【人教版】七上数学:第4章《几何图形初步》全章教案
新人教版七年级上册数学第4章-几何图形初步全章教案

第四章几何图形初步几何图形§立体图形与平面图形一、教课目的1、知识与技术(1)初步认识立体图形和平面图形的看法.(2)能从详细物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出近似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.2、过程与方法(1)过程:在研究实物与立体图形关系的活动过程中,对详细图形进行归纳,发展几何直觉 .(2)方法:能从详细事物中抽象出几何图形,并用几何图形描绘一些现实中的物体 .3、感情、态度、价值观:形成主动研究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情味.二、教课要点、难点 :教课要点:常有几何体的辨别教课难点:从实物中抽象几何图形.三、教课过程1.创建情境,导入新课 .让我们一同来看看北京奥运会奥运村模型图.(出示章前图)展现丰富多彩的图形世界.2直观感知,辨别图形(1)对于各种各种的物体 , 数学中关注是它们的形状、大小和地点.(2)展现一个长方体教具,让学生疏别从整体和局部抽象出几何图形. 察看长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,获得的是正方形或长方形,只看棱、极点等局部,获得的是线段、点.(3)察看其余的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形 .(4)指引学生得出几何图形、立体图形、平面图形的看法.我们把从实物中抽象出的各种图形统称为几何图形 . 比方长方体,长方形,圆柱,线段,点,三角形,四边形等 . 几何图形是数学研究的主要对象之一 . 有些几何体的各部分不都在同一平面内,它们是立体图形 . 如长方体,立方体等 .有些几何图形和各部分都在同一平面内,它们是平面图形 . 如线段,角,长方形,圆等 .3.实践研究 .(1)指引学生察看帐篷 ,, 金字塔的图片 , 从面抽象出棱柱 , 棱锥 .(2)你能谈谈圆柱与棱柱 , 圆锥与棱锥的差别吗 ?(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?(4 )以下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来4.小结这节课你有什么收获 ?5.作业设计课本第 123 页习题第 1、2 题;第 125 页习题第 7、8 题。
最新部编版人教初中数学七年级上册《第四章(几何图形初步)全章教学设计》精品优秀打印版教案

最新精品部编版人教初中七年级数学上册第4章几何图形初步优秀教学设计(全章完整版)前言:该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)第四章几何图形初步4.1 几何图形第1课时几何图形与从不同方向看立体图形教学目标:1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.教学重点:识别简单几何体.教学难点:从具体事物中抽象出几何图形.教学过程:一、引入新课(播放北京申奥成功的欢庆之夜)2001年7月13日北京申奥成功,这是每一个中国人终生难忘的日子.让我们一起来看看北京奥运会奥运村模型图.(出示章前图) 你能从中找到一些熟悉的图形吗?(学生看书)小组讨论交流.你能再举出一些常见的图形吗?学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流.在这些图片或实物中有我们熟悉的图形吗?二、找一找,议一议思考P115图4.1-3,并出示实物(如茶叶盒、地球仪、字典及魔方)及多媒体演示(如谷堆、帐篷、金字塔),它们与我们学过的哪些图形相类似?出示棱柱、圆柱、棱锥、圆锥模型,看一看,再动手摸一摸,说说它们的异同.(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充.)归纳:平面图形与立体图形的联系和区别.三、立体图形的分类分类标准不同,得到不同的分类:四、从不同方向看立体图形1.学生阅读课本P117,图4.1-6及以上相关内容,理解从不同方向看立体图形的意义和用途.2.练习:课本P121第4题.3.小结:从三个不同方向看立体图形的方法.4.小组合作探究P117图4.1-7.问题:(1)从正面看,有几层?每一层分别有几个正方形?(2)从上面看,有几个正方形,这些正方形是怎样排列的?(3)从左面看,有几列?每一列有几个正方形?(4)画出从三个不同方向看该立体图形所得到的平面图形.5.能力提升练习:(1)由相同的小正方体搭成的几何体从正面看和从上面看得到的平面图形如图:画出从左面看该几何体得到的平面图形.(2)由相同小立方块搭成的几何体从正面看和从上面看得到的平面图形如图所示:搭成这个几何体最多要多少个小立方块?最少呢?五、课时小结请学生谈:我知道了什么?我学会了什么?我发现了什么?六、课堂作业1.课本P118练习第1题.2.课本P121习题4.1第1、2、3题.3.(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.第2课时立体图形的平面展开图教学目标:1.能直观认识立体图形和展开图,了解研究立体图形的方法.2.会由展开图联想对应的立体图形形状.教学重点:1.识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的立体图形.2.正确判断哪些平面图形可以折叠为立体图形、某个立体图形的展开图可以是哪些平面图形.教学难点:了解基本几何体与其展开图之间的关系,体会一个立体图形按照不同方式展开可得到不同的平面展开图.教学过程:一、问题呈现1.学生阅读课本P117图4.1-8及相关内容.2.动手操作:将一个长方体墨水瓶盒按不同的棱剪开铺平,并画下其形状观察长方体墨水瓶盒展开图中有哪些平面图形,这些平面图形之间大小形状有什么关系?3.课本P118探究:(1)先由平面图形想象立体图形的形状.(2)实际操作:将这些平面展开图画在纸上,看能否围成想象的立体图形.4.小组合作探究:正方体的平面展开图共有哪些形状?5.交流总结:正方体的平面展开图形状:141型:(共6个).231型:(共3个).33型:(1个).222型:(1个).二、练习(1)课本P118第2题.(2)如图所示,经过折叠可以围成一个棱柱的是( )(3)课本P123第12题.三、课时小结学生谈:我知道了什么?我学会了什么?我发现了什么?四、课堂作业1.课本P122第6题、第7题.。
人教版数学七年级(上册)第四章几何图形初步:(教案)

3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“几何图形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-空间观念的培养:学生空间想象力不足,对几何图形的空间位置关系理解困难。
举例:在讲解几何证明时,教师可以通过举例说明,让学生理解如何运用已知性质定理进行推理。同时,针对面积计算的难点,教师可以设计一些实际问题,引导学生运用所学方法解决问题,提高学生解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
最后,我觉得自己在教学难点和重点的把握上还有待提高。在今后的教学中,我要更加注重对学生难点的突破,通过丰富多样的教学手段和策略,帮助学生克服学习困难,提高他们的几何素养。同时,也要关注学生的反馈,不断调整教学节奏,确保每个学生都能跟上课程进度,真正实现因材施教。
举例:在讲解点、线、面时,教师要强调它们是构成几何图形的基础元素,并通过实际操作让学生理解它们之间的关系。
2.教学难点
-理解几何图形的抽象概念:学生对几何图形的理解往往停留在具体形象明的逻辑推理过程掌握不足,难以运用性质定理进行证明。
-面积计算方法的应用:学生在解决实际问题时,难以灵活运用所学面积计算方法。
人教版数学七年级(上册)第四章几何图形初步:(教案)
一、教学内容
人教版数学七年级(上册)第四章几何图形初步:
4.1点、线、面
4.1.1了解点的概念,掌握点的基本性质
4.1.2学习直线、射线、线段的定义及表示方法
人教版七年级数学上册第四章《几何图形初步》教案

