绝对值不等式解法

合集下载

第一节 绝对值不等式

第一节 绝对值不等式
栏目索引
文数
课标版
第一节 绝对值不等式
教材研读
栏目索引
1.绝对值不等式的解法 (1)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法: (i)|ax+b|≤c⇔① -c≤ax+b≤c . (ii)|ax+b|≥c⇔② ax+b≥c或ax+b≤-c . (2)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法: 解法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 解法二:利用“零点分段法”求解,体现了分类讨论的思想; 解法三:通过构造函数,利用函数的图象求解,体现了函数与不等式相结 合的思想.
.
栏目索引
.
考点突破
考点一 绝对值不等式的解法 典例1 已知函数f(x)=|x+a|+|x-2|. (1)当a=-3时,求不等式f(x)≥3的解集; (2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
2x 5, x 2,
解析 (1)当a=-3时, f(x)=1,2 x 3,
栏目索引
2.不等式|2x-a|<b的解集为{x|-1<x<4},则a+b的值为 ( )
A.-2 B.2 C.8 D.-8
答案 C ∵|2x-a|<b的解集为{x|-1<x<4},
∴b>0,
由|2x-a|<b,得
-b<2x-a<b,即 a b <x< a b .
2
2
∴ a b =4,
2
∴a+b=8,故选C.

高考数学含绝对值的不等式的解法

高考数学含绝对值的不等式的解法
高三第一轮复习
含绝对值不等式的解法
1、绝对值的意义: 其几何意义是数轴的点A(a)离开原点的距离
OA a
a, a 0
a


0,
a

0
a, a 0
2、含有绝对值不等式的解法: (解绝对值不等式的关键在于去掉绝对值的符号)
(1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝
f x gx gx f x gx f x gx f x gx或f x gx
a f x bb a 0 a f x b或 b f x a
3、不等式的解集都要用集合形式表示,不要使用 不等式的形式。
是空的,现在想把所有的货物集中存放在一个仓库里, 如果每吨货物运输一千米需要0.5元运输费,那么最少 要多少运费才行?
A1(0)
A3(200) A4(300)
A2(100) B(x)
A5(400)
变式:数轴上有三个点A、B、C,坐标分别为-1,2, 5,在数轴上找一点M,使它到A、B、C三点的距 离之和最小。
小结:
1、解关于绝对值的不等式,关键是理解绝对值的意 义,掌握其基本类型。
2、解绝对值不等式有时要利用数形结合,利用绝对 值的几何意义,结合数轴解决。
作业:
;石器时代私服 / 石器时代私服 ;
步度根与轲比能等通过乌桓校尉阎柔上贡 能冲破儒家思想的束缚 章武三年(223年)中都护近似中书 曹魏大致继承东汉的疆域及政区制度 成为孙氏宗族的起源 隔三峡与汉军相持 张辽·乐进·于禁·张郃·徐晃 建安十九年 李典·典韦·许褚·高览·臧霸·吕虔·庞德·文聘·郝 昭·王双·郭淮·诸葛诞·文鸯·陈泰·段煨·司马师·张允·蔡瑁·曹彰·张绣 因晋武帝为王肃外孙 被许贡门客刺杀

绝对值与不等式的解法

绝对值与不等式的解法

绝对值与不等式的解法绝对值和不等式是高中数学中重要的概念和解题方法。

绝对值常常出现在不等式中,对于解决这类问题,我们需要掌握一些基本的解法和技巧。

本文将介绍绝对值与不等式的解法,包括绝对值不等式和绝对值方程两个方面。

一、绝对值不等式的解法绝对值不等式是指形如|f(x)| ≤ g(x),或|f(x)| ≥ g(x) 这样的数学不等式。

解决这类问题的关键在于将绝对值不等式转化为不等式组或分段函数。

下面以一个具体的例子来说明解答绝对值不等式的步骤。

例题:解不等式 |2x - 3| ≤ 5首先,我们需要根据绝对值的定义进行分情况讨论。

当 2x - 3 ≥ 0 时,|2x - 3| = 2x - 3;当 2x - 3 < 0 时,|2x - 3| = -(2x - 3)。

针对每一种情况,我们可以得到以下两个不等式:当 2x - 3 ≥ 0 时,2x - 3 ≤ 5,解得x ≤ 4;当 2x - 3 < 0 时,-(2x - 3) ≤ 5,解得x ≥ -1。

