概率与统计及部分答案
概率与数理统计习题及详解答案

概率与统计题目精选及答案1. 某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话.解:设A 1={第i 次拨号接通电话},i =1,2,3. (1)第3次才接通电话可表示为321A A A 于是所求概率为;1018198109)(321=⨯⨯=A A A P(2)拨号不超过3次而接通电话可表示为:A 1+32121A A A A A +于是所求概率为 P (A 1+32121A A A A A +)=P(A 1)+P(21A A )+P(321A A A )=.103819810991109101=⨯⨯+⨯+2. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率; (2)求这位司机在途中遇到红灯数ξ的期望和方差 解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=.27431)311)(311(=⨯--(2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD3. (理科)摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望解:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9; 当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12所以,157)6(31038===C C P ξ 157)9(3101228===C C C P ξ 151)12(3102218===C C C P ξ……9分 E ξ=6×539151121579157=⨯+⨯+(元)答:此次摇奖获得奖金数额的数字期望是539元 ……………………12分 4. 某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少解:分别记该生语、数、英考试成绩排名全班第一的事件为A 、B 、C ,则P (A )=0.9 P (B )=0.8,P (C )=0.85 …………………………2分 (Ⅰ))()()()(C P B P A P C B A P ⋅⋅=⋅⋅=[1-P (A )]·[1-P (B )]·[1-P (C )] =(1-0.9)×(1-0.8)×(1-0.85)=0.003答:三科成绩均未获得第一名的概率是0.003………………6分 (Ⅱ)P (C B A C B A C B A ⋅⋅+⋅⋅+⋅⋅) = P ()()()C B A p C B A P C B A ⋅⋅+⋅⋅+⋅⋅=)()()()()()()()()(C P B P A P C P B P A P C P B P A P ⋅⋅+⋅⋅+⋅⋅=[1-P (A )]·P (B )·P (C )+P (A )·[1-P (B )]·P (C )+P (A )·P (B )·[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329答:恰有一科成绩未获得第一名的概率是0.329……………………12分5. 如图,A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当x ≥6时,则保证信息畅通.求线路信息畅通的概率;(II )求选取的三条网线可通过信息总量的数学期望.解:(I )411)6(,6321411361212=⋅+==∴=++=++C C C x P Θ)6(431012034141)6()4(101202)9(,9432203)8(,842243141205)7(,7322421分分=+++=≥∴===∴=++==∴=++=++===∴=++=++x P x P x P x P ΘΘΘ(II ))8(203)5(,5221311,101)4(,4211分===++=++===++x P x P ΘΘ ∴线路通过信息量的数学期望 5.61019203841741620351014=⨯+⨯+⨯+⨯+⨯+⨯= (11分) 答:(I )线路信息畅通的概率是43. (II )线路通过信息量的数学期望是6.5.(12分)6. 三个元件T 1、T 2、T 3正常工作的概率分别为,43,43,21将它们中某两个元件并联后再和第三元件串联接入电路.(Ⅰ)在如图的电路中,电路不发生故障的概率是多少?(Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由.解:记“三个元件T 1、T 2、T 3正常工作”分别为事件A 1、A 2、A 3,则.43)(,43)(,21)(321===A P A P A P (Ⅰ)不发生故障的事件为(A 2+A 3)A 1.(2分)∴不发生故障的概率为321521]41411[)()]()(1[)4)(()(])[(1321311321=⨯⨯-=⋅⋅-=⋅+=+=A P A P A P A P A A P A A A P P 分(Ⅱ)如图,此时不发生故障的概率最大.证明如下: 图1中发生故障事件为(A 1+A 2)·A 3 ∴不发生故障概率为3221)()]()(1[)()(])[(3213213212=⋅-=⋅+=+=A P A P A P A P A A P A A A P P )11(12分P P >∴图2不发生故障事件为(A 1+A 3)·A 2,同理不发生故障概率为P 3=P 2>P 1(12分) 说明:漏掉图1或图2中之一扣1分7. 要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们 的生产是独立的,从它们制造的产品中,分别任意抽取一件,求: (1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率. 解:设事件A=“从甲机床抽得的一件是废品”;B=“从乙机床抽得的一件是废品”. 则P (A )=0.05, P(B)=0.1, (1)至少有一件废品的概率)7(145.090.095.01)()(1)2)((1)(分分=⨯-=⋅-=+-=+B P A P B A P B A P(2)至多有一件废品的概率)12(995.09.095.01.095.09.005.0)(分=⨯+⨯+⨯=⋅+⋅+⋅=B A B A B A P P8. (理科)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差解:(1)记甲、乙分别解出此题的事件记为A 、B. 设甲独立解出此题的概率为P 1,乙为P 2.(2分) 则P (A )=P 1=0.6,P(B)=P 2:48.08.06.0)()()2(44.08.04.02.06.0)()()()()1(08.02.04.0)()()0()2()7(8.032.04.092.06.06.092.0)1)(1(1)(1)(2222212121的概率分布为分即则ξξξξ=⨯=⋅===⨯+⨯=+===⨯=⋅=====-+∴=-+=---=⋅-=+B P A P P B P A P B P A P P B P A P P P P P P P P P P P P B A P B A P)12(4.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222分或利用=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξE E D D E9. (理科考生做) 某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交多少保险金?