第四章几何图形初步1、通过从实物和具体模型中抽象,了解几何图形、立体图形与平面图形以及几何体、平面和曲面、直线和曲线、点等概念、2、能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合体得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象相应的几何体,制作立体模型、3、进一步认识直线、射线、线段的概念,掌握它们的符号表示;掌握基本事实“两点确定一条直线”“两点之间,线段最短”,了解它们在生活和生产中的应用;理解两点间距离的意义,能度量两点间的距离;了解平面上两条直线具有相交与不相交两种位置关系;会比较线段的大小,理解线段的和、差及线段的中点等概念,会画一条线段等于已知线段、4、理解角的概念,掌握角的符号表示,会比较角的大小,认识度、分、秒并能进行简单的换算,会计算角的和与差,了解角的平分线、余角、补角的概念,知道补角和余角的性质、1、在平面图形和立体图形相互转换的过程中,培养空间观念和空间想象力、2、在对图形的探索过程中,培养学生的观察、类比、归纳的能力、1、初步认识几何图形是描述现实世界的重要工具,初步应用几何图形的知识解决一些简单的实际问题、2、培养学习图形与几何知识的兴趣,通过交流活动,形成积极参与数学活动、主动与他人合作交流的意识、本章教学内容是几何学中最基本的一些知识、我们生活中的现实空间的各种物体都以其所具有的各种空间形式存在于我们周围,学习有关图形与几何的知识能使人们更好地认识现实空间,并把有关的知识应用于实际生活和工作之中、本章是初中阶段“图形与几何”领域的第一章,介绍图形与几何的一些最基本的概念和图形、一些最基本的概念,如几何图形、立体图形、平面图形、体、面、线、点等要在本章中从现实具体物体中抽象、归纳出来,直线、线段、射线、角及有关的概念将在本章中得到比较详细的介绍,并被广泛应用于后续的教学中,本章的教学属于初中几何图形知识学习的起始阶段,对于后续相关知识的学习影响深远、本章研究的内容是几何图形、点、线、面、体既是组成几何图形的元素,本身又是基本的几何图形,而直线、射线、线段是研究数轴、函数图象以及各种几何图形的基础、本章中渗透了数形结合、分类讨论、几何变换等重要的数学思想和方法,并开始学习图形语言、符号语言,为学习相关的内容打好基础、【重点】1、平面图形和立体图形的认识、2、理解和掌握直线、射线、线段的特征和一些性质、3、掌握角的比较、度量,能判断互余角和互补角,并能正确地加以运用、【难点】1、直线、射线、线段的相关知识、2、角的有关计算、3、图形的表示和画图、作图,对几何语言的学习、运用、1、4、1节几何图形的教学中,要注意引导学生观察现实生活中的各种物体,从而进入到本章几何初步知识的学习中、对于立体图形,要引导学生对图形特征的认识,让学生完成从辨认到初步认识的提升、注意培养学生的空间观念,可以师生共同观察具体物体,教师多利用几何教具带领学生经历从物体抽象出几何图形的过程、2、4、2节直线、射线、线段的教学要让学生理解和掌握它们的联系和区别、通过实际操作和观察,理解和掌握直线、线段的性质,应让学生通过思考、探究、得到“两点确定一条直线”和“两点之间,线段最短”这两个基本事实、在图形与几何的教学中,画图教学和作图教学是重要内容,应引起重视、3、4、3节角的教学中,要在学生原有角的概念的基础上,通过丰富的实例,进一步认识角,认识与角有关的各种基本概念与关系、教学中可以通过大量贴近生活的实例,如时钟的分针与时针的夹角等来帮助学生理解角的概念,也可以让学生尽可能地去发现生活中还有哪些物体具有角的形象、4、4、4节课题学习,让学生设计制作长方体形状的包装纸盒、在此过程中,要让学生借助所学的几何初步知识,逐渐学会独立思考,学会与他人合作,并经历发现问题、分析问题和解决问题的过程,在活动过程中培养空间想象能力、逻辑思维能力、动手操作能力和在实践中应用数学的能力、4、1几何图形1、认识几何图形,能识别立体图形与平面图形、2、能画出立体图形的三种视图,并了解立体图形的表面展开图、1、通过对生活中立体图形的认识,培养学生的空间观念、2、让学生学会观察,从周围熟悉的物体入手,对物体形状的认识由感性认识上升到理性认识、1、发展学生的空间观念,培养他们的想象力、2、让学生在学习的过程中树立学数学、爱数学的良好素养、【重点】1、观察和认识生活中的立体图形、2、会描述球、圆柱、圆锥、棱柱、棱锥及立方体的简单组合体的三种视图、【难点】1、会将生活中的实物抽象为某一类的立体图形、2、由视图描述简单的实际图形、4、1、1立体图形与平面图形1、能识别一些基本几何体、2、初步了解立体图形和平面图形的概念、3、能从不同角度观察一些几何体,以及它们简单的组合体的平面图形、4、了解一些立体图形的表面展开图,能根据展开图想象相应的几何体、1、用数学眼光认识世界,认识学习几何知识的重要意义和应用价值、2、经历从现实世界中抽象出图形的过程,体会在解决问题过程中与他人合作的重要性、3、注意图形与几何知识和实际生活的联系,认识可以用平面图形表示立体图形,以及立体图形与平面图形的联系、1、感受数学世界的奇妙,形成学习数学的兴趣、2、激发学生对“空间与图形”的探究欲望,唤起学生爱生活,爱数学的热情、3、通过与他人的交流,初步形成积极参与数学活动,主动与他人合作的意识、【重点】1、从不同角度观察几何体、2、了解一些简单立体图形的展开图、【难点】1、了解从物体外形抽象出的几何体、平面、直线和点的概念、2、了解从物体外形抽象几何体的方法、3、根据展开图想象几何体、第课时1、通过实物和具体模型,了解从物体外形抽象出来的几何体、平面、直线和点的概念、2、能识别一些基本几何体、3、初步了解立体图形和平面图形的概念、1、用数学眼光认识世界,认识学习几何知识的重要意义和应用价值、2、经历从现实世界中抽象出图形的过程,体会在解决问题过程中与他人合作的重要性、1、感受数学世界的奇妙,形成学习数学的兴趣、2、激发学生对“空间与图形”的探究欲望,唤起学生爱生活、爱数学的热情、【重点】识别一些基本几何体、【难点】了解从物体外形抽象出的几何体、平面、直线和点的概念、【教师准备】教材图投影,部分立体图形的模型、【学生准备】生活中立体图形的小实物、导入一:现在,人们不仅从现代环境的科学角度,努力保护和改善人类生存环境,而且从环境艺术的角度,运用现代科学技术和各种艺术手段,为人类创造出更加美好的生存环境、在公园、广场等地看到的各种建筑标志、雕塑以及家庭住房的装饰等,使用了多姿多彩的图形,有的奇形怪状,有的具有较为规则的形状、你能说出日常生活中所见过的物体的形状有哪些吗?[设计意图]通过介绍让学生了解在生活中存在着各种各样的图形,并通过举例让学生认识这些平面或立体图形、导入二:师:同学们,不知道你们有没有仔细地观察过我们生活的周围,如果你认真观察的话,你就会发现我们周围的物体的形状是千姿百态的、其实这些美好的事物跟我们的数学有很大的联系,因为它包含着许多图形的知识、我们生活在三维的世界中,随时随地看到的和接触到的物体都是立体的、有些物体,像石头、植物等呈现出极不规则的奇形怪状;同时也有许多物体具有较为规则的形状、请同学们列举出一些生活中的立体图形、比一比谁想出的图形最多、(由学生回答,教师总结)生:橙子、苹果、西瓜、菠萝等;另外,还有中国传统建筑、书、蛋筒、冰淇淋等等、师:请大家观察下面的图片:城市里的雕塑、悉尼歌剧院、篮球、金字塔等、[设计意图]结合生活中具体的例子,说明研究几何图形的应用价值,从而调动学生学习的积极性,激发学习的兴趣、活动1:几何图形的认识各种各样的物体除了具有颜色、质量、材质等性质外,还具有形状(如方的、圆的等)、大小(如长度、面积、体积等)和位置关系(如相交、垂直、平行等),物体的形状、大小和位置关系是几何中研究的内容、观察这个纸盒,从中可以看出哪些你熟悉的图形?(教师出示教具)思考:从整体上看,它的形状是;看不同的侧面,得到的是或;看棱得到的是;看顶点得到的是、(学生边回答,教师边展示上图)[知识拓展]长方体、圆柱、球、长(正)方形、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的,它们都是几何图形、[设计意图]通过观看图形展示,让学生感受现实生活中存在的图形,认识几何图形,从而发现各图形的特点,初步了解立体图形的组成,由点到线,由线到面,由面到体的特征、活动2:认识立体图形与平面图形1、立体图形思路一(1)上面的实物和下面的哪种立体图形比较相像?请同学们拿出手中的立体图形,它们分别是哪一种立体图形?(学生举例说明)(2)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连接起来、(3)教师拿出事先准备好的立体图形的模型、让学生实际摸一摸,比较一下这些图形,看看这些图形有什么相同的地方,有什么不同的地方、教师归纳:如图(1)、图(2)所示的立体图形我们把它们叫做柱体(cylinder);如图(3)、图(5)所示的立体图形我们把它们叫做锥体(cone),如图(4)所示的立体图形我们把它们叫做球体(sphere)、图(1)和图(2)、图(3)和图(5)之间还有一定的差别、图(1)表示的图形我们把它叫做圆柱、图(2)表示的图形叫做棱柱,棱柱按棱数分类又可以分为三棱柱、四棱柱、五棱柱、六棱柱等等、出示下图:图(3)所表示的图形叫做圆锥,图(5)表示的图形叫做棱锥、棱锥按棱数分类又可以分为三棱锥、四棱锥、五棱锥、六棱锥等等、出示下图:(4)请同学写出下列立体图形的名称、[知识拓展](1)柱体分为棱柱与圆柱,通常以侧棱的条数给棱柱命名,如有5条侧棱的棱柱叫五棱柱、(2)锥体分为棱锥与圆锥,它们的共同点是都有一个公共顶点;不同点是棱锥的侧面是三角形,底面是一个多边形,而圆锥的侧面是曲面,底面是一个圆、(3)立体图形的各部分不都在同一平面内、(4)球体是一个封闭的曲面,为立体图形,要注意它与圆的区别、思路二(1)整体感知出示一组实物与对应的几何体模型:①墨水盒及与其形状相同的一个长方体;②日光灯管与一个细长的圆柱体;③足球与一个小的钢珠球;④冰淇淋圆锥形外壳与一个圆锥体模型等、教师出示实物与几何体模型,让学生观察讨论,寻找实物与几何模型的异同点、在学生相互交流基础上请代表发表意见,分别说明每一组实物与其相对应的几何体之间形状、颜色、质量等方面的异同点、教师演示多媒体课件,显示从实物抽象出几何体的动态过程,给学生以更直观地由实物抽象出几何体的过程感受、师生共同明晰:只注意物体的形状(如方的、长的、圆的等)、大小(如长度、面积、体积)、位置,而不考虑它们的其他性质(如颜色、质量、材质等),就得到各种几何图形、[设计意图]设计此活动的目的是让学生初步了解,几何图形是只关注物体的形状、大小、位置关系等性质,而不考虑颜色、质量等属性从物体中抽象出来的、【师生活动】教师提出问题:实际生活中我们见到过哪些几何体?