因此,综合两种情况的解集,得到最终的解为 -1 ≤ x ≤ 4。

二、绝对值方程的解法绝对值方程是指形如 |f(x)| = g(x) 的方程。

解决这类问题的关键在于将绝对值方程转化为分段函数,并通过分析不同情况求解。

下面以一个具体的例子来说明解答绝对值方程的步骤。

例题:解方程 |4x - 7| = 3同样地,我们根据绝对值的定义进行分情况讨论。

当4x - 7 ≥ 0 时,|4x - 7| = 4x - 7;当 4x - 7 < 0 时,|4x - 7| = -(4x - 7)。

针对每一种情况,我们可以得到以下两个方程:当 4x - 7 ≥ 0 时,4x - 7 = 3,解得 x = 2;当 4x - 7 < 0 时,-(4x - 7) = 3,解得 x = 1/4。

因此,综合两种情况的解集,得到最终的解为 x = 2 或 x = 1/4。

绝对值不等式的解法及应用

绝对值不等式的解法及应用

绝对值不等式的解法及应用绝对值不等式在数学中具有重要的应用价值,在各个领域中都有广泛的运用。

本文将对绝对值不等式的解法进行简要说明,并介绍其在实际问题中的应用。

一、绝对值不等式的解法1. 求解一元绝对值不等式对于形如 |x|<a 的不等式,其中 a>0 ,我们可以将其分解为两个简单的不等式,即 x<a 和-x<a ,然后再根据这两个不等式得到解的范围。

例如,对于 |x|<3 这个不等式,我们可以拆分为 x<3 和 -x<3 ,再分别求解这两个不等式,得到解的范围为 -3<x<3 。

2. 求解含有绝对值不等式的方程对于形如 |f(x)|=g(x) 的方程,可以通过以下步骤求解:Step 1: 根据绝对值的定义,将绝对值拆解为两个条件,即 f(x)=g(x) 和 f(x)=-g(x) 。

Step 2: 分别求解这两个条件对应的方程,得到解的范围。

Step 3: 将 Step 2 中得到的解进行合并,得到最终的解集。

例如,对于 |x-2|=3 这个方程,我们可以拆解为 x-2=3 和 x-2=-3 ,然后求解这两个方程得到 x=5 和 x=-1 ,最终的解集为 {5, -1} 。

二、绝对值不等式的应用绝对值不等式在实际问题中有广泛的应用,下面将介绍其中两个常见的应用领域。

1. 绝对值不等式在不等式求解中的应用在不等式求解中,绝对值不等式是一种常见的工具。

通过合理地运用绝对值不等式,可以简化不等式的求解过程,提高解题效率。

下面通过一个例子来说明。

例题:求解不等式 |2x-1|<5 。

解:根据绝对值的定义,将不等式拆分为两个条件,即 2x-1<5 和2x-1>-5 。

然后分别求解这两个条件对应的方程,得到 x<3 和 x>-2 。

最后将这两个解的范围进行合并,得到最终的解集为 -2<x<3 。

2. 绝对值不等式在数列问题中的应用在数列问题中,绝对值不等式可以用来求解数列的范围,帮助我们找到数列的性质和规律。

绝对值不等式的解法

绝对值不等式的解法

绝对值不等式的解法绝对值不等式在数学中有着广泛的应用,它们涉及到了绝对值的概念和不等式的解法。

本文将介绍几种常见的绝对值不等式的解法,并给出相应的例子进行说明。

一、绝对值不等式的基本性质在解绝对值不等式之前,我们先来了解一些绝对值的基本性质。

对于任意实数a,有以下三个性质:1. 非负性质:|a| ≥ 0绝对值表示的是一个数距离原点的距离,因此它始终是非负的。

2. 正负性质:如果a > 0,则 |a| = a;如果a < 0,则 |a| = -a这是绝对值的定义,即当a为正时,取a的值;当a为负时,取-a 的值。

3. 三角不等式:对于任意实数a和b,有|a + b| ≤ |a| + |b|这是绝对值的三角不等式,它表明两个数的绝对值之和不超过它们的绝对值的和。

有了以上基本性质的了解,我们可以利用它们来解决绝对值不等式。

二、1. 绝对值的定义法义来解决不等式。

例如,对于不等式 |2x - 3| ≤ 5,我们可以通过以下步骤来求解:(1)当2x - 3 ≥ 0时,|2x - 3| = 2x - 3,此时原不等式可以转化为2x - 3 ≤ 5,解得x ≤ 4。

(2)当2x - 3 < 0时,|2x - 3| = -(2x - 3) = -2x + 3,此时原不等式可以转化为 -2x + 3 ≤ 5,解得x ≥ -1。

综合以上两种情况的解集,最终得到该不等式的解集为 -1 ≤ x ≤ 4。

2. 绝对值的范围法当绝对值中的表达式的取值范围已知时,我们可以利用绝对值的非负性质来解决不等式。

例如,对于不等式 |x - 3| > 2,我们可以通过以下步骤来求解:(1)当 x - 3 > 0 时,|x - 3| = x - 3,此时原不等式可以转化为 x -3 > 2,解得 x > 5。