解:设保险公司要求顾客交x 元保险金,若以ξ 表示公司每年的收益额,则ξ是一个随机变量,其分布列为:6分因此,公司每年收益的期望值为E ξ =x (1-p )+(x -a )·p =x -ap .8分为使公司收益的期望值等于a 的百分之十,只需E ξ =0.1a ,即x -ap =0.1a , 故可得x =(0.1+p )a .10分 即顾客交的保险金为 (0.1+p )a 时,可使公司期望获益10%a .12分10. 有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2. (1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是: P =1-0.85-15C ×0.84×0.2≈0.263. 4分(2)五项指标全部检验完毕,这批食品可以出厂的概率是:P 1=14C ×0.2×0.83×0.88分五项指标全部检验完毕,这批食品不能出厂的概率是:P 2=14C ×0.2×0.83×0.210分由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P =P 1+P 2=14C ×0.2×0.83=0.4096.12分11. 高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛.比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛. 已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(Ⅱ)高三(1)班代表队连胜两盘的概率是多少? 解:(I )参加单打的队员有23A 种方法.参加双打的队员有12C 种方法.……………………………………………………2分所以,高三(1)班出场阵容共有121223=⋅C A (种)………………………5分(II )高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜,………………………………………………………………………7分 所以,连胜两盘的概率为.832121212121=⨯⨯+⨯………………………………10分 12. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球 (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A+B )=P (A )+P (B )=76即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件其概率为14131411=-………………12分 13. 一名学生骑自行车上学,从他的家到学校的途中有6个交通岗,假设他在各交通岗遇到红灯的事件是独立的,并且概率都是31.(I )求这名学生首次遇到红灯前,已经过了两个交通岗的概率;(II )求这名学生在途中遇到红灯数ξ的期望与方差.解:(I )27431)311)(311(=--=P …………………………………………4分 (II )依题意ξ~),31,6(B ……………………………………………………7分2316=⋅=∴ξE ……………………………………………………………9分34)311(316=-⋅⋅=ξD ……………………………………………………12分14. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差 解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以P=.27431)311)(311(=⨯--(2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD1、 写出下列随机试验的样本空间。
概率与统计【题集】-讲义(教师版)

概率与统计【题集】1. 条件概率与相互独立事件1.盒子中有个白球和个红球,现从盒子中依次不放回地抽取个球,那么在第一次抽出白球的条件下,第二次抽出红球的概率是 .【答案】【解析】设事件为第一次抽取的为白球;设事件为第二次抽到红球,∴;∴第一次抽到白球条件下,第二次抽到红球的概率为.故答案为:.【标注】【知识点】超几何分布;条件概率A.B.C.D.2.甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.则甲在局以内(含局)赢得比赛的概率为( ).【答案】A【解析】用表示“甲在局以内(含局)赢得比赛”,表示“第局甲胜”,表示“第局乙胜”,则,,,,,,,∴.故选项.【标注】【知识点】相互独立事件的概率乘法公式;互斥事件的概率加法公式2. 离散型随机变量的分布列、期望与方差A.B.C.D.3.设是一个服从两点分布的离散型随机变量,其分布列为:则的值为().【答案】A 【解析】,∴,∴.故选.【标注】【知识点】离散型随机变量的数学期望;离散型随机变量的分布列A.B.C.D.4.已知随机变量的分布列如表(其中为常数)则等于( ).【答案】C【解析】由概率之和等于可知,∴.故选.【标注】【知识点】离散型随机变量的分布列;概率的基本性质5.若随机变量的概率分布如表,则表中的值为 .【答案】【解析】由随机变量的概率分布表得:,解得.故答案为:.【标注】【知识点】概率的基本性质;互斥事件的概率加法公式A. B.C.D.6.设离散型随机变量的分布列为().若离散型随机变量满足,则下列结果正确的有( ).【答案】AC【解析】由离散型随机变量的分布列的性质得︰,则,,即,离散型随机变量满足,∴,故结果正确的有.故选.【标注】【知识点】期望与方差的性质3. 两点分布7.已知随机变量服从两点分布,且,设,那么.【答案】【解析】∵随机变量服从两点分布,且,∴,∴,设,则.【标注】【知识点】离散型随机变量的数学期望;两点分布A. B. C. D.8.设某项试验的成功率是失败率的倍,用随机变量去描述次试验的成功次数,则().【答案】C【解析】设失败率为,则成功率为.∴的分布列为:则“”表示试验失败,“”表示试验成功,∴由,得,即.故选.【标注】【知识点】离散型随机变量的分布列9.若的分布列为:其中,则,.【答案】 ;【解析】,,故答案为:,.【标注】【知识点】离散型随机变量的分布列A.和 B.和 C.和 D.和10.若随机变量服从两点分布,其中,则和的值分别是().【答案】D【解析】∵随机变量服从两点分布,且,∴,∴,,∴,.故选.【标注】【知识点】离散型随机变量的数学期望;离散型随机变量的方差A. B. C. D.11.某电视台夏日水上闯关节目中的前三关的过关率分别为,,,只有通过前一关才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为().【答案】D【解析】某电视台夏日水上闯关节目中的前三关的过关率分别为,,,只有通过前一关才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为:.故选:.【标注】【知识点】两点分布;离散型随机变量的分布列;相互独立事件的概率乘法公式4. 次独立重复实验与二项分布A.,B.,C.,D.,12.已知随机变量服从二项分布,即,且,,则二项分布的参数,的值为().【答案】D【解析】由二项分布的期望和方差公式,,则,∴,,∴,∴.故选.【标注】【知识点】n次独立重复试验与二项分布A. B. C. D.13.