单摆 PPT
合集下载
单摆课件ppt

单摆的能量转换
总结词
单摆在摆动过程中实现动能和势能的 相互转换。
详细描述
单摆在摆动过程中,当摆球上升时, 重力做负功,使得势能增加;当摆球 下降时,重力做正功,使得动能增加 。整个过程中,动能和势能相互转换 ,总能量保持不变。
03
单摆的应用
测量地球的重力加速度
总结词
通过测量单摆的周期和摆长,可以推算出地球的重力加速度。
单摆的运动是一种简谐振动,即它的运动轨迹是一个正弦或余弦曲线。单摆的周期性是指它的运动具有周期性, 即它会重复相同的运动轨迹。单摆的对称性是指它的运动轨迹关于细线对称,即质点在最高点和最低点的位置关 于细线对称。
02
单摆的力学原理
单摆的受力分析
总结词
单摆在摆动过程中受到重力和细 线的拉力作用。
详细描述
2. 在测量摆长时,应确保测量尺与摆线垂直,避免误差。
实验步骤和注意事项
01
3. 在测量单摆周期时,应确保秒 表处于停止状态,以便准确计时 。
02
4. 在改变摆长时,应保持其他实 验条件不变,以探究单摆周期与 摆长的关系。
05
单摆的习题和解析
基础习题
基础习题1
一个单摆的摆长为0.25米,在偏角小 于5度的情况下,求单摆的振动周期 。
详细描述
利用单摆的周期公式和地球的重力加速度公式,结合摆长和周期的测量,可以计算出地球的重力加速 度。这种方法在物理学实验中经常被用来验证单摆的周期公式。
测量地球的自转周期
总结词
通过测量单摆的振动周期,可以推算出 地球的自转周期。
VS
详细描述
由于地球自转的影响,不同地理位置的摆 长会有所不同,导致单摆的周期也会有所 不同。通过测量不同地理位置的单摆周期 ,可以推算出地球的自转周期。这种方法 在地球科学研究中被广泛应用。
单摆_课件

精品 课件
高中物理选择性必修1 第二章 机械振动
单摆
新人教版
特级教师优秀课件精选
教学目标
知道什么是单摆,了解单摆运动的特点 通过实验,探究单摆额周期与摆长的关系 知道单条件
教学难点
单摆回复力的分析
生活中常见的几种摆动
单摆
单摆的结构 知道单摆是一种理想模型 知道单摆的振动可以看成简谐振动的条件 知道单摆的回复力
单摆的周期 单摆周期的影响因素 探究:单摆周期与摆球质量的关系
两小球的周期相等
两个不同质量的小球
单摆周期与摆球质量无关
单摆的周期 单摆周期的影响因素 探究:单摆周期与摆角的关系
两小球的周期相等
拉起不同的高度(使摆角不同)
单摆周期与摆角无关
单摆的周期 单摆周期的影响因素 探究:单摆周期与摆长的关系
(1)不准时,单摆的周期变小 (2)偏快 (3)增大单摆的摆长
单摆周期公式的应用
惠更斯于1656年发明了世界上第一个用摆的等时 性来计时的时钟。(1657年获得专利权)
用单摆测定重力加速度
问题与练习
一个理想的单摆,已知其周期为T。如果由于某种原因(如转移 到其他星球)自由落体加速度变为原来的1/2,振幅变为原来 的1/3,摆长变为原来的1/4,摆球质量变为原来的1/5,它的 周期变为多少?
问题与练习
周期是2s的单摆叫做秒摆,秒摆的摆长是多少?把一个地球上 的秒摆拿到月球上去,已知月球上的自由落体加速度为 1.6m/s2,它在月球上做50次全振动要用多少时间?