你们能举出一些实例吗?学生活动:让学生搜集生活中的物体,抽象出它们对应的几何体,并在全班进行交流、讨论、[设计意图]活学活用,及时巩固所学既念,加深对几何图形概念的理解,能够从实物中抽象出常见几何体、(2)探究特点①出示长方体、四面体、圆柱体、球体模型;②让学生从身边的物体中探究几何体的面是平的面还是曲的面、教师提出问题:①你知道这些几何体是由什么围成的吗?它们有什么不同吗?学生先观察思考、讨论交流,然后用自己的语言表述,最后教师规范解答、它们都有表面、包围着体的是面,例如,长方体有六个面,都是平的、四面体有四个面,都是平的、圆柱体有两个底面,都是平的,一个侧面,是曲的、球有一个面,是曲的、体是由面围成的,面有平的面和曲的面两种、[设计意图]对一些几何名词,教师直接给出与结合图形的讲解是十分必要的、对几何名词只要学生能结合图形认识、会判断图形即可、②组织学生分组讨论柱体与锥体、柱体与柱体、锥体与锥体间的区别与联系、(老师巡视指导)[设计意图]让学生大胆想象,并通过讨论确认想象结果的正确性,发展学生的空间观念、通过练习让学生获得成功的体验,同时发现存在的问题和不足、2、平面图形(1)说一说下面这些几何图形又有什么共同特点、在学生回答的基础上,教师说明:有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形、(2)下面各图中包含哪些简单的平面图形?请再举出一些平面图形的例子、说明:虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的、立体图形中某些部分是平面图形,如长方体的侧面是长方形、[设计意图]通过观察让学生认识平面图形的特点,并能从图形中找到平面图形,认识其特点、1、几何图形 立体图形:一个图形的各个部分不都在同一个平面上平面图形:一个图形的各部分都在同一个平面上2、立体图形与平面图形是两类不同的图形,但它们相互联系,立体图形上的某部分就是平面图形,立体图形是由平面图形组成的、1、观察下列实物模型,其形状类似于圆柱体的是 ( )解析:圆柱的上、下底面是大小相同的圆,所以正确的是C 、故选C 、2、右图中物体的形状是 ( )A 、棱柱B 、圆柱C 、圆锥D 、球解析:观察图形知其符合四棱柱的特征、故选A 、3、如图所示,组成陀螺的两个几何体是 ( )A 、长方体和圆锥B 、长方形和三角形C 、圆和三角形D 、圆柱和圆锥解析:根据立体图形的概念和定义对图形进行分析,可知该图上部分是圆柱,下部分是圆锥、故选D 、第1课时活动1:几何图形的认识活动2:认识立体图形与平面图形(1)立体图形柱体 棱柱圆柱锥体 棱锥圆锥球(2)平面图形一、教材作业【必做题】教材第116页练习第1,2题、【选做题】教材第121页习题4、1第1,2,3题、二、课后作业【基础巩固】1、下列图形不是立体图形的是()A、球B、圆柱C、圆锥D、圆2、下列图形中,属于棱柱的是()3、给出以下四个结论,其中正确的个数为()(1)圆柱体的上、下两个圆一样大;(2)圆柱、圆锥的底面都是圆;(3)圆柱是由两个面围成的;(4)长方体的面不可能有正方形、A、1个B、2个C、3个D、4个4、与右图相对应的几何图形的名称为()A、四棱锥B、三棱锥C、四棱柱D、三棱柱5、与图中实物图相类似的立体图形按从左至右的顺序依次是 ()A、圆柱、圆锥、正方体、长方体B、圆柱、球、正方体、长方体C、棱柱、球、正方体、棱柱D、棱柱、圆锥、棱柱、长方体【能力提升】6、下列图形中:(1)属于柱体的有(填序号);(2)属于锥体的有(填序号);(3)属于球体的有(填序号)、7、如图所示,有大小完全相同的两个直角三角形纸片,若将它们的某条边重合,能拼成几种不同形状的平面图形?请你画出拼成的图形、【拓展探究】8、如图所示的是一个我们喜欢玩的魔方,它是由若干个小正方体组成的一个大正方体,在这个大正方体的六个面上,分别涂有6种不同的颜色,根据你的观察与想象,回答下列问题、(1)有几个小正方体只有一个面被涂有颜色?(2)有几个小正方体有两个面被涂有颜色?(3)有几个小正方体有三个面被涂有颜色?【答案与解析】1、D(解析:圆属于平面图形、)2、C3、B (解析:(1)(2)正确;(3)圆柱由2个底面,1个侧面共3个面围成,故错误;(4)长方体的面可能是长方形,也可能是正方形,故错误、正确的有2个、故选B、)4、D5、B6、解:(1)①②③⑤⑦(2)④⑧(3)⑥7、解:能拼成6种、让长直角边,短直角边,斜边分别重合,即可得到组合图形的所有情况、可拼出如下的一些图形、8、解:(1)有6个小正方体只有一个面被涂有颜色、(2)有12个小正方体有两个面被涂有颜色、(3)有8个小正方体有三个面被涂有颜色、本节课充分体现了“以学生为本,让学生成为学习的主人,成为课堂的主人,成为学习过程的主人”的教学理念、教师采用的是让学生观察图片找出相对应的立体图形,然后说一说自己手中的立体图形的方式、这样既锻炼了学生的抽象能力,也可以帮助学生逐步建构实物、在认识立体图形时,教师让学生摸一摸立体图形,感受它们的特征,进而观察、比较,探究出棱柱、棱锥、圆锥、棱锥等的特点、这样处理可以进一步培养学生的类比思维和形象思维,使学生对本课时的重点知识有更深刻的理解和认识、从图片的观察到实物的演示,培养了学生的实践能力、本课上的活动也有利于学生的观察、尝试、推理、思考及创新,用数学内在的美激发了学生学习的动力和探究热情、1、自主探究时间有点长,导致展示过程时间有点紧、2、在课堂上,教师提出问题后,有些同学没有表现的机会,教师只关注到个别积极表现的学生、今后教学中应关注到每位学生,特别是那些不善于表达的学生、1、加强课堂教学的驾驭能力,要合理安排时间,有紧有松、2、多给学生进行语言表达的机会,即时表扬和鼓励、3、多结合生活实际,使学生能置身于问题当中,充分调动学习兴趣、4、给每位学生展示的机会、练习(教材第116页)1、解:长方体、球体、圆柱体、2、提示:这些立体图形的表面中包含圆、五边形、三角形、长方形、六边形等平面图形,它们位于几何体的上、下底面和侧面、我们生活在三维的世界中,身边有各种各样的物体、我们要善于观察身边的事物,认识立体图形,生活中的立体图形有柱体、锥体、球体等、柱体分为圆柱和棱柱,其中圆柱是由两个底面和一个侧面围成的,如图(2)所示,它的底面是两个大小相等且互相平行的圆面,侧面是一个曲面、棱柱是由两个底面和几个侧面围成的,它的底面是两个大小和形状都相同且互相平行的多边形,侧面是n个平行四边形,一个棱柱的底面是几边形,这个棱柱就是几棱柱、如:底面是三角形的棱柱叫做三棱柱,如图(6)所示;底面是四边形的棱柱叫做四棱柱,如图(1)所示、锥体分为圆锥和棱锥,其中圆锥是由一个底面和一个侧面围成的,它的底面是一个圆,侧面是一个曲面,如图(4)所示;棱锥是由一个底面和几个侧面围成的,它的底面是一个多边形,侧面是n个有一个公共顶点的三角形,一个棱锥的底面是几边形,这个棱锥就叫做几棱锥、如图(7)所示的棱锥是三棱锥,如图(5)所示的棱锥是四棱锥;球体是由一个曲面围成的封闭的几何体、如图(3)所示的立体图形是球体、第课时1、能从不同角度观察一些几何体,以及它们的组合体,并画出平面图形、2、了解一些立体图形的表面展开图、3、能根据展开图想象相应的几何体、1、注意图形与几何知识和实际生活的联系,并把有关知识应用于实际生活和学习中、2、认识可以用平面图形表示立体图形,以及立体图形与平面图形的联系、1、通过与他人的交流,形成积极参与数学活动,主动与他人合作的意识、2、培养学生对学习几何图形的兴趣,激发学生热爱生活的情感、【重点】1、从不同角度观察几何体、2、了解一些简单立体图形的展开图、【难点】1、了解从物体外形抽象几何体的方法、2、根据展开图想象几何体、【教师准备】长方体纸盒、小正方体木块等、【学生准备】小组准备小正方体木块,各类包装盒,剪刀等、导入一:1、师生对诗:师出:横看成岭侧成峰,远近高低各不同、生对:不识庐山真面目,只缘身在此山中、请学生谈谈对此诗的认识、2、引入课题:师:多美的山,多美的诗啊!诗情画意来自作者苏东坡从不同角度对庐山的仔细观察,那他从哪些角度对庐山进行观察的呢?生:横看、侧看、远看、近看、山中看、师:从不同方向看山可看到“峰”,看到“岭”,那么从不同方向看几何体又能看到什么呢?