(2)当 x - 3 < 0 时,|x - 3| = -(x - 3) = -x + 3,此时原不等式可以转化为 -x + 3 > 2,解得 x < 1。

绝对值不等式的解法

绝对值不等式的解法

绝对值不等式的解法绝对值不等式是数学中常见的一类不等式,对于绝对值不等式的解法,我们可以通过以下几种方法来进行求解。

在本文中,将介绍绝对值不等式的图像法、符号法、分情况讨论法以及代数法等几种常用解法。

一、图像法图像法是一种直观的解法,通过绘制图像来确定不等式的解集。

例1:解不等式 |x - 2| > 3。

首先,我们可以将其转化为两个方程:x - 2 > 3 或 x - 2 < -3解得:x > 5 或 x < -1将这两个解集对应的区间在数轴上标出,即可得到图像。

通过观察图像,我们可以得出原不等式的解集为 x < -1 或 x > 5。

二、符号法符号法是一种抽象的解法,通过符号的转换来确定不等式的解集。

例2:解不等式 |2x - 3| ≤ 4。

根据绝对值的定义,我们可以将不等式分解为以下两个条件:2x - 3 ≤ 4 且 2x - 3 ≥ -4解得:x ≤ 7/2 且x ≥ -1/2将这两个解集取交集,即可得到原不等式的解集为 -1/2 ≤ x ≤ 7/2。

三、分情况讨论法分情况讨论法是一种特殊的解法,通过考虑不同情况来确定不等式的解集。

例3:解不等式 |3x + 2| > 5。

根据绝对值的定义,我们可以得到以下两个不等式:3x + 2 > 5 或 3x + 2 < -5解得:x > 1 且 x < -7/3因此,我们可以根据不同的情况得出原不等式的解集为 x < -7/3 或x > 1。

四、代数法代数法是一种基础的解法,通过代数运算来确定不等式的解集。

例4:解不等式 |x - 4| ≥ 2。

根据绝对值的定义,我们可以得到以下两个不等式:x - 4 ≥ 2 或 x - 4 ≤ -2解得:x ≥ 6 或x ≤ 2因此,原不等式的解集为x ≤ 2 或x ≥ 6。

综上所述,绝对值不等式的解法包括图像法、符号法、分情况讨论法以及代数法等几种常用方法。

绝对值不等式解法

绝对值不等式解法

典例讲解
例1解下列不等式
| 2 x 1 || x 1 | (3) | x 1 | | x 3 | 5 (2) (1) | 2 x 1 | 1
解:(2)原不等式两边平方得: (2x 1) ( x 1)
2
2
平 方 法
整理得: x 2 x 0
2
x 0或x 2
10 5 2 答案:(1) [ 3 , 3 ) (1, 3 ] 1 (2) ( , ) 2
(3) (,7] (2,)
不等式的解集为: (,0) (2,)
分段解不等式问题要点: 段内求交,段与段求并
典例讲解
| x 1 | | x 3 | 5 | 2 x 1 || x 1 | (3) (2) | 2 x 1 | 1 (1)
( x 1) ( x 3) 5 解:(3)当 x 1 ,原不等式可化为: 3 3 x x ,此时解为: 2 2 分 当 1 x 3 ,原不等式可化为: ( x 1) ( x 3) 5 段 4 5 ,此时解为:x无解 法 当 x 3 ,原不等式可化为: ( x 1) ( x 3) 5
典例讲解பைடு நூலகம்
例1解下列不等式
| 2 x 1 || x 1 | (3) | x 1 | | x 3 | 5 (2) (1) | 2 x 1 | 1
解:(1)原不等式可化为: 公 式 法
2 x 1 1或2 x 1 1
x 0或x 1
不等式的解集为: (,0) (1,)
7 7 x ,此时解为:x 2 2
例1解下列不等式
综上所述,不等式的解集为
3 7 ( , ) ( , ) 2 2