问题与练习
如图是两个单摆的振动图象。 (1)甲、乙两个摆的摆长之比是多少?1:4 (2)以向右的方向作为摆球偏离平衡位置的位移的正方向, 从t=0起,乙第一次到达右方最大位移时,甲振动到了什么 位置?向什么方向运动?甲处于平衡位置,此时正向左方运动
高中物理选择性必修1 第二章 机械振动
单摆
新人教版
特级教师优秀课件精选
教学目标
知道什么是单摆,了解单摆运动的特点 通过实验,探究单摆额周期与摆长的关系 知道单条件
教学难点
单摆回复力的分析
生活中常见的几种摆动
单摆
单摆的结构 知道单摆是一种理想模型 知道单摆的振动可以看成简谐振动的条件 知道单摆的回复力
单摆的周期 单摆周期的影响因素 探究:单摆周期与摆球质量的关系
两小球的周期相等
两个不同质量的小球
单摆周期与摆球质量无关
单摆的周期 单摆周期的影响因素 探究:单摆周期与摆角的关系
两小球的周期相等
拉起不同的高度(使摆角不同)
单摆周期与摆角无关
单摆的周期 单摆周期的影响因素 探究:单摆周期与摆长的关系
(1)不准时,单摆的周期变小 (2)偏快 (3)增大单摆的摆长
单摆周期公式的应用
惠更斯于1656年发明了世界上第一个用摆的等时 性来计时的时钟。(1657年获得专利权)
用单摆测定重力加速度
问题与练习
一个理想的单摆,已知其周期为T。如果由于某种原因(如转移 到其他星球)自由落体加速度变为原来的1/2,振幅变为原来 的1/3,摆长变为原来的1/4,摆球质量变为原来的1/5,它的 周期变为多少?
问题与练习
周期是2s的单摆叫做秒摆,秒摆的摆长是多少?把一个地球上 的秒摆拿到月球上去,已知月球上的自由落体加速度为 1.6m/s2,它在月球上做50次全振动要用多少时间?
问题与练习
如图是两个单摆的振动图象。 (1)甲、乙两个摆的摆长之比是多少?1:4 (2)以向右的方向作为摆球偏离平衡位置的位移的正方向, 从t=0起,乙第一次到达右方最大位移时,甲振动到了什么 位置?向什么方向运动?甲处于平衡位置,此时正向左方运动
单摆ppt课件

G2是使摆球振动的回复力
当摆球运动到A,点时,摆线与 竖直方向的夹角为θ,摆球偏 离平衡位置的位移为x,摆长 为l
小球摆动的回复力F为: A
F=G2=mg•sin
sin = d / l
G1
M
θ
T
d
o G2
x A,
G
1、单摆的回复力
仔细观察下面表格:你能得到什么结论?
角度
sinθ
弧度值θ
1o
0.01754
第二节 单摆
一、什么是单摆
1、单摆:细线一端固定在悬点,另一端系 一个小球,如果细线的质量与小球相比可 以忽略;球的直径与线的长度相比也可以 忽略,这样的装置就叫做单摆。
小球 的半 L0 径为
R
2、摆长:悬点到摆球重心的距离叫做摆长。摆长 L=L0+R 3、单摆理想化条件是:
①摆线质量m 远小于摆球质量 M,即m << M
1、单摆的回复力
弧长 半径
弧长≈弦长= x
x
l
sin x
F
mg
l
sin
mg
x
l
回复力的方向与位移的方向: 相反
回 复 力F mg x kx l
2、结论:在摆角很小(θ< 50)的情况,单摆
的振动是简谐运动
四、单摆的周期公式 简谐运动的周期公式 T 2 m
k
将k mg 代 入 l
例1、如图所示,为一双线摆,它 是在水平天花板上用两根等长的细 线悬挂一个小球而构成的。已知细 线长为l,摆线与天花板之间的夹
角为θ。求小球在垂直于纸面方向
作简谐运动时的周期。
T 2 l sin
g
例2、如图所示,为一双线摆,它是在不等高的天花 板上用两根细线悬挂一个小球而构成的。请在图中画 出此双线摆的摆长。
《单摆公开课》课件

05
单摆的扩展知识
复摆
定义
复摆是一刚体绕固定点做周期性 摆动的运动。
特点
具有较大的转动惯量,其运动周期 比单摆的周期长得多。
应用