你想知道吗?那就让我们一起来学习今天的“几何体的观察及展开图”(板书课题)、[设计意图]以新颖贴切的“对诗”开题,把学生迅速引入一个如诗如画的情境,从而激起学生的学习兴趣,立刻进入学习状态;从名诗中提炼出数学知识与哲理,渗透主题并自然地切入课题,使学生兴趣盎然地开始对视图进行探索和体验、此外,以诗入题还可培养学生的人文意识,让他们体会到全面看待事物(数学的育人价值)和数学的美,从中体现本节数学知识的教育意义和审美价值、导入二:观察一个茶壶,以下是几个同学画出的观察到的图形,同一个茶壶,为什么大家画出的图形不相同呢?[设计意图]从身边的事物入手,有助于学生主动参与,激发学生的学习兴趣,感受新知,从中发现从不同角度看物体,看到的可能不一样、探究1:从不同方向观察几何体思路一1、观察实验(1)数学小实验:激起学生热情后,再邀请积极性高的四名学生(尤其是后进生)站在讲台周围不同位置,闭上眼睛、禁止移动,教师从纸箱中取出暖水瓶、水杯和乒乓球,依次在讲台上摆放好(如下图所示)后让座位上的学生保持安静,接着让他们睁开眼睛观察并说出所看到的物品、教师引导学生思考:①为什么在讲台上摆放着同样的物品而他们看到的结果却不一样?②如果要看清物品,那应该怎么办?(多换角度,从不同方向看看)接着让这四名学生试着从不同方向体验看看,并询问他们是否真的是这样?(对学生的表现及时给予鼓励、评价)[设计意图]闭眼睛、禁止移动等措施是为了增添实验的神秘感、趣味性,以引起学生的兴趣、关注,更是为了保障实验的成功、(2)观察图片、判断观察方向、教师让学生观察上述从不同方向拍摄的四幅图片,它们相同吗?并思考每一幅图各是从什么方向看到的,为什么? 先让学生独立观察思考,基本得出答案后再让他们讨论交流,最后让学生解释,刚才的四位同学给予确认,不理解的学生可以上台体验、验证,教师注意倾听以了解他们的思维过程,并给予鼓励、帮助、[设计意图]“判断观察方向”让学生的思维在三维实物与二维图片间。
最新人教版七年级数学上册教案:第四章 几何图形初步

第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识几何图形【知识与技能】通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.【过程与方法】能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.【情感态度】从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动、主动与他人合作交流的意识.【教学重点】识别简单几何体.【教学难点】从具体事物中抽象出几何图形.一、情境导入,初步认识播放北京奥运会的比赛场馆宣传片.导语:2008年奥运会在我国首都北京举行,尽管已成为历史的记忆,但它永远铭刻在每一个中国人的心中,让我们一起来看看北京奥运会国家体育场(鸟巢)图.(出示章前图)你能从中找到一些熟悉的图形吗?学生看书小组讨论交流.引导学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流,并思考在这些图片或实物中有我们熟悉的图形吗?【教学说明】奥运会的成功举办向全世界展现了我们祖国的综合国力,选用2008年北京奥运会国家体育场(鸟巢)图作为引例能调动学生的学习兴趣,同时对学生进行爱国主义教育,增强他们的民族自信心和自豪感.通过多媒体向学生展示丰富的图形世界,给学生带来直观感受,让学生体会图形世界的多姿多彩;在此基础上,要求学生从中找出一些熟悉或不熟悉的几何图形,并结合生活中具体例子(如建筑设计、艺术设计等),说明研究几何图形的应用价值,从而调动学生学习的积极性,激发学习的兴趣.二、思考探究,获取新知找一找探索教材第115页思考题并出示实物(如地球仪、字典及魔方等)及多媒体演示(如谷堆、铅笔、帐篷、卢浮宫、金字塔等),它们与我们学过的哪些图形相类似?【教学说明】长方体、正方体、圆柱、圆锥、球都是学生已经学习过的图形,棱柱、棱锥也是学生很熟悉的图形,通过找一找,结合具体实例引入.从熟悉的生活中识别立体图形,不仅帮助学生理解,而且让他们感受生活中处处有数学.议一议出示已准备好的教具棱柱、圆柱、棱锥、圆锥模型,让学生看一看,比较观察后说说它们的异同.(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充.)看一看再动手摸一摸,观察、感觉几何体之间的联系与区别,是为了更好地识别几何体.想一想生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答.教师提醒学生体会几何图形与生活的密切联系.赛一赛小组长组织组员完成教材第116页思考题,并进行学习汇报.让学生主动参与学习活动,自主完成平面图形学习,交流各自的学习成果,培养学生的自主学习能力.三、典例精析,掌握新知例1 如图,将下列两个图形沿AB剪开,再展开,实际动手做一做,再对照实物画出展开后的图形.【解析】圆锥的侧面展开图是一个扇形,底面是一个圆.圆柱的侧面展开图是一个矩形,两底面是两个等圆.由此我们可以了解组成圆锥和圆柱的基本图形.解:圆锥、圆柱的展开图如下:【教学说明】认识一个图形的组成,实际动手操作是最有效的途径.解完这道题,你应得到这样的启示:实践是认识生活、认识世界的必经之路.例2 请说出下列几何体的名称,再根据你的感受简要说说它们的一些特征.【分析】(1)—(6)的名称比较容易识别,要善于发现其中所体现的独特特征.解:(1)圆柱.特征:两个底面是圆的几何体;(2)圆锥.特征:像锥体,且底面是圆;(3)正方体(也叫立方体).特征:所有面都是正方形;(4)长方体.特征:其侧面均为长方形(特殊情况有两个面为正方形);(5)棱柱.特征:底面为多边形,侧面为长方形;(6)球.特征:圆圆的实体.【教学说明】几何体的识别以直观为主,其几何特征也以形象感觉说明即可.当然,你还可以尽可能地从其他角度去感受这些几何体的特征,因为观察角度的变化,发现的特征就可能不一样.试试看.例3 先观察下列图形,再动手填写下表.【分析】从上图可以看出四边形被一条对角线分成两个三角形,从五边形的一个顶点可以引2条对角线,六边形被对角线分成4个三角形,从n边形的一个顶点可以引出的对角线条数恰为其边数与3之差即(n-3)条.所以构成的三角形为边数与2之差,即(n-2)个.解:2,4,n-3;2,4,n-2.四、运用新知,深化理解1~2.教材第116页练习.【教学说明】这两道题较为简单,教师可让学生口答,如学生回答不全教师可补充.【答案】略五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.选做题:(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.本节教学应通过实际问题启发、做、想、试等方式让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现并认识立体图形与平面图形,这样的教学,可使学生得到探索发现的成功感,自然获取知识并形成应用能力.第2课时从不同方向看立体图形和立体图形的展开图【知识与技能】1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看.2.通过实际操作,能认识和判断立体图形的平面展开图.【过程与方法】在立体图形与平面图形相互转换的过程中,初步建立空间观念,培养几何意识.【情感态度】激发学生学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.【教学重点】识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形.【教学难点】画出从正面、左面、上面看正方体及简单组合体的平面图.一、情境导入,初步认识多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境.跨越学科界限,以苏东坡的诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”营造一个崭新的数学学习氛围,并从中挖掘蕴含的数学道理.比一比讲台上依次放置粉笔盒、乒乓球、热水瓶.请四位学生上来后按照不同的方位站好,然后向同学们汇报各自看到的情形.从身边的事物入手,采用游戏的形式,有助于学生积极主动地参与,激发学生的学习潜能,感受新知.自己从中发现从不同的方向看,确实看到的可能不一样.如何进行楼房的图纸设计?出示楼房模型.多媒体展示神舟八号无人飞船.问:如何进行飞船的图纸设计?(出示三张设计平面图),并问每张图分别从什么方向看?看起来,楼房、航天飞船等均是立体图形,但是设计图都是平面图形,建筑单位、工厂均按照平面设计图加工,其中一个小零件如课本第117页图4.1-6,先需要看的图是图(2),所以,我们要研究立体图形从不同方向看它得到的平面图.进一步培养学生的空间想象能力以及与他人合作交流的能力.