已知服从二项分布的随机变量满足,则()的值为().【答案】B【解析】.故选.【标注】【知识点】n次独立重复试验与二项分布14.一批产品的次品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的次品件数,则.【答案】【解析】∵一批产品的次品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的次品件数,∴,∴,故答案为:.【标注】【知识点】n次独立重复试验与二项分布15.某大厦的一部电梯从底层出发后只能在第,,层停靠,若该电梯在底层载有位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用表示这位乘客在第层下电梯的人数,则.【答案】【解析】服从二项分布,即,∴.【标注】【知识点】n次独立重复试验与二项分布A. B. C. D.16.新冠肺炎病毒可以通过飞沫传染,佩戴口罩可以预防新冠肺炎病毒传染,已知,,三人与新冠肺炎病人甲近距离接触,由于,,三人都佩戴了某种类型的口罩,若佩戴了该种类型的口罩,近距离接触病人被感染的概率为,记,,三人中被感染的人数为,则的数学期望().【答案】B【解析】,,,,故.故选.【标注】【知识点】n 次独立重复试验与二项分布;离散型随机变量的数学期望(1)(2)17.在天猫进行大促期间,某店铺统计了当日所有消费者的消费金额(单位:元),如图所示:人数消费金额元将当日的消费金额超过元的消费者称为“消费达人”,现从所有“消费达人”中随机抽取人,求至少有位消费者,当日的消费金额超过元的概率.该店铺针对这些消费者举办消费返利活动,预设有如下两种方案:方案:按分层抽样从消费金额在不超过元,超过元且不超过元,元以上的消费者中总共抽取位“幸运之星”给予奖励金,每人分别为元、元和元.方案:每位会员均可参加线上翻牌游戏,每轮游戏规则如下:有张牌,背面都是相同的喜羊羊头像,正面有张笑脸、张哭脸,将张牌洗匀后背面朝上摆放,每次只能翻一张且每翻一次均重新洗牌,共翻三次.每翻到一次笑脸可得元奖励金.如果消费金额不超过元的消费者均可参加轮翻牌游戏;超过元且不超过元的消费者均可参加轮翻牌游戏;元以上的消费者均可参加轮翻牌游戏(每次、每轮翻牌的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.【答案】(1)(2).方案投资较少;证明见解析.【解析】(1)记“在抽取的人中至少有位消费者消费超过元”为事件,由图可知,去年消费金额在内的有人,在内的有人,消费金额超过元的“消费达人”共有(人),从这人中抽取人,共有种不同方法,其中抽取的人中没有位消费者消费超过元,(2)共有种不同方法,所以.方案按分层抽样从消费金额在不超过元,超过元且不超过元,元以上的消费者中总共抽取位“幸运之星”,则“幸运之星”中的人数分别为:,,,按照方案奖励的总金额为:(元),方案设表示参加一轮翻牌游戏所获得的奖励金,则的可能取值为,,,,由题意,每翻牌次,翻到笑脸的概率为:,所以,,,,所以的分布列为:数学期望为:(元),按照方案奖励的总金额为:(元),因为由,所以施行方案投资较少.【标注】【知识点】组合;离散型随机变量的分布列;n次独立重复试验与二项分布;古典概型18.(1)(2)(3)年月,我国武汉地区爆发了新冠肺炎疫情,为了预防疫情蔓延,全国各地的学校都推迟年的春季线下开学,并采取了“停课不停学”的线上授课措施,某校为了解学生对线上课程的满意程度,随机抽取了学校中的名学生对线上课程进行评价打分,其得分情况的频率分布直方图如下:若根据频率分布直方图得到的评分不低于分的概率估计值为.频率组距评分求直方图中的,值,若评分的平均值不低于分视为满意,判断该校学生对线上课程是否满意?并说明理由.若采用分层抽样的方法,从评分在和内的学生中共抽取人,再从这人中随机抽取人检验他们的网课学习效果,求抽取到的人中至少一人评分在内的概率.若从该校学生中随机抽取人,记评分标准在的人数为,用频率估计概率,求随机变量的分布列与数学期望.【答案】(1)(2)(3)满意,证明见解析..的分布列为:.【解析】(1)(2)由已知得,解得,又,∴,评分的平均值为:,因此该校学生对线上课程满意.由题知评分在和内的频率分别为和,则抽取的人中,评分在内的为人,评分在的有人,记评分在的位学生为 , , ,(3)评分在内的位学生为,,则从人中任选人的所有可能结果为:,,,,,,,,,,共种,其中,评分在内的可能结果为,,,共种,∴这人中至少一人评分在的概率为.学生在分的频率为,用频率估计概率,则每个学生评分在分的概率为,据题意知,的可能取值为,,,,所以,,,,,那么的分布列为:则数学期望,或知.【标注】【知识点】离散型随机变量的分布列;n次独立重复试验与二项分布;离散型随机变量的数学期望;古典概型;用样本的数字特征估计总体的数字特征问题;众数、中位数、平均数;频率分布直方图;分层随机抽样19.改革开放年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国年至年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率().(1)(2)(3)体育产业增加值体育产业年增长率从年至年随机选择年,求该年体育产业年增加值比前一年的体育产业年增加值多亿元以上的概率.从年至年随机选择年,设是选出的三年中体育产业年增长率超过的年数,求的分布列与数学期望.由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)【答案】(1)(2)(3).分布列为:期望值.从年或年开始连续三年的体育产业年增长率方差最大.从年开始连续三年的体育产业增加值方差最大.【解析】(1)(2)设表示事件“从年至年随机选出年,该年体育产业年增加值比前一年的体育产业年增加值多亿元以上”.由题意可知,年,年,年,年满足要求,故.由题意可知,的所有可能取值为,,,,且;;;.(3)所以的分布列为:故的期望值.从年或年开始连续三年的体育产业年增长率方差最大.从年开始连续三年的体育产业增加值方差最大.【标注】【知识点】离散型随机变量的数学期望;离散型随机变量的分布列(1)(2)20.已知某同学每次投篮的命中率为,且每次投篮是否命中相互独立,该同学投篮次.求至少有次投篮命中的概率.设投篮命中的次数为,求的分布列和期望.【答案】(1)(2).的分布列为:.【解析】(1)(2)设次投篮至少有次投篮命中为事件,则,∴至少有次投篮命中的概率为.由题意知的可能取值为,,,,,,,,,,,,∴的分布列为:∵,∴.【标注】【知识点】离散型随机变量的分布列;n次独立重复试验与二项分布;离散型随机变量的数学期望5. 超几何分布A. B. C. D.21.某小组有名男生,名女生,从中任选名同学参加活动,若表示选出女生的人数,则().【答案】C【解析】名男生,名女生中任选名参加活动,则女生人数为人时,女生人数为人时,,∴,∴故答案选.【标注】【素养】数学运算;逻辑推理【知识点】超几何分布(1)(2)22.已知箱中装有个白球和个黑球,且规定:取出一个白球得分,取出一个黑球得分.现从该箱中任取(无放回,且每球取到的机会均等)个球,记随机变量为取出球所得分数之和.求的分布列;求的数学期望.【答案】(1)(2)分布列为.【解析】(1)(2)的可能取值有:45.,故所求的分布列为所求的数学期望为.【标注】【知识点】超几何分布,,,(1)(2)23.某学校组织一项益智游戏,要求参加该益智游戏的同学从道题目中随机抽取道回答,至少答对道可以晋级.已知甲同学能答对其中的道题.设甲同学答对题目的数量为,求的分布列及数学期望.