在科学实验和工程中,复摆常被用 作测量仪器和控制系统的一部分, 例如摆式陀螺仪和摆式流速计等。
受迫振动与共振
受迫振动
在外力作用下产生的振动。
共振
当外界策动力的频率与物体的固有频率相等或相近时,物体的振幅 增大的现象。
应用
在机械工程、航空航天、交通运输等领域中,受迫振动和共振是常 见的现象,需要采取相应的措施进行控制和利用。
混沌理论在振动中的应用
混沌理论
研究非线性系统中貌似随机的复杂行为的理论。
应用
在振动分析中,混沌理论可以用于描述和分析一些复杂的振动现象,例如非线性振动和随机振动等。 这些现象在机械工程、航空航天、交通运输等领域中经常出现,需要运用混沌理论进行深入研究和理 解。
将计时器清零,开始计时 ,同时释放摆球,使其开 始摆动。
测量摆长,并记录数据。
04
单摆的讨论与思考
单摆的能量转化
要点一
总结词
单摆的能量转化是物理学的核心概念之一,它涉及到动能 和势能的相互转化。
要点二
详细描述
单摆在摆动过程中,由于重力的作用,摆球会沿着一个弧 线轨迹运动。在这个过程中,摆球的高度不断变化,导致 势能随之变化。同时,摆球的速度也在不断变化,导致动 能随之变化。当摆球达到最高点时,其势能最大而动能最 小;当摆球达到最低点时,其势能最小而动能最大。这种 动能和势能之间的相互转化是单摆运动的核心特征之一。02单摆的学模型简谐振动的数学模型
简谐振动是物理学中一种基本的振动 形式,其数学模型通常由一阶微分方 程表示。
《单摆及单摆实验》课件

未来对于单摆的研究可以进一步探索更复杂的振动系统和非线性效应,以及在极端 条件下的单摆行为。
随着虚拟现实和模拟软件的普及,未来可以通过计算机模拟来研究单摆的行为和性 能,为实验研究和应用提供更准确的预测和设计依据。
THANKS FOR WATCHING
感谢您的观看
单摆的原理
总结词
单摆的原理基于牛顿第二定律和角动量守恒定律。当摆锤受到外力作用时,它会沿着力 的方向加速或减速,同时由于细线的约束,它也会在垂直方向上产生位移,形成摆动。
详细描述
根据牛顿第二定律,当摆锤受到外力作用时,它会沿着力的方向加速或减速。由于细线 的约束,摆锤在垂直方向上产生位移,形成摆动。同时,根据角动量守恒定律,摆锤的 角动量等于质量乘以速度再乘以半径。在无外力矩作用的情况下,摆锤的角动量保持不
04 单摆的实验结果分析
数据记录
Hale Waihona Puke 实验数据记录单摆摆动周期、摆长、摆角 等数据。
实验图像
记录单摆摆动轨迹、振动图像等 。
结果分析
数据分析
对实验数据进行处理和分析,提取关 键信息。
规律总结
根据数据分析结果,总结单摆摆动周 期与摆长、摆角等参数的关系。
误差分析
误差来源
分析实验过程中可能产生的误差来源,如测量工具误差、操作误差等。
03 单摆的特性
单摆的周期
总结词
单摆的周期是指摆球完成一个来回摆动所需的时间,它与摆长、地球的重力加 速度有关。
详细描述
单摆的周期是摆球在平衡位置附近来回摆动所需的时间。它受到摆长和地球重 力加速度的影响。摆长越长,周期越长;重力加速度越大,周期越短。
单摆的幅度
总结词
单摆的幅度是指摆球偏离平衡位置的 最大角度,它与摆长、摆角等因素有 关。
随着虚拟现实和模拟软件的普及,未来可以通过计算机模拟来研究单摆的行为和性 能,为实验研究和应用提供更准确的预测和设计依据。
THANKS FOR WATCHING
感谢您的观看
单摆的原理
总结词
单摆的原理基于牛顿第二定律和角动量守恒定律。当摆锤受到外力作用时,它会沿着力 的方向加速或减速,同时由于细线的约束,它也会在垂直方向上产生位移,形成摆动。
详细描述
根据牛顿第二定律,当摆锤受到外力作用时,它会沿着力的方向加速或减速。由于细线 的约束,摆锤在垂直方向上产生位移,形成摆动。同时,根据角动量守恒定律,摆锤的 角动量等于质量乘以速度再乘以半径。在无外力矩作用的情况下,摆锤的角动量保持不