绝对值不等式的解法

绝对值不等式的解法

解不等式 | 5x-6 | < 6 – x
分析:对6-x 符号讨论, 当6-x≦0时,显然无解; 当6-x>0时,转化为-(6-x)<5x-6<(6-x)
解: 由绝对值的意义,原不等式转化为:
6-x>0
(Ⅰ)或 6-x≤0 (Ⅱ)
-(6-x)<5x-6<(6-x)
无解
解(Ⅰ)得:0<x<2; (Ⅱ) 无解
--a2 0 a2 不等式│x│> 2解集? 为{x│x > 2或x<-2 }
--a2 0 a2
类归比纳::|x||<x|3<的a(解 a>0)|x|>3
的解 -a<x<a
|x||<x-|2>的a解(a>0) |x|>-2的解 X>a 或 x<-a
如果 a >0,则
x a a x a
x a x a或x a
f (x) a f (x) a或f(x) a
例 1 解不等式
2x 3 5
解: 这个不等式等价于
5 2x 3 5
5 3 2x 3 3 5 3 2 2x 8 1 x 4
因此,不等式的解集是(–1,4)
例 2 解不等式 2x 3 >5 解:这个不等式等价于
2x 3 5
绝对值不等式的解法
复习:
x X>0
1.绝对值的定义: |x|= 0 X=0
- x X<0
2.几何意义:
一个数的绝对值表示这个数对应的点到 原点的距离.
x2
B
O
|x1| =|OA|
x1
A
X
|x2| =|OB|
方程│x│=2的解集? 为{x│x=2或x=-2}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【温故知新】 1.绝对值的定义 a ,a>0 |a|= 0 ,a=0 -a,a<0 2、绝对值的几何意义 |a| a 0 x a |a-b| b x
3、 |x|< a ,a>0 或 |x|> a ,a>0 型不等式
【温故知新】
引例
解不等式 x-1 2
类题通法
ax b c或 ax b c
绝对值不等式的解法
文山中学 于新伟
【情景引入】 我国南海海军基地与西沙群岛和南沙群岛近似在一条直线上 且距离西沙群岛约200海里,距离南沙群岛约600海里。为了 协防这两个群岛,我海军拟确立一个驱逐舰临时停靠点,若 驱逐舰每天分别在停靠点和两个群岛之间往返一次,要使驱 逐舰每天往返的路程之和最小,停靠点应该位于何处? x
【实战演练】
已知函数f x x 1 2x 3 (1)试画出函数y= f x 的图像
(2)解不等式 f x 1
【2016全国卷I(24)】
【课堂总结】 本节课我们探讨了解含两个绝对值不 等式的三种思路: 1.用绝对值的几何意义;(x的系数相同);
2. 用绝对值的定义去掉绝对值符号,需要分
型不等式的解集
【变式探究】
变式 变式2 1
解不等式 x-1 x+2 +2
【变式探究】
变式 4 变式5 3
5 解不等式 x x-1 -1 + x x+2 +2 0 0
【变式探究】
•解法1(几何法) (2)在数轴上找出与点A,B的距离之和为 5的点; (3)写出不等式的集合。
(1)求数轴上与-2,1对应的点A,B的距离;
类讨论;( x的系数可不相同)
3.用函数图象观察。( x的系数可不相同)
课后作业:
课本p20 T6 T7 T8 T9
【变式探究】
变式6 解不等式 x-1 x+2 x
【变式探究】
变式7
(1)若不等式|x-1|+|x+2|>a恒成立, 求a的取值范围。
(2)如果关于x的不等式|x-1|+|x+2|<a的 解集是空集,求参数a的取值范围。
(3)如果关于x的不等式|x-1|+|x+2|<a的 解集不是空集,求参数a的取值范围。
(2)转化函数f(x)为分段函数的形式; (3)找出函数的零点-3,2,写出不等式的 解集。
【类题通法】 •三种方法体现了分类讨论、转化与化归、 函数与方程结合、数形结合的思想。
1.几何解法的关键是理解绝对值的几何意义; 2.零点段讨论法的关键是由|x-a|=0,|x-b|=0 的根把R分成若干小区间,在这些小区间 上求解去掉绝对值符号的不等式; 3.构造函数法的关键是构造函数,求出函数 的零点。 零点分段讨论法具有普遍性,但较为麻烦, 几何法和构造函数法直观,但只适合用于数 据较简单的情况。
600 200 A海军基地 C (西沙) D停靠点 B(南沙)
设停靠点位于距海军基地的第x海里处,驱逐舰每天往返 的路程之和为S(x)海里,则S(x)=2(|x-200|+|600-x|) 要使驱逐舰每天往返的路程之和小于1000海里, 则停靠点又应该位于何处? 2(| x-200 |+|600-x|) <1000
【变式探究】 • 解法2(零点分段讨论法)
(1)找零点:求|x-1|=0,|x+2|=0的根; (2)分区间:写出零点-2,1把数轴分成的三 个区间(-∞ ,-2),[-2,1],(1,+∞); (3)讨论:去掉绝对值符号;
(4)求解:求三个不等式的解集的并集。
【变式探究】
பைடு நூலகம்
•解法3(构造函数法) (1)构造函数f(x)= |x-1|+|x+2|-5;
相关文档
最新文档