求甲同学能晋级的概率.【答案】(1)(2)的分布列为数学期望..【解析】(1)(2)可取,,,,则,,,,的分布列为.甲同学能晋级的概率.【标注】【知识点】离散型随机变量的数学期望;离散型随机变量的分布列(1)(2)24.在某年级的联欢会上设计一根摸奖游戏,在一个口袋中装有个红球和个白球,这些球除颜色外完全相同,一次从中摸出个球,表示摸出红球的个数.求的分布列.(用数字作答)至少摸到个红球就中奖,求中奖的概率.(用数字作答)【答案】(1)(2).【解析】(1)(2)的取值为,,,,设摸出个红球的概率为,,,,.中奖的概率为.【标注】【知识点】超几何分布;离散型随机变量的数学期望;离散型随机变量的分布列25.年突如其来的新冠疫情,不仅是一场危机,更是一场考验,给人民的生命财产,身体健康和经济社会发展都带来了巨大的挑战.在党中央的坚强领导下,国内疫情防控取得了阶段性的成果.某企业在此期间积极应对疫情带来的影响,拓展线上经营业务,创造就业机会.该企业招聘员工,其中、、、、五种岗位的应聘人数、录用人数和录用比例(精确到)如下:岗位男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数女性录用比例(1)(2)(3)总计从表中所有应聘人员中随机选择人,试估计此人被录用的概率.从应聘岗位的人中随机选择人.记为这人中被录用的人数,求的分布列和数学期望.表中、、、、各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)【答案】(1)(2)(3).的分布列为:.,,,【解析】(1)(2)(3)由表可得:应聘人员总数为:,被录用的人数为:,所以从表中所有应聘人员中随机选择人,此人被录用的概率为:.可能的取值为,,,∵岗位的人中,被录用的有人,未被录用的有人,∴,,,∴的分布列为:∴.取掉岗位,男性录用比例为:,女性录用比例为:,∴去掉岗位后,男女比例接近,∴这四种岗位是:,,,.【标注】【知识点】离散型随机变量的分布列;古典概型;分层随机抽样频率组距重量克(1)(2)(3)26.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的件产品作为样本并称出它们的重量(单位:克),重量的分组区间为,,,,,由此得到样本的频率分布直方图,如图所示.求的值.在上述抽取的件产品中任取件,设为重量超过克的产品数量,求的分布列.用这件产品组成的样本中各组产品出现的频率估计概率,现在从流水线上任取件产品,求恰有件产品的重量超过克的概率.【答案】(1)(2)(3)..【解析】(1)(2)频率分布直方图中每个矩形面积之和为,可得,解得.件产品中任取件重量超过克的产品数量为:,的所有取值为,,;,(3),,从流水线上任取件产品,重量超过克的概率为,重量不超过克的概率为,恰有件产品的重量超过克的概率.【标注】【知识点】离散型随机变量的分布列;n 次独立重复试验与二项分布;频率分布直方图(1)(2)27.从名演员中选人参加表演.求甲在乙前表演的概率.若甲参加表演,门票收入会增长万元,若乙参加表演,门票收入会增长万元,若甲乙都参加演出,门票收入会增加万元,记门票增长为(万元),求的分布列和数学期望.【答案】(1)(2)..【解析】(1)(2)记“甲在乙前表演”为事件,∴,∴甲在乙前表演的概率是.可能取值有,,,,∴,,,,∴的分布列为:∴.【标注】【知识点】离散型随机变量的数学期望;古典概型(1)(2)(3)28.新生婴儿性别比是指在某段时间内新生儿中男婴人数与女婴人数的比值的倍.下表是通过抽样调查得到的某地区年到年的年新生婴儿性别比.年份新生婴儿性别比根据样本数据,估计从该地区年的新生儿中随机选取人为女婴的概率(精确到).从年到年这五年中,随机选取两年,用表示该地区的新生婴儿性别比高于的年数,求的分布列和数学期望.根据样本数据,你认为能否否定“生男孩和生女孩是等可能的”这个判断?并说明理由.【答案】(1)(2)(3).的分布列为的数学期望.可以否定,证明见解析;不能否定,证明见解析;无法判断,证明见解析.【解析】(1)(2)设“从该地区年的新生儿中随机选取人为女婴”为事件,则.的可能取值为,,,,,,所以的分布列为(3)所以的数学期望.答案一:可以否定;从样本数据看这五年的男婴在新生儿中的比例都高于,由样本估计总体,所以可以否定“生男孩和生女孩是等可能的”这个判断;答案二:不能否定;尽管从样本数据看这五年的男婴在新生儿中的比例都高于,但由于抽样调查本身存在一定的随机性,且从数据上看,男女婴在新生儿中的比例都近似于,所以不能否定“生男孩和生女孩是等可能的”这个判断;答案三:无法判断;由于样本容量未知,如果样本容量较小,那么通过样本数据不能“否定生男孩和生女孩是等可能的”这个判断,如果样本容量足够大,那么根据样本数据,可以否定“生男孩和生女孩是等可能的”这个判断.【标注】【知识点】古典概型;离散型随机变量的数学期望;超几何分布;离散型随机变量的分布列(1)(2)(3)29.年月份,我国湖北武汉出现了新型冠状病毒,人感染后会出现发热、咳嗽、气促和呼吸困难等,严重的可导致肺炎甚至危及生命.为了增强居民防护意识,增加居民防护知识,某居委会利用网络举办社区线上预防新冠肺炎知识答题比赛,所有居民都参与了防护知识网上答卷,最终甲、乙两人得分最高进入决赛,该社区设计了一个决赛方案:①甲、乙两人各自从个问题中随机抽个.已知这个问题中,甲能正确回答其中的个,而乙能正确回答每个问题的概率均为,甲、乙两人对每个问题的回答相互独立、互不影响;②答对题目个数多的人获胜,若两人答对题目个数相同,则由乙再从剩下的道题中选一道作答,答对则判乙胜,答错则判甲胜.求甲、乙两人共答对个问题的概率.试判断甲、乙谁更有可能获胜?并说明理由.求乙答对题目数的分布列和期望.【答案】(1)(2)(3).乙胜出的可能性更大,证明见解析.分布列为:期望.【解析】(1)(2)(3)推出两人共答题,甲答对个,乙答对个,两人共答题,甲答对个,乙答对个.然后求解甲、乙两名学生共答对个问题的概率.甲、乙共答对个问题分别为:两人共答题,甲答对个,乙答对个,两人共答题,甲答对个,乙答对个,所以甲、乙两名学生共答对个问题的概率﹔.故答案为:.设甲获胜为事件,则事件包含“两人共答题甲获胜”和“两人共答题甲获胜”两类情况,其中第一类包括甲乙答对题个数比为,,,,,六种情况,第二类包括前三题甲乙答对题个数比为,,三种情况,然后求解概率;设乙获胜为事件,则,为对立事件,求出的概率,得到结论.设甲获胜为事件,则事件包含“两人共答题甲获胜”和“两人共答题甲获胜”两类情况,其中第一类包括甲乙答对题个数比为,,,,,六种情况,第二类包括前三题甲乙答对题个数比为,,三种情况,所以甲胜的概率,设乙获胜为事件,则,为对立事件,所以,,所以乙胜出的可能性更大.设学生乙答对的题数为,则的所有可能取值为,,,,,求出概率,得到随机变量的分布列,然后求解期望.设学生乙答对的题数为,则的所有可能取值为,,,,,,,,,,所以随机变量的分布列为:所以期望.【标注】【知识点】离散型随机变量的分布列;离散型随机变量的数学期望;古典概型的概率计算(涉及计数原理)6. 正态分布A. B. C. D.30.已知随机变量,若,,则=().【答案】D【解析】根据题意,,∵随机变量,∴,故选:.【标注】【知识点】正态分布31.已知随机变量服从正态分布,若,则.【答案】【解析】因为,所以.【标注】【知识点】正态分布A.B.C.D.32.下列有关说法正确的是( ).的展开式中含项的二项式系数为的展开式中含项的系数为已知随机变量 服从正态分布,,则已知随机变量 服从正态分布,,则【答案】ACD【解析】、选项:对于二项式的展开式中项为,∴系数为,二次项系数为,故正确,错误;、选项:对于随机变量服从正态分布,∵,∴,∴,又∵对于随机变量服从正态分布且正态分布为∴,故正确、正确.