04 单摆的实验结果分析
数据记录
Hale Waihona Puke 实验数据记录单摆摆动周期、摆长、摆角 等数据。
实验图像
记录单摆摆动轨迹、振动图像等 。
结果分析
数据分析
对实验数据进行处理和分析,提取关 键信息。
规律总结
根据数据分析结果,总结单摆摆动周 期与摆长、摆角等参数的关系。
误差分析
误差来源
分析实验过程中可能产生的误差来源,如测量工具误差、操作误差等。
03 单摆的特性
单摆的周期
总结词
单摆的周期是指摆球完成一个来回摆动所需的时间,它与摆长、地球的重力加 速度有关。
详细描述
单摆的周期是摆球在平衡位置附近来回摆动所需的时间。它受到摆长和地球重 力加速度的影响。摆长越长,周期越长;重力加速度越大,周期越短。
单摆的幅度
总结词
单摆的幅度是指摆球偏离平衡位置的 最大角度,它与摆长、摆角等因素有 关。
小球单摆ppt课件

单摆的运动是简谐振动的一种,其周期T和振幅A是描述单摆 运动的重要参数。
单摆的物理模型
01
单摆的物理模型可以简化为一个 线性弹簧振荡器,其中弹簧的劲 度系数为重力加速度g。
02
在平衡位置附近,单摆的运动可 以用线性弹簧振荡器的运动方程 来描述。
单摆的分类
根据小球的质量分布,单摆可以分为 均质球单摆和非均质球单摆。
振动控制
在航天工程和机械工程中,单摆被用于监测和控制结构的振动。通过引入反馈机 制,可以调整单摆的振动幅度和频率,实现结构的稳定性和安全性。
2023
PART 04
单摆的实验
REPORTING
实验目的和实验原理
实验目的
通过小球单摆实验,观察单摆的周期性 运动,验证单摆的周期公式,并了解影 响单摆周期的因素。
2023
小球单摆ppt课件
REPORTING
2023
目录
• 单摆简介 • 单摆的原理 • 单摆的应用 • 单摆的实验 • 单摆的扩展知识
2023
PART 01
单摆简介
REPORTING
单摆的定义
单摆是指一个质量为m的小球,通过一个长度为l的不可伸长 的轻线,在不受其他外力的影响下,仅靠自身重力沿一个小 的角度θ摆动的运动。
VS
实验原理
单摆是一种简单的振动系统,由一根悬挂 的细线和下面的小球组成。当小球受到一 个初始扰动时,它会围绕悬挂点做周期性 的摆动。单摆的周期公式为 T = 2π√(L/g),其中 T 是单摆的周期,L 是 悬挂点到小球中心的距离,g 是重力加速 度。
实验设备和实验步骤
• 实验设备:一根细线、一个小球、一个支架、一把尺子、 一个计时器。
实验设备和实验步骤
单摆的物理模型
01
单摆的物理模型可以简化为一个 线性弹簧振荡器,其中弹簧的劲 度系数为重力加速度g。
02
在平衡位置附近,单摆的运动可 以用线性弹簧振荡器的运动方程 来描述。
单摆的分类
根据小球的质量分布,单摆可以分为 均质球单摆和非均质球单摆。
振动控制
在航天工程和机械工程中,单摆被用于监测和控制结构的振动。通过引入反馈机 制,可以调整单摆的振动幅度和频率,实现结构的稳定性和安全性。
2023
PART 04
单摆的实验
REPORTING
实验目的和实验原理
实验目的
通过小球单摆实验,观察单摆的周期性 运动,验证单摆的周期公式,并了解影 响单摆周期的因素。
2023
小球单摆ppt课件
REPORTING
2023
目录
• 单摆简介 • 单摆的原理 • 单摆的应用 • 单摆的实验 • 单摆的扩展知识
2023
PART 01
单摆简介
REPORTING
单摆的定义
单摆是指一个质量为m的小球,通过一个长度为l的不可伸长 的轻线,在不受其他外力的影响下,仅靠自身重力沿一个小 的角度θ摆动的运动。
VS
实验原理