二、思考探究,获取新知探究 1 分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)让学生从不同方向观察立体图形,体验立体图形转化为平面图形的过程.长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)这样,我们将立体图形转化成了平面图形,以四人小组为学习单位进行小组创作,培养学生的观察力和创新能力.教科书第117页图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?【教学说明】小组合作学习,你摆我答,动手画一画,展示此活动设计既能引发学生动脑思考、动手实践,在你摆我答的小组合作学习中,又给学生创造了交流的机会,引导学生学会合作,突破创新,达到共同提高的目的.探究2 (1)出示教材第118页图4.1-9的平面展开图,让学生说一说这是什么立体图形?【教学说明】教师让学生回答,若学生对此有困难,可让学生自己动手画一画,剪一剪,仔细体会.(2)让学生拿出自己的墨水盒或其他正方体方盒,动手剪一剪,看能得到几种正方体的展开图.【教学说明】正方体的展开图是教学重点,教师必须对此重视,让学生以小组为单位展开讨论和剪切,争取尽可能地多剪出几种展开图,教师根据学生回答情况予以板书和归纳.三、典例精析,掌握新知例1 你能画出如图所示的正方体和圆柱体的从不同方向看到的平面图形吗?试试看!【分析】正方体的从不同方向看到的平面图形都是正方形,圆柱体从正面、左面看到的平面图形都是长方形,从上往下看是圆.解:正方体看到的结果分别如图所示:圆柱体看到的结果如下所示:例2 (1)前面所讲的苏东坡的《题西林壁》中有一句传诵千古的名句:“横看成岭侧成峰,远近高低各不同”,请用简单的几何图形画出这句话所表达的意境.(2)同伴交流一下这句话给我们的启示,特别谈谈对我们学习数学知识的启迪.【分析】从诗句的意思中应看出这句话是以群山为背景的.诗句中所蕴含的哲理会是仁者见仁,智者见智,所以,互相交流十分必要.解:(1)如图(2)以下启示供参考:“变换思考角度,获得的结论就不同”.“从不同角度看同一问题,可能获得不同的解决途径”等.例 3 如图,需要再补画一个面,折叠后才能围成一个正方体,下面是四位同学补画另一个面的情况(图中阴影部分),其中正确的是().【分析】A、C、D三项中的展开图都不能围成正方体,只有B项符合要求.【答案】B四、运用新知,深化理解1~3.教材第118~119页练习.【教学说明】这几道题是考查立体图形的视图和展开图的.题目较为简单,教师可让学生举手回答.【答案】1.(1)是从上面看到的;(2)是从正面看到的;(3)是从左面看到的.2.圆柱体—(4),圆锥体—(6),三棱柱—(3).3.C五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?提醒学生注意:多看,多动手,多想象,是学好几何知识的基本途径之一.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.本节教学应通过引导观察和实际动手操作,让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现从不同角度看物体可以得到不同的结果,在实践中体验认识生活与客观世界,并逐步养成勤于动手,善于观察,勇于思考的学习习惯.4.1.2 点、线、面、体【知识与技能】通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感态度】学生养成积极主动的学习态度和自主学习的方式.【教学重点】认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】在实际背景中体会点的含义.一、情境导入,初步认识多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.【教学说明】从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示这些生活实例在城市的位置,让学生体会到“点”的含义.二、思考探究,获取新知课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?观察、讨论,让学生共同体会“点动成线、线动成面、面动成体”.让学生举出更多的“点动成线、线动成面、面动成体”的例子.小组合作学习,学生利用学具完成教材第120页练习第2题.(动手转一转)【教学说明】教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力.学生自己动手实践操作,加深学生印象,化解难度.教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等.让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子.1.教材119页思考,并回答它的问题.【教学说明】引导学生观察后得出结论:面与面相交得到线,线与线相交得到点.2.教材120页练习第1题(提供实物,议一议,动手摸一摸),对于第1题,思考以下问题:这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?【教学说明】让学生自己体会并小组讨论得出点、线、面、体之间的关系.三、典例精析,掌握新知例 1 直观地认识形形色色的平面图形,特别是对简单的多边形——三角形有更多的感觉,认识多边形可由三角形组合而成.如:有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是2,3,4,……的等边三角形,这些等边三角形的边长为n,所用卡片总数为S:试求当n=12时,S=_______.【分析】据图可以看出,当n=2时,S=4;当n=3时,S=9;当n=4时S=16,由此可推出:卡片总数S与边长n之间的关系式S=n2,故所求答案为144.例 2 利用点、线、面、体的几何特征和它们之间的关系,可以进行图形分割与变化.如:苏学美同学为班级“学生专栏”设计了报头图案,并用文字说明图案的含义,如图(1).请你用最基本的几何图形(如直线、射线、线段、角、三角形、四边形、多边形、圆、圆弧等)中若干个,为“环保专栏”在图(2)方框中设计一个报头图案,并简要说明图案的含义.【教学说明】本题由学生自主完成,互相交流.四、运用新知,深化理解1.下列说法中,正确的有()(1)柱体的两个底面一样大;(2)圆柱的面与面的交线都是圆;(3)棱柱的底面是四边形;(4)棱柱的侧面一定是长方形;(5)长方体一定是柱体;(6)长方体的面不可能是正方形.A.(1)(2)(4)B.(1)(2)(5)C.(2)(3)(5)D.(2)(4)(5)2.一个几何体只有一个顶点、一个侧面、一个底面,则这个几何体是()A.棱柱B.棱锥C.圆锥D.圆柱3.飞机飞行表演在空中留下漂亮的“彩带”用数学知识解释为_______;在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了_______,这说明_______;把一张纸对折,形成一条折痕,用数学知识解释为_______;用铁丝围成一个长方形,绕它的一边旋转,形成一个_______,这说明_______.4.如图是在一个正方体的一个角挖去一个小正方体后得到的几何体,这个几何体的顶点个数是_______.5.请你从数学的角度描述下列现象.(1)国庆之夜,炸响的礼花在天空中(瞬间)留下美丽的弧线;(2)用一条拉直的细线切一块豆腐;(3)将2012张十六开的白纸摞成长方体.【教学说明】教师先让学生自主完成上述几题,然后让学生回答并予以点评.【答案】1.B 2.C 3.点动成线线线动成面面与面相交成线圆柱体面动成体4.145.(1)点动成线(2)线动成面(3)面动成体五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?要求学生留心观察身边的事物,从实际生活中感受理解几何知识.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.本节教学重在指导学生通过观察生活中的实物,抽象出几何图形的形成过程,把培养学生的观察、思考、提炼的素质放在首位.学生之间可以以小组为单位,在合作中交流,使知识的认识变为学生主动参与的过程.4.2 直线、射线、线段第1课时直线、射线、线段【知识与技能】1.进一步认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解两点确定一条直线的性质,并能初步应用.3.会画一条线段等于已知线段.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.【教学重点】认识直线、射线、线段的区别与联系.学会正确表示直线、射线、线段,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.【教学难点】能够把几何图形与语句表示、符号书写很好地联系起来.一、情境导入,初步认识1.