故选.【标注】【知识点】求二项式展开式的特定项;求项的系数或二项式系数;正态分布33.在某市年月份的高三质量检测考试中,所有学生的数学成绩服从正态分布,现任取一名学生,则他的数学成绩在区间内的概率为 .(附:若,则,.)【答案】【解析】∵学生的数学成绩服从正态分布,∴,.故答案为.【标注】【知识点】正态分布A.B.C.D.34.在一次数学测验中,学生的成绩服从正态分布,其中分为及格线,分为优秀线.下面说法正确的是( ).附:;;.学生数学成绩的期望为学生数学成绩的标准差为学生数学成绩及格率超过学生数学成绩不及格的人数和优秀的人数大致相等【答案】AC 【解析】,,∴,显然正确,错误;.,故正确;.,故错误.故选.【标注】【知识点】正态分布35.已知随机变量,,其正态分布的密度曲线如图所示,则下列说法错误的是( ).A.B.C.D.的取值比的取值更集中于平均值左右两支密度曲线与轴之间的面积均为【答案】B【解析】A 选项:B 选项:C 选项:D 选项:因为,,故正确;由图可知,故错误;因为正态分布曲线越瘦高,数据越集中,故正确;根据正态分布曲线的性质可知,故正确.故选 B .【标注】【知识点】正态分布(1)(2)(3)36.某市需对某环城快速道路进行限速,为了调查该道路的车速情况,于某个时段随机对辆车的速度进行取样,根据测量的车速制成下表:车速频数经计算,样本的平均值,标准差,以频率作为概率的估计值.已知车速过慢与过快都被认为是需矫正速度,现规定车速小于或车速大于需矫正速度.从该快速车道上的所有车辆中任取辆,求该车辆需矫正速度的概率.从样本中任取辆车,求这辆车均需矫正速度的概率.从该快速车道上的所有车辆中任取辆,记其中需矫正速度的车辆数为.求的分布列和数学期望.【答案】(1).(2)(3).分布列:,.【解析】(1)(2)(3),,∴小于有辆,大于有辆,∴所求概率..,,,∴,,,∴分布列:,∴.【标注】【知识点】正态分布;离散型随机变量的数学期望;古典概型(1)1(2)37.为了解某市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图:分数频率组距根据频率分布直方图,估计该市此次检测理科数学的平均成绩.精确到个位)研究发现,本次检测的理科数学成绩近似服从正态分布(,约为),按以往的统计数据,理科数学成绩能达到自主招生分数要求的同学约占.2估计本次检测成绩达到自主招生分数要求的理科数学成绩大约是多少分?(精确到个位)从该市高三理科学生中随机抽取人,记理科数学成绩能达到自主招生分数要求的人数为,求的分布列及数学期望.(说明:表示的概率.参考数据(,)【答案】(1)12(2)..分布列为:∴.【解析】(1)12(2).设本次检测成绩达到自主招生分数要求的理科数学成绩为,则,∴,∴,解得.由题意可知,∴,,,,,,∴的分布列为:∴.【标注】【知识点】n 次独立重复试验与二项分布;离散型随机变量的数学期望38.《山东省高考改革试点方案》规定:从年秋季高中入学的新生开始,不分文理科;年高考总成绩由语数外三门统考科目和物理,化学等六门选考科目组成,将每门选考科目的考生原始成绩从高到低划分为、,,,、、、共个等级,参照正态分布原则,确定各等级人。
《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
高中数学概率统计(含详细答案)

1.某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y ≥245,z ≥245,求初三年级中女生比男生多的概率. 解:(1)0.192000x= ∴ 380x =(2)初三年级人数为y +z =2000-(373+377+380+370)=500, 现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:48500122000⨯= 名 (3)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z ); 由(2)知 500y z += ,且 ,y z N ∈, 基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245) 共5个∴ 5()11P A =2.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查.6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体. (Ⅰ)求该总体的平均数;(Ⅱ)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解:(Ⅰ)总体平均数为1(5678910)7.56+++++=. (Ⅱ)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(56),,(57),,(58),,(59),,(510),,(67),,(68),,(69),,(610),,(78),,(79),,(710),,(89),,(810),,(910),.共15个基本结果.事件A 包括的基本结果有:(59),,(510),,(68),,(69),,(610),,(78),,(79),.共有7个基本结果. 所以所求的概率为7()15P A =.3.现有8名奥运会志愿者,其中志愿者123A A A ,,通晓日语,123B B B ,,通晓俄语,12C C ,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求1A 被选中的概率;(Ⅱ)求1B 和1C 不全被选中的概率.解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={111112121()()()A B C A B C A B C ,,,,,,,,,122131()()A B C A B C ,,,,,,132()A B C ,,,211212221()()()A B C A B C A B C ,,,,,,,,,222()A B C ,,, 231()A B C ,,,232()A B C ,,,311312321()()()A B C A B C A B C ,,,,,,,,, 322331332()()()A B C A B C A B C ,,,,,,,,}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“1A 恰被选中”这一事件,则M ={111112121()()()A B C A B C A B C ,,,,,,,,,122131132()()()A B C A B C A B C ,,,,,,,,}事件M 由6个基本事件组成, 因而61()183P M ==. (Ⅱ)用N 表示“11B C ,不全被选中”这一事件,则其对立事件N 表示“11B C ,全被选中”这一事件,由于N ={111211311()()()A B C A B C A B C ,,,,,,,,},事件N 有3个基本事件组成, 所以31()186P N ==,由对立事件的概率公式得15()1()166P N P N =-=-=.4.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.(I )求全班人数及分数在[)90,80之间的频数;(II )估计该班的平均分数,并计算频率分布直方图中[)90,80间的矩形的高; (III )若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.