单摆是一种简单的振动系统,由一根悬挂 的细线和下面的小球组成。当小球受到一 个初始扰动时,它会围绕悬挂点做周期性 的摆动。单摆的周期公式为 T = 2π√(L/g),其中 T 是单摆的周期,L 是 悬挂点到小球中心的距离,g 是重力加速 度。
实验设备和实验步骤
• 实验设备:一根细线、一个小球、一个支架、一把尺子、 一个计时器。
实验设备和实验步骤
2.4单摆PPT(课件)-人教版高中物理选择性必修第一册

实知验识研 点究:单单摆摆实的的回振验复幅力、表质量、明摆长:对周单期各有摆什么的影响振? 动周期与摆球的质量无关;在振幅较小时
沿切线方向指向平衡位置的力是回复力,故B错。
这知样识做 点的目单的摆是,的__回__与复__(力填振字母幅代号无)。 关;但是与摆长有关,摆长越长,周期越长。
知识点 单摆的回复力 沿着与摆动方向垂直的方向匀速拖动一张白纸,喷到白纸上的墨迹便画出振动图象。
新知探究
知识点 2 单摆的周期
(2)他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺 从悬点量到摆球的最低端的长度l=0.999 0 m,再用游标卡尺 测量摆球直径,结果如图所示,则该摆球的直径为______ mm, 单摆摆长为______ m。
新知探究
知识点 2 单摆的周期
(3)下列振动图象真实地描述了对摆长约为1 m的单摆进行周期测 量的四种操作过程,图中横坐标原点表示计时开始,A、B、C均为 30次全振动的图象,已知sin 5°=0.087,sin 15°=0.26,这四 种操作过程合乎实验要求且误差最小的是______(填字母代号)。
新知探究
知识点 2 单摆的周期
新知探究
知识点 2 单摆的周期
【自主解答】 (1)当单摆做简谐运动时,其周期公 式 T=2π gl ,由此可知 g=4Tπ22l,只要求出 T 值代 入即可. 因为 T=nt =6300.8 s≈2.027 s, 所以 g=4Tπ22l=4×32.1.0422×72 1.02m/s2≈9.79 m/s2.
课堂训练
答案:BC 解析:首先发现单摆等时性的是伽利略,首先将单摆 的等时性用于计时的是惠更斯。
课堂训练
2.下列情况下会使单摆的周期变大的是( ) A.将摆的振幅减为原来的一半 B.将摆从高山上移到平地上 C.将摆从北极移到赤道 D.用一个装满沙子的漏斗(漏斗质量很小)和一根较长的细线 做成一个单摆,摆动中沙慢慢从漏斗中漏出
沿切线方向指向平衡位置的力是回复力,故B错。
这知样识做 点的目单的摆是,的__回__与复__(力填振字母幅代号无)。 关;但是与摆长有关,摆长越长,周期越长。
知识点 单摆的回复力 沿着与摆动方向垂直的方向匀速拖动一张白纸,喷到白纸上的墨迹便画出振动图象。
新知探究
知识点 2 单摆的周期
(2)他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺 从悬点量到摆球的最低端的长度l=0.999 0 m,再用游标卡尺 测量摆球直径,结果如图所示,则该摆球的直径为______ mm, 单摆摆长为______ m。
新知探究
知识点 2 单摆的周期
(3)下列振动图象真实地描述了对摆长约为1 m的单摆进行周期测 量的四种操作过程,图中横坐标原点表示计时开始,A、B、C均为 30次全振动的图象,已知sin 5°=0.087,sin 15°=0.26,这四 种操作过程合乎实验要求且误差最小的是______(填字母代号)。
新知探究
知识点 2 单摆的周期
新知探究
知识点 2 单摆的周期
【自主解答】 (1)当单摆做简谐运动时,其周期公 式 T=2π gl ,由此可知 g=4Tπ22l,只要求出 T 值代 入即可. 因为 T=nt =6300.8 s≈2.027 s, 所以 g=4Tπ22l=4×32.1.0422×72 1.02m/s2≈9.79 m/s2.