观察教材第125页图4.2-1.2.学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级八个班,问至少需要买几颗钉子?你能帮总务处的师傅算一算吗?【教学说明】创设实际问题情景,引导学生思考,激发学习兴趣.二、思考探究,获取新知学生按照学习小组,利用打好的小洞,10cm长,1cm宽的硬纸条和撒扣进行实践活动,小组之间交流实践成果,相互补充完善,并解决问题1和2得到直线性质:两点确定一条直线.画一画要求学生分别画一条直线、射线、线段,教师给出规范表示方法.【教学说明】学生通过动手实践,观察分析,猜想,合作交流,体验并感悟到直线的性质.让学生自己归纳性质,在小组交流中完善表述.(教学中学生用自己的语言描述性质,语言可能不够准确简练、完整细致,面对这种情况,不必操之过急,要允许学生有一个发展的时间与空间.)结合自己所画图形寻找直线、射线、线段的特征,说说它们之间的区别与联系并交流.思考:怎样由一条线段得到一条射线或一条直线?举出生活中一些可以看成直线、射线、线段的例子.设计意图:在自己动手画好直线、射线和线段的基础上,要求学生说出它们的区别与联系,目的是使学生进一步认识线段、射线、直线.完成教科书126页练习,使学生逐步懂得几何语句的意义并能建立几何语句与图形之间的联系.数学活动独立探究:画一条线段等于已知线段a,说说你的想法.小组交流补充.教师边说边示范尺规作图并要求学生写好结论.【教学说明】慢慢让学生读清楚题意并学会按照要求正确画出图形.并让学生自己说出想法,培养学生独立操作、自主探索的数学实验学习能力.三、典例精析,掌握新知例1 动手画一画,邀同伴讨论下列问题:(1)过一个已知点可以画多少条直线?(2)过两个已知点可以画多少条直线?(3)过三个已知点一定可以画出直线吗?(4)经过平面上三点A,B,C中的每两点可以画多少条直线?(5)借鉴(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线会有什么样的结果?如果不能画,请简要说明理由,如能画,画出图来.【分析】解答本题时,要仔细读题,注意体会不同问题间的细微区别,以便求得正确的答案.解:(1)过一点可以画无数条直线.(2)过两个点可以画唯一的一条直线.(3)过三个已知点不一定能画出直线,当三点不共线时,不能作出直线;当三点共线时,能画一条直线.(4)当A,B,C三点不共线时,过其中的每两点可以画一条直线,所以共有三条直线;当A,B,C三点共线时,上面画的三条直线重合了,只能画一条直线,如图(一):(5)经过平面内四点中的任意两点画直线有三种结果,如图(二):①当A,B,C,D四个点在同一条直线上时,只可以画出一条直线.②当A,B,C,D四个点有三个点在同一条直线上时,可画出4条直线.③当A,B,C,D四个点中任意三个点都不在同一条直线上时,可画出6条直线.【教学说明】题(3)和题(4)中分别没有明确平面上三点,四点是否在同一条直线上,解答时要分各种可能情况解答,这种解答方法叫分类讨论.运用分类方法时,要考虑到可能出现的所有情形,不能丢掉任何一种,否则就不完整,不全面.例 2 如图(1)(2)(3)中给出的直线,射线,线段,根据它们各自性质,判断其能否相交?【分析】这是用几何图形语言给出的已知条件的例题,读懂图形语言是学习几何知识的基础.结合直线、射线、线段的几何性质作出判断.解:图(1)中直线AB与直线CD相交;图(2)中射线CD与直线AB不相交,因为射线CD是以C为端点C向D所在方向延伸的;图(3)中射线CD与线段AB不相交,因为线段AB不能延伸,而射线CD延伸方向为C向D所在方向,故它们不相交;图(4)中线段AB与线段CD不相交,因为线段AB与线段CD都不能延伸.【教学说明】本题解答关键在理解三种基本图形的延伸性质.四、师生互动,课堂小结请学生互相交流我知道了哪些概念?我学会了什么解题方法?我发现了什么新知识?1.布置作业:从教材习题4.2中选取.2.完成练习册中本课时的练习.本课时主要介绍直线、射线、线段的概念、表示方法,以及它们的区别与联系,是典型的概念教学课.教学中,教师应给学生充分探寻直线的基本知识,直线、射线、线段的表示方法的素材和动手动脑、合作交流的时间与空间,鼓励学生在活动观察时感受概念的形成过程,获得数学体验.提醒学生结合生活经验、留心周围事物,借助实物来认识图形.。
2022年人教版七年级上册数学第四章几何图形初步单元教案

第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。
人教版数学七年级上册第四章《几何图形初步》教学设计

人教版数学七年级上册第四章《几何图形初步》教学设计一. 教材分析《几何图形初步》是人教版数学七年级上册第四章的内容,主要包括平面几何图形的性质和判定,以及几何图形的对称性、中心对称性和旋转对称性。
本章是学生初步接触几何图形的开始,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
通过本章的学习,学生将掌握几何图形的的基本性质和判定方法,为后续的学习打下基础。
二. 学情分析七年级的学生刚刚接触几何图形,对于图形的性质和判定方法可能感到陌生。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出几何图形,并通过观察、操作、思考等活动,逐步理解和掌握几何图形的性质和判定方法。
同时,七年级学生的学习习惯和思维方式还在形成中,因此在教学过程中,需要注重培养学生的学习兴趣和学习方法,引导学生主动参与课堂活动,提高课堂效果。
三. 教学目标1.知识与技能:使学生掌握平面几何图形的性质和判定方法,了解几何图形的对称性、中心对称性和旋转对称性。
2.过程与方法:通过观察、操作、思考等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习几何图形的兴趣,培养学生的团队合作意识和创新精神。
四. 教学重难点1.重点:平面几何图形的性质和判定方法,几何图形的对称性、中心对称性和旋转对称性。
2.难点:几何图形的判定方法,对称性的理解和应用。
五. 教学方法1.情境教学法:通过生活实例和实际问题,引导学生从实际中抽象出几何图形,激发学生的学习兴趣。
2.启发式教学法:通过提问、讨论等方式,引导学生主动思考,培养学生的逻辑思维能力。
3.合作学习法:学生进行小组合作,共同探讨几何图形的问题,培养学生的团队合作意识。
六. 教学准备1.教学用具:黑板、粉笔、多媒体设备等。
2.教学素材:几何图形的相关图片、实例等。
3.教学设计:本节课的教学设计,包括导入、呈现、操练、巩固、拓展、小结等环节。
七. 教学过程1.导入(5分钟)通过生活实例和实际问题,引导学生从实际中抽象出几何图形,激发学生的学习兴趣。
2022年人教版七年级数学上册第四章几何图形初步教案 直线、射线、线段(第1课时)

第四章几何图形初步4.2 直线、射线、线段第1课时一、教学目标【知识与技能】1.知道直线的两个基本特征,会用两种方法表示一条直线.2.知道点和直线的两种位置关系,会按照语句画出点和直线位置关系的图形.3.知道两条直线相交及交点的意义,会按照语句画出直线相交的图形.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度与价值观】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】射线,线段的概念及表示法.【教学难点】射线的表示法和直线,射线,线段之间的区别与联系.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规、铅笔。
六、教学过程(一)导入新课同学们,你们注意过吗,建筑工人在砌墙时经常会在墙的两头分别固定两根木桩,然后在木桩之间拉一条细绳,沿着细绳砌砖.这样做有什么道理呢?(出示课件2)(二)探索新知1.师生互动,探究直线、线段、射线的概念教师问1:过一点O可以画几条直线?过两点A,B可以画几条直线?(出示课件4)学生回答:过一点可以画无数条直线;过两点只能画一条直线.教师讲解:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线.教师问2:如果你想将一根木条固定在墙上并使其不能转动,至少需要几个钉子?你知道这样做的依据是什么吗?学生回答:至少需要两个钉子;依据;两点确定一条直线。