解:(I )由茎叶图知,分数在[)60,50之间的频数为2,频率为,08.010008.0=⨯ 全班人数为.2508.02= …………3分所以分数在[)90,80之间的频数为42107225=---- …………5分(II )分数在[)60,50之间的总分为56+58=114;分数在[)70,60之间的总分为60×7+2+3+3+5+6+8+9=456;(III )将[)90,80之间的4个分数编号为1,2,3,4,[90,100]之间的2个分数编号为5,6,在[80,100]之间的试卷中任取两份的基本事件为: (1,2),(1,3),(1,4),(1,5),(1,6) (2,3),(2,4),(2,5),(2,6), (3,4),(3,5),(3,6) (4,5),(4,6) (5,6)共15个, …………12分 其中,至少有一个在[90,100]之间的基本事件有9个, …………14分故至少有一份分数在[90,1000]之间的频率是6.0159= …………15分5.袋子中装有编号为b a ,的2个黑球和编号为e d c ,,的3个红球,从中任意摸出2个球。
概率与数理统计习题及详解答案

概率与统计题目精选及答案1. 某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率:(1)第3次拨号才接通电话; (2)拨号不超过3次而接通电话. 解:设A 1={第i 次拨号接通电话},i =1,2,3.(1)第3次才接通电话可表示为321A A A 于是所求概率为;1018198109)(321=⨯⨯=A A A P (2)拨号不超过3次而接通电话可表示为:A 1+32121A A A A A +于是所求概率为P (A 1+32121A A A A A +)=P(A 1)+P(21A A )+P(321A A A )=.103819810991109101=⨯⨯+⨯+2. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以 P=.27431)311)(311(=⨯-- (2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD 3. (理科)摇奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望解:设此次摇奖的奖金数额为ξ元,当摇出的3个小球均标有数字2时,ξ=6;当摇出的3个小球中有2个标有数字2,1个标有数字5时,ξ=9; 当摇出的3个小球有1个标有数字2,2个标有数字5时,ξ=12 所以,157)6(31038===C C P ξ 157)9(3101228===C C C P ξ 151)12(3102218===C C C P ξ……9分 E ξ=6×539151121579157=⨯+⨯+(元)答:此次摇奖获得奖金数额的数字期望是539元 ……………………12分 4. 某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为0.9,数学为0.8,英语为0.85,问一次考试中(Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少解:分别记该生语、数、英考试成绩排名全班第一的事件为A 、B 、C ,则P (A )=0.9 P (B )=0.8,P (C )=0.85 …………………………2分(Ⅰ))()()()(C P B P A P C B A P ⋅⋅=⋅⋅=[1-P (A )]·[1-P (B )]·[1-P (C )]=(1-0.9)×(1-0.8)×(1-0.85)=0.003答:三科成绩均未获得第一名的概率是0.003………………6分(Ⅱ)P (C B A C B A C B A ⋅⋅+⋅⋅+⋅⋅)= P ()()()C B A p C B A P C B A ⋅⋅+⋅⋅+⋅⋅ =)()()()()()()()()(C P B P A P C P B P A P C P B P A P ⋅⋅+⋅⋅+⋅⋅=[1-P (A )]·P (B )·P (C )+P (A )·[1-P (B )]·P (C )+P (A )·P (B )·[1-P (C )]=(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329答:恰有一科成绩未获得第一名的概率是0.329……………………12分5. 如图,A 、B 两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.(I )设选取的三条网线由A 到B 可通过的信息总量为x ,当x ≥6时,则保证信息畅通.求线路信息畅通的概率;(II )求选取的三条网线可通过信息总量的数学期望.解:(I )411)6(,6321411361212=⋅+==∴=++=++C C C x P )6(431012034141)6()4(101202)9(,9432203)8(,842243141205)7(,7322421分分=+++=≥∴===∴=++==∴=++=++===∴=++=++x P x P x P x P (II ))8(203)5(,5221311,101)4(,4211分===++=++===++x P x P ∴线路通过信息量的数学期望 5.61019203841741620351014=⨯+⨯+⨯+⨯+⨯+⨯= (11分) 答:(I )线路信息畅通的概率是43. (II )线路通过信息量的数学期望是6.5.(12分)6. 三个元件T 1、T 2、T 3正常工作的概率分别为,43,43,21将它们中某两个元件并联后再和第三元件串联接入电路. (Ⅰ)在如图的电路中,电路不发生故障的概率是多少? (Ⅱ)三个元件连成怎样的电路,才能使电路中不发生故障的概率最大?请画出此时电路图,并说明理由. 解:记“三个元件T 1、T 2、T 3正常工作”分别为事件A 1、A 2、A 3,则.43)(,43)(,21)(321===A P A P A P (Ⅰ)不发生故障的事件为(A 2+A 3)A 1.(2分)∴不发生故障的概率为321521]41411[)()]()(1[)4)(()(])[(1321311321=⨯⨯-=⋅⋅-=⋅+=+=A P A P A P A P A A P A A A P P 分(Ⅱ)如图,此时不发生故障的概率最大.证明如下:图1中发生故障事件为(A 1+A 2)·A 3∴不发生故障概率为 3221)()]()(1[)()(])[(3213213212=⋅-=⋅+=+=A P A P A P A P A A P A A A P P )11(12分P P >∴ 图2不发生故障事件为(A 1+A 3)·A 2,同理不发生故障概率为P 3=P 2>P 1(12分)说明:漏掉图1或图2中之一扣1分7. 要制造一种机器零件,甲机床废品率为0.05,而乙机床废品率为0.1,而它们 的生产是独立的,从它们制造的产品中,分别任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中至多有一件废品的概率.解:设事件A=“从甲机床抽得的一件是废品”;B=“从乙机床抽得的一件是废品”. 