课堂训练
答案:BC 解析:首先发现单摆等时性的是伽利略,首先将单摆 的等时性用于计时的是惠更斯。
课堂训练
2.下列情况下会使单摆的周期变大的是( ) A.将摆的振幅减为原来的一半 B.将摆从高山上移到平地上 C.将摆从北极移到赤道 D.用一个装满沙子的漏斗(漏斗质量很小)和一根较长的细线 做成一个单摆,摆动中沙慢慢从漏斗中漏出
单摆PPT课件

荷兰物理学家惠更斯(1629---1695)通过实验进一步找到: 单摆做简谐运动的周期跟摆长的平方根成正比,跟重力加速
度的平方根成反比,跟振幅、摆球的质量无关.
单摆的周期公式: T 2 l
g
四 单摆的应用
应用一:计时器(应用单摆的等时性)
惠更斯在1656年首先利用摆的等时性发明了带 来自的计时器(1657年获得专利权)
秋千
摆钟
物体在竖直平面内的机械振动; 物体通过细绳或细杆绕一固定点运动; 细绳或细杆有质量,被悬挂的物体有一定的体 积。
理 想 化
细绳悬点固定,忽略细绳的质量和伸缩,绳长 比被悬挂小球的直径大的多。
单摆
一 认识单摆
单摆是对现实摆的一种抽象,是一种理想化的物理模型
两个忽略: 1.忽略悬挂小球的细绳的伸缩和质量; 2.线长又比球的直径大得多,忽略小球的体积,即可将之
视为一质点.
单摆的结构
摆线长 L0
摆长 L=L0+R
θ 摆角
二 单摆的运动性质
思考: 1.单摆为什么会振动? 2.哪个力提供了单摆机械
振动的回复力? 3.这个力与单摆偏离平衡
位置的位移有何关系? 4.单摆做的运动是简谐运
动吗?
单摆受到重力和拉力
单摆静止不动时,摆球所受 重力与拉力平衡;
单摆被拉离平衡位置释放时, 摆球所受重力和悬线拉力不 再平衡 重力沿运动方向的分力是摆球机械振动的回复力 悬线拉力与重力沿摆线方向的分力的合力提供小球作圆 周运动的向心力
3.单摆的周期公式:单摆做简谐运动的周期跟摆长的
平方根成正比,跟重力加速度的平方根成反比,跟振
幅、摆球的质量无关.
单摆的周期公式:
T 2 l
g
度的平方根成反比,跟振幅、摆球的质量无关.
单摆的周期公式: T 2 l
g
四 单摆的应用
应用一:计时器(应用单摆的等时性)
惠更斯在1656年首先利用摆的等时性发明了带 来自的计时器(1657年获得专利权)
秋千
摆钟
物体在竖直平面内的机械振动; 物体通过细绳或细杆绕一固定点运动; 细绳或细杆有质量,被悬挂的物体有一定的体 积。
理 想 化
细绳悬点固定,忽略细绳的质量和伸缩,绳长 比被悬挂小球的直径大的多。
单摆
一 认识单摆
单摆是对现实摆的一种抽象,是一种理想化的物理模型
两个忽略: 1.忽略悬挂小球的细绳的伸缩和质量; 2.线长又比球的直径大得多,忽略小球的体积,即可将之
视为一质点.
单摆的结构
摆线长 L0
摆长 L=L0+R
θ 摆角
二 单摆的运动性质
思考: 1.单摆为什么会振动? 2.哪个力提供了单摆机械
振动的回复力? 3.这个力与单摆偏离平衡
位置的位移有何关系? 4.单摆做的运动是简谐运
动吗?
单摆受到重力和拉力
单摆静止不动时,摆球所受 重力与拉力平衡;
单摆被拉离平衡位置释放时, 摆球所受重力和悬线拉力不 再平衡 重力沿运动方向的分力是摆球机械振动的回复力 悬线拉力与重力沿摆线方向的分力的合力提供小球作圆 周运动的向心力
3.单摆的周期公式:单摆做简谐运动的周期跟摆长的
平方根成正比,跟重力加速度的平方根成反比,跟振
幅、摆球的质量无关.
单摆的周期公式:
T 2 l
g
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.电视正在直播飞船登月,一 名教授发现飞船登月舱外的一个 与航天员等高的悬挂物正在轻微 摆动,他看着电视屏幕上的时间 显示,大致得出了月球表面的重 力加速度,你能说出其中的道理 吗?