教师问3:如图,有哪些方法可以表示下列直线?(出示课件9)师生共同探究:我们可以用一条直线上的两点来表示这条直线.譬如,直线上一点是点C,直线上另一点是点E,这条直线可以记作直线CE或者直线EC.需要强调的是,点必须用大写字母表示,所以这里的A、B都是大写字母.教师问4:表示直线还有第二种方法.如何表示呢?师生共同解答如下:在这条直线的旁边写上小写字母m,这条直线可以记作直线m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形(3课时)第1课时认识几何体1.通过实物和具体模型,了解从物体外形抽象出来的几何体、平面、直线和点的概念.2.能识别一些基本几何体.3.初步了解立体图形和平面图形的概念.重点识别一些基本几何体.难点了解从物体外形抽象出来的几何体、平面、直线和点的概念.活动1:创设情境,导入新课1.打开电视,播放一个城市的现代化建筑,学生认真观看.2.提出问题:在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?活动2:探究新知1.学生在回顾刚才所看的电视片后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验.2.指定一名学生回答问题,并能正确说出这些几何图形的名称.学生回答:有圆柱、长方体、正方体等等.教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.3.立体图形的概念.(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.(2)学生活动:看课本图 4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)(3)用幻灯机放映课本 4.1-5的幻灯片.(或用教学挂图)(4)提出问题:在这个幻灯片中,包含哪些简单的平面图形?(5)探索解决问题的方法.①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.活动3:课堂小结谈谈本节课你的收获.活动4:布置作业习题 4.1第1,2,3,8题.在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉,从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体.丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美兴趣.第2课时从不同方向观察几何体1.能从不同角度观察一些几何体,以及它们简单的组合得到的平面图形.2.初步培养学生的空间观念和几何直觉.重点从不同角度观察几何体.难点了解从物体外形抽象几何体的方法.活动1:创设情境,导入新课教师要求各小组拿出事先准备好的若干个正方体小木块,教师也相应的拿出小木块,首先教师展示,用小木块摆成如图所示的图形:活动2:探究新知教师安排几名学生上讲台观察,注意安排的位置,一名同学从正面看,一名同学从上面看,一名同学从左面看,然后让这三名同学在黑板上画出自己所看到的图形,可以多安排几名同学从相同的位置观察,以便让更多的学生亲身体验.学生观察比较,这三名同学所画的图形是否相同,然后进行讨论.各小组中可安排有美术基础的同学给其他同学介绍这里的知识.活动3:体验运用教师安排学生进行教材探究内容:学生分组活动,各小组用事先准备好的小木块摆不同的立体图形,每个同学可从不同的角度进行观察,以便有更深的体会.师生共同归纳出:从不同的方向看立体图形,得到不同的平面图形.教师指出:在建筑、工程等设计中,设计师们常常利用从不同的角度看到的物体的平面图形来表示它.活动4:练习巩固教师分批次出示以上各物体,然后让同学观察并想象,从不同的角度看,这些物体的视图各是什么平面图形.学生思考讨论后回答,如有疑问,可利用实物进行展示观察.练习:教材118页练习 1.活动5:小结与作业小结:谈谈你本节课的收获.作业:习题 4.1第4,9题.在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉.让学生感受到图形世界的无处不在,提高学生学习数学的热情.第3课时几何图形的展开图1.了解直棱柱、圆柱、圆锥的展开图.2.能根据展开图想象相应的几何体.重点了解直棱柱、圆柱、圆锥的展开图.难点根据展开图想象相应的几何体.一、创设情境,导入新课教师出示以下几个形状的纸条:提出问题,我们在小学中已经接触过正方体的展开图,猜一猜,以上几个图形中,折叠以后是不是都能构成正方体?二、探究新知学生针对以上问题思考、讨论,然后动手操作试一试,看一看哪些可以构成正方体,哪些不能.教师进一步提出问题,还有哪些形状的纸板可以折叠成正方体?学生进行小组交流,动手操作,然后归纳正方体的展开图,教师可参与到小组活动当中,巡视指导.三、探究圆柱、圆锥、三棱柱、长方体的展开图教师出示问题:长方体、圆柱体、圆锥、三棱柱的展开图是什么样的平面图形?学生进行讨论、思考,也可以动手操作试一试,然后师生共同得出以上各图形展开图的形状.四、练习与小结练习:教材练习第2,3题.小结:谈谈你本节课的收获.五、作业习题 4.1第6,7,10,11,13题.学生通过动手观察、操作、类比、推断等数学活动,积累数学活动经验,感受数学思考过程的条理性,发展形象思维.通过展开与折叠的活动,体会数学的应用价值.在平面图形和立体图形互相转化的过程中,初步建立空间观念,发展几何直觉.4.1.2点、线、面、体通过丰富的实例,进一步认识点、线、面、体的几何特征,感受它们之间的关系.重点认识点、线、面、体的几何特征,感受它们之间的关系.难点在实际背景中体会点的含义.活动1:创设情境,导入新课教师演示:1.用粉笔一端在黑板上画一条线.2.用粉笔整支在黑板上画一个面.活动2:探究新知教师引导:1.粉笔的一端可以看作一个点,刚才画线是不是可以看作是这个点运动形成的.2.一支粉笔可以看作一条线段,这个线段的运动过程是不是形成了一个圆.3.思考,一本书是不是可以看作一页纸运动形成的一个几何体.学生进行讨论和思考,教师要留给学生一定的讨论和思考时间.活动3:自主学习教师布置学生自主学习教材内容.自主学习目标:说一说这部分内容中所展示的点、线、面、体之间的关系.然后师生共同归纳点、线、面、体之间的关系.体与体相交成面,面与面相交成线,线与线相交成点.点动成线,线动成面,面动成体.你能举出一些生活中这样的例子吗?学生交流讨论,然后回答,教师可以让学生多举几个这样的例子,以培养学生产生数学思维能力,感受生活中的数学现象.活动4:练习与小结练习:教材练习第1,2题.小结:谈谈你对点、线、面、体的认识.活动5:作业习题 4.1第5题.这节课借助课件将抽象的概念融于大量生动形象的生活图片中,使学生能直观的感受到平面和曲面、直线与曲线的区别,再利用生动形象的动漫课件使学生深刻体会到点动成线、线动成面、面动成体.让学生体验图形是有效描述现实世界的重要手段.从而使学生乐于接触社会环境中的数学信息,发现生活中的数学问题,并在欣赏美丽图案时,又增加了学生的审美意识.4.2直线、射线、线段(3课时)第1课时直线、射线、线段的概念1.认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解两点确定一条直线的性质,并能初步应用.3.能根据语句画出相应的图形,会用语句描述简单的图形,在图形的基础上发展数学语言.重点认识直线、射线、线段的区别与联系,学会正确表示直线、射线、线段,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.难点能够把几何图形与语句表示、符号书写很好的联系起来.活动1:创设情境,导入新课1.出示墨盒,请一个同学演示使用墨盒弹出一条直线的过程.2.提出问题:为什么这样拉出的线是直的?其关键是什么?活动2:探究新知学生经过小组交流后,总结出结论:经过两点有一条直线,并且只有一条直线.即:两点确定一条直线.其关键在于先固定墨盒中墨线上两个点.教师参与学生活动,并请学生思考:这个现象符合数学上的什么原理?1.探究直线性质.学生完成课本第125页思考题,学生动手按要求画图,并进行小组交流,总结出课题结论.教师巡视小组活动情况,并给出课题:板书直线、射线、线段,直线的性质.2.寻找生活中直线性质应用的例子.想一想:日常生活中有哪些现象是应用的直线的性质?学生回答.(只要答案合理,教师都给予肯定的评价)3.点与直线的位置关系①点O在直线l上(直线l经过点O)②点O在直线l外(直线l不经过点O)4.直线的交点当两条直线有一个公共点时,我们称这两条直线相交,这个公共点叫做它们的交点.两直线相交,只有一个交点.5.直线、射线、线段的表示方法.学生阅读课本125~126页有关内容,教师讲解直线、射线、线段的表示方法.活动3:巩固练习通过练习,让学生熟练掌握直线、射线、线段,并能画出图形.1.提出问题:下图中,有几条直线?几条射线?几条线段?说出它们的名称.注:此题在学生完成后,教师再进行讲评,并对学生的完成情况作出适当、肯定的评价.2.根据语句画出图形.例:读下列语句,并按照语句画出图形:(1)直线l经过A,B两点,点B在点A的左边.(2)直线AB,CD都经过点O,点B在点A的左边.注:此例让学生独立完成后在小组中交流和自我评价,然后教师进行讲评.3.完成课本第126页练习.注:此练习请四个同学进行板书,教师巡视学生完成的情况给予评价,并请学生作出自我评价.活动4:课堂小结1.提问:直线的性质是什么?如何表示直线、射线、线段?2.本节课还学习了根据语句画图,知道了每一个语句都对应着一个几何图形.活动5:布置作业习题 4.2第1,2,3,4题.直线、射线、线段是最简单、最基本的图形,是研究复杂图形的基础.这节课对于几何的学习起着奠基的作用.