则P (A )=0.05, P(B)=0.1,(1)至少有一件废品的概率)7(145.090.095.01)()(1)2)((1)(分分=⨯-=⋅-=+-=+B P A P B A P B A P(2)至多有一件废品的概率 )12(995.09.095.01.095.09.005.0)(分=⨯+⨯+⨯=⋅+⋅+⋅=B A B A B A P P8. (理科)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92.(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差 解:(1)记甲、乙分别解出此题的事件记为A 、B.设甲独立解出此题的概率为P 1,乙为P 2.(2分)则P (A )=P 1=0.6,P(B)=P 2:48.08.06.0)()()2(44.08.04.02.06.0)()()()()1(08.02.04.0)()()0()2()7(8.032.04.092.06.06.092.0)1)(1(1)(1)(2222212121的概率分布为分即则ξξξξ=⨯=⋅===⨯+⨯=+===⨯=⋅=====-+∴=-+=---=⋅-=+B P A P P B P A P B P A P P B P A P P P P P P P P P P P P B A P B A P)12(4.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222分或利用=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξE E D D E 9. (理科考生做) 某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元.设在一年内E 发生的概率为p ,为使公司收益的期望值等于a 的百分之十,公司应要求顾客交多少保险金?解:设保险公司要求顾客交x 元保险金,若以ξ 表示公司每年的收益额,则ξ是一个随机变量,其分布列为:6分因此,公司每年收益的期望值为E ξ =x (1-p )+(x -a )·p =x -ap . 8分为使公司收益的期望值等于a 的百分之十,只需E ξ =0.1a ,即x -ap =0.1a , 故可得x =(0.1+p )a .10分 即顾客交的保险金为 (0.1+p )a 时,可使公司期望获益10%a .12分 10. 有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2.(1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是: P =1-0.85-15C ×0.84×0.2≈0.263. 4分 (2)五项指标全部检验完毕,这批食品可以出厂的概率是:P 1=14C ×0.2×0.83×0.8 8分五项指标全部检验完毕,这批食品不能出厂的概率是:P 2=14C ×0.2×0.83×0.2 10分由互斥事件有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P =P 1+P 2=14C ×0.2×0.83=0.4096. 12分11. 高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛. 比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛.已知每盘比赛双方胜出的概率均为.21(Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容? (Ⅱ)高三(1)班代表队连胜两盘的概率是多少?解:(I )参加单打的队员有23A 种方法. 参加双打的队员有12C 种方法.……………………………………………………2分所以,高三(1)班出场阵容共有121223=⋅C A (种)………………………5分(II )高三(1)班代表队连胜两盘,可分为第一盘、第二盘胜或第一盘负,其余两盘胜,………………………………………………………………………7分所以,连胜两盘的概率为.832121212121=⨯⨯+⨯………………………………10分 12. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(1)摸出2个或3个白球 (2)至少摸出一个黑球.解: (Ⅰ)设摸出的4个球中有2个白球、3个白球分别为事件A 、B ,则 73)(,73)(481325482325=⋅==⋅=C C C B P C C C A P ∵A 、B 为两个互斥事件 ∴P (A+B )=P (A )+P (B )=76 即摸出的4个球中有2个或3个白球的概率为76…………6分 (Ⅱ)设摸出的4个球中全是白球为事件C ,则P (C )=1414845=C C 至少摸出一个黑球为事件C 的对立事件 其概率为14131411=-………………12分 13. 一名学生骑自行车上学,从他的家到学校的途中有6个交通岗,假设他在各交通岗遇到红灯的事件是独立的,并且概率都是31. (I )求这名学生首次遇到红灯前,已经过了两个交通岗的概率;(II )求这名学生在途中遇到红灯数ξ的期望与方差.解:(I )27431)311)(311(=--=P …………………………………………4分 (II )依题意ξ~),31,6(B ……………………………………………………7分 2316=⋅=∴ξE ……………………………………………………………9分 34)311(316=-⋅⋅=ξD ……………………………………………………12分 14. 一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是.31(1)求这位司机遇到红灯前,已经通过了两个交通岗的概率;(2)求这位司机在途中遇到红灯数ξ的期望和方差解:(1)因为这位司机第一、二个交通岗未遇到红灯,在第三个交通岗遇到红灯,所以 P=.27431)311)(311(=⨯-- (2)易知).31,6(~B ξ ∴.2316=⨯=ξE .34)311(316=-⨯⨯=ξD1、 写出下列随机试验的样本空间。
概率论与数理统计课后习题答案(非常全很详细)

概率论与数理统计复旦大学此答案非常详细非常全,可供大家在平时作业或考试前使用,预祝大家考试成功习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5 (亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5 (3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)5 9.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1) n 件是同时取出的;(2) n 件是无放回逐件取出的;(3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C mn m n M N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n m N M --种,故P (A )=C P P P mm n m n M N M n N-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n m M N M n N-- 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m n nP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为 ()C 1m n m mn M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A == 【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故 ()6/86()()7/87P AB P B A P A === 或在缩减样本空间中求,此时样本点总数为7. 