y 2),Q (x 4,y 4),则有.)()2(2)()2(41143a p a y p a a p a y p a x x PQ -+-=⎥⎦⎤⎢⎣⎡-+-=-=令p PQ p a p a ===-此时得,2,02为定值,故满足条件的直线l 存在,其方程为2py =.即抛物线的通径所在的直线。

相关文档
最新文档