通过学生动手操作,反复比较,总结提炼.让他们经历由感性到理性,由具体到抽象的思维过程第2课时比较线段大小1.结合图形认识线段间的数量关系,学会比较线段的大小.2.知道线段中点的含义.重点线段大小比较.难点线段上中点、三等分点、四等分点的表示方法及运用.一、创设情境,导入新课教师:姚明和潘长江相比,哪位明星的身高更高?姚明和易建联相比,谁的身高更高?你是怎样得出以上结论的?两条线段间的大小又是怎样比较的呢?由此引发学生的思考.二、探究新知1.怎样画一条线段等于已知线段.学生自学教材上相关内容,并讨论交流解决,动手实践做一做.注意:这里教材上给出了两种画线段等于已知线段的方法,一种是尺规作图,另一种是通过使用刻度尺测量解决,要使学生明白这两种方法的不同之处,并能准确掌握第一种方法.(第二种方法学生已经有经验)2.比较两条线段的大小教师在黑板上任意画两条线段AB,CD.怎样比较两条线段的长短?(在学生独立思考和讨论的基础上,请学生把自己的方法进行演示、说明)1.用度量的方法比较.2.放到同一直线上比较.教师给出表示方法,然后让学生自己在练习本上画两条线段,自己再动手试一试.3.线段的和差与画法.设线段a>b,怎样表示线段(a+b)或线段(a-b).学生自主学习教材相关内容,然后师生共同完成该问题的解决.教师在黑板上演示,学生在练习本上画一画.4.线段的中点.教师在黑板上画一条线段AB,若点M把AB分成相等的两部分,则点M叫线段AB的中点.类似的还有三等分点、四等分点等.三、练习应用练习:教材128页练习1,2.学生独立完成,然后同学间交流,教师巡视指导,发现问题及时解决.四、小结与作业小结:谈谈本节课的收获.作业:习题 4.2第5,6,7,9题.本节课通过比较两支铅笔的长短这一生活中的实例揭示课题,极大地激发了学生的学习兴趣;并通过动手操作,亲身体验用叠合法比较线段的长短,让学生动起来,让学生成为学习的主体,可操作性强,并培养锻炼学生的表述能力;师生配合融洽,课堂气氛和谐;并能够善于利用学生的课堂生成资源,对学生正确及错误都能够做出有效评价.第3课时线段的性质1.掌握两点之间线段最短的性质,并能初步应用.2.知道两点间的距离的含义.重点线段的性质.难点两点间的距离.一、创设情境,导入新课教师利用多媒体展示一组生活场景,行为为穿越马路而跨越栏杆的景象,提出问题,他们为什么这样做?出示教材128页思考题.从A地到B地有四条路,除它们之外,能否再修一条从A到B的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.学生思考讨论,交流.二、探究新知学生对以上两个问题思考以后,得出结论:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.说明:在这一过程中,教师不必急于得出结论,可让学生多试一试,找一找,是否还有其他的可能,在此基础上,再让学生举出一些实际生活中的例子,进一步让学生感受数学与生活的紧密联系.然后教师指出:连接两点间的线段的长度,叫做这两点间的距离.师:你知道运动会上,掷铅球的运动员的成绩是怎样测量的吗?它用到了哪些数学知识?你还能举出一些例子吗?教师让学生多举出几个例子,这样的例子生活中是很多的,让学生多感受一下关于线段的基本事实和两点间的距离的定义.三、应用举例教材习题 4.2第11题.如图,一只蚂蚁要从正方体的一个顶点A爬行到顶点B,怎样爬距离最短?如果要爬行到C点呢?说明:这是一个综合题目,运用展开图的性质可以找到答案.四、小结与作业小结:谈谈你对线段的性质的认识.作业:习题 4.2第8题.利用丰富的活动情境,让学生体验到两点之间线段最短的性质,体会它们在解决实际问题中的作用,并能用它们解释生活中的一些现象.培养学生合作交流的意识和探索精神,感受数学的严谨性以及数学结论的确定性.4.3角4.3.1角通过丰富的实例,理解角的形成,建立几何中角的概念,掌握角的两种定义形式和四种表示方法.重点角的概念与角的表示方法.难点正确理解角的概念.一、创设情境,导入新课师:展示实物(如时钟、红领巾等),播放多媒体课件.1.观察实物与图片,你发现其中有什么相同图形吗?2.你能把观察得到的图形画在本子上或黑板上吗?这是一些什么图形?3.从黑板上这些不同的图形中,你能归纳出它们的共同特点吗?二、探究新知(一)角的定义1.在学生充分发表自己对角的认识的基础上,师生共同归纳得出:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.2.下面的三个图形是角吗?3.小组交流:说说生活中的角.分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言.(二)角的表示在刚才的讨论中,我们发现了生活中有许多角的形象,那么,我们如何给这些角取名呢?1.角通常用三个大写字母及符号“∠”表示.三个大写字母应分别写在顶点和两边上的任意点,顶点的字母必须写在中间.如∠AOB,“O”表示顶点,“A,B”表示两边上的任意点.2.角也可用一个大写字母来表示,这个字母应写在顶点上,但当两个或两个以上的角有同一个顶点时,不能用一个大写字母表示.3.角还可用一个数字或一个希腊字母表示,在角的内部靠近角的顶点处画一弧线,写上数字或希腊字母.(三)用旋转观点定义角1.播放录像:一艘轮船正在大海上打开探照灯寻找目标;2.多媒体演示:一只挂钟的钟摆不停地摆动.思考:在观看过程中,有以新的方式出现的角吗?在讨论的基础上,归纳:角也可以看成是由一条射线绕着它的端点旋转而形成的图形.继续演示:当射线OA绕点O旋转时,当终止位置OB和起始位置OA成一条线时,会形成什么角?继续旋转,当OB和OA重合时,又形成什么角?(四)角的度量教师布置学生阅读教材相关内容,完成以下内容.1.角的划分1周角=360°,1平角=180°,1°=60′,1′=60″.2.角的度量工具:量角器,经纬仪等,在实际中我们还可以借助三角尺来画一些特殊的角.这一部分的重点是让学生掌握角的划分.三、巩固运用教师利用投影展示:1.下图中的角表示成下列形式,哪些正确?哪些不正确?(1)∠APO;(2)∠AOP;(3)∠OPC;(4)∠OCP;(5)∠O;(6)∠P.2.下图中以O为顶点的角有几个?以D为顶点的角有几个?试用适当的方法表示这些角.练习:教材练习1,2,3.四、小结与作业小结:谈谈你对角的认识.作业:习题 4.3第1,2题,合作完成第14题.在现实情境中,认识角是一种基本的几何图形,理解角的概念,学会角的表示方法,认识角的度量单位,会简单的换算和计算,提高学生的识图能力,学会用运动变化的观点看问题,激发学生的求知欲.4.3.2角的比较与运算(2课时)第1课时角的比较会比较角的大小,能估计一个角的大小.在操作活动中认识角的平分线.重点角的比较与角平分线的概念.难点角的和差与画法.一、创设情境,引入新课教师提出问题:1.角的表示方法有几种?2.怎样比较两条线段的大小?学生思考后回答.二、探究新知(一)角的比较如图,已知∠ABC和∠DEF请大家讨论一下,用什么方法可以比较这两个角的大小?1.分组讨论角的比较方法.在学生讨论过程中,教师深入学生中间巡视、观察并听取他们解决问题的方法和建议.可适当组织交流或分组汇报,师生共同归纳角的比较方法:(1)度量方法:用量角器量出角的度数,然后比较它们的大小.(2)叠合方法:把两个角叠合在一起比较大小.2.观察图形,图中共有几个角?它们之间有什么关系?师生共同讨论后得出结论.问题:用一副三角尺,你能画出哪些度数的角?让学生动手做一做,试一试,然后师生共同归纳看一看都可以得到哪几个角.(二)角平分线在一张纸上画出一个角并剪下,将这个角对折,使其两边重合.想想看,折痕与角两边所成的两个角的大小有什么关系?让学生多想一想,做一做,通过观察和思考,然后师生共同归纳结论,引出角的平分线的定义及其几何表达式,类似的还有角的三等分线、四等分线等.想一想,还有什么方法可以画出一个角的平分线呢?师生共同归纳角的平分线的做法:1.折叠法2.度量法(三)角平分线的几何表示如图,OC是∠AOB的平分线,根据图形填空.∠AOB=________∠AOC=________∠COB.∠AOC=∠COB=________∠AOB.三、解决问题教师投影出示:(1)用量角器按以下方法画图;①用量角器画一个36°的角,叫做∠AOB;②在∠AOB的两边上分别取OC=OD=3 cm;③连接CD;④画出∠OCD的角平分线,交OD于E,量出图中∠OCD,∠ODC的度数以及OE,CE,CD的长度,想一想,这两个角什么关系?这三条线段有什么关系?(2)如图.OC是∠AOB的平分线,∠AOB=60°,根据图形填空.∠AOC=________°,∠COB=________°.练习:教材练习题第1题.四、小结与作业小结:1.谈谈你对角的大小的比较方法的认识.2.谈谈你对角平分线的认识.作业:习题 4.3第4,6,15题.角的比较方法是学生通过实验、观察、交流、比较等活动得出的,首先在感性上有所认识;再通过类比、总结,逐渐升华为理性认识.问题的设计给学生留有充分探索和交流的空间,随着问题的步步深入,学生的思维得到深化,突出了本课时的重点,也分散了难点,最后达到突破难点的目的。