• 5.试分析前面提到的老校友送 给母校的钟,从效应北京回 到晋江后为什么不准了?
Fk x 3.简谐运动的条件.
பைடு நூலகம்度值
10
0.01754
20
0.03491
30
0.05236
40
0.06981
50
0.08727
60
0.10472
70
0.12217
80
0.13963
90
0.15643
100
0.17365
正弦值
0.01754
0.03490 0.05234 0.06976 0.08716 0.10453 0.12187 0.13917 0.15700 0.17444
在摆角很小的情况下(<100) , 单摆所受回复力跟偏离平衡位置的位 移成正比且方向相反,单摆做简谐运 动.
•1. 描述简谐运动的物理量有哪些? •2.影响单摆振动的周期的可能因素有哪些?
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
9
相邻四个小组为一个科研单位 分工合作研究(观察、记录什么?)
2.在摆角很小的情况下,单摆所受回复力跟偏离平衡 位置成正比且方向相反,单摆做简谐运动.
3.单摆做简谐运动的周期跟摆长的平方根成正比,跟 重力加速度的平方根成反比,跟振幅、摆球的质量无关.
T 2 l
g
巩固和练习
• 1.单摆由________和成______组成,保证 单摆做简谐运动的关键因素是_____.
2.做简谐运动的单摆,其回复力是 A.摆球的重力 B.摆线对摆球的拉力 C.摆线对摆球的拉力和摆球重力的合力 D.摆球重力沿圆弧切线的分力
3.单摆的周期原来是2s,下列那种情 况下,周期将发生变化?
A. 摆长变为原来的1/4 B. 摆球的质量变为原来的1/4 C. 振幅变为原来的1/4 D.重力加速度变为原来的1/4
荷兰物理学家惠更斯(1629---1695) 首先发现
单摆做简谐运动的周期跟摆长的平方根成 正比,跟重力加速度的平方根成反比,跟振幅、 摆球的质量无关.
T 2 l
g
小结:
1.在细线的一端拴上一个小球,另一端固定在悬点上, 如果线的伸缩和质量可以忽略不计,线长比球的直径比大 的多,这样的装置叫单摆.
探究单摆的振荡周期
科学的使命在于发现 科学的力量在于好奇 科学的乐趣在于探究
单摆的结构
在细线的一端系一个小球,另一端固定 在悬点上,如果线的伸缩和质量可以忽略不 计,线长比球的直径比大的多,这样的装置 叫单摆.
悬点:固定 摆球:体积小、质量大 细线:不可伸缩、质量不计、较长
思考
• ① 将球拉离平衡位置后释放,摆球作什么形 式的运动?
• a. 振幅、重力加速度、摆长一定,研究 周期和质量的关系
• b. 振幅、重力加速度、质量一定,研究 周期和摆长的关系
• c. 质量、重力加速度、摆长一定,研究 周期和振幅的关系
• d. 振幅、质量、摆长一定,研究周期和 重力加速度的关系
[进行实验和收集数据]
小组按照设计好的方案进行实验(教师巡视学生实验情况并加以指导)
• ② 单摆的摆动是简谐运动吗? • ③物体作简谐运动的条件是什么? • ④单摆运动过程中受哪些力?单摆的回复力
由谁来提供?请画图分析,并与同伴讨论 你这样分析的理由。
知识回顾
1.机械振动.
物体在平衡位置附近所做的往复运动叫做机械振动, 简称振动.
2.简谐运动.
物体在跟位移大小成正比,并且总是指向平衡位置 的回复力作用下的振动,叫做简谐运动.
学生在控制变量思想指导下,其设计基本统一在以下设计:
实验表明:
1.单摆振动的周期与振幅无关 (等时性 伽利略发现)
2.单摆振动的周期与摆球质量无关
3.单摆振动的周期与摆长和重力加速度有关 摆长越长,周期越大.重力加速度越大,周期越小。
两行一组 分工合作
• 分别在坐标纸上描点分析 : T---L,T---L2,T---L3,T---√L 研究确定T和L的关系