6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P == 22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率. 【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-== (2) xy =<14. 1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰ 23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+- 24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有30()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯ 即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B }由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+ 2/30.980.994922/30.981/30.01⨯==⨯+⨯ 27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知 111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯ 28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯ 29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得 ()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++ 0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯ 30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==- 12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n ≤故 n ≥11至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B = 亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B =故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则 31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得30()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1) 3101100C(0.35)(0.65)0.5138k k k k p -===∑ (2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”;(3) C =“恰有两位乘客在同一层离开”;(4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型: 224619()C ()()1010P A = (2) 6个人在十层中任意六层离开,故6106P ()10P B = (3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++ (4) D=B .故 6106P ()1()110P D P B =-=- 37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率:(1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>- (3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y a x y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n --===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====. 41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A == 因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -= 由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n n n P C C =故 2211()[1C ]22n n n P A =- 44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)kkn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrrm m m n m nm n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。
统计和概率(全)(知识点习题与答案解析

统计与概率一、统计的基础知识1、统计调查的两种基本形式: 普查:对调查对象的全体进行调查;抽样调查:对调查对象的部分进行调查;总体:所要考察对象的全体;个体:总体中每一个考察的对象;样本:从总体中所抽取的一部分个体;样本容量:样本中个体的数目(不带单位);平均数:对于n 个数12,,,n x x x L ,我们把121()n x x x n+++L 叫做这n 个数的平均数; 中位数:几个数据按大小顺序排列时,处于最中间的一个数据(或是最中间两个数据的平均数)叫做中位数; 众数:一组数据中出现次数最多的那个数据; 方差:2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦L ,其中n 为样本容量,x 为样本平均数; 标准差:S ,即方差的算术平方根; 极差:一组数据中最大数据与最小数据的差称为这组数据的极差; 频数:将数据分组后落在各小组内的数据个数叫做该小组的频数; 频率:每一小组的频数与样本容量的比值叫做这一小组的频率; ★ 频数和频率的基本关系式:频率 = —————— 各小组频数的总和等于样本容量,各小组频率的总和等于1; 扇形统计图:圆表示总体,扇形表示部分,统计图反映部分占总体的百分比,每个扇形的圆心角度数=360°× 该部分占总体的百分比;会填写频数分布表,会补全频数分布直方图、频数折线图;频数 样本容量 各 基 础 统 计量频数的分布与应用 2、 3、二、概率的基础知识 必然事件:一定条件下必然会发生的事件;不可能事件:一定条件下必然不会发生的事件;2、不确定事件(随机事件):在一定条件下可能发生,也可能不发生的事件;3、概率:某件事情A发生的可能性称为这件事情的概率,记为P(A);P(必然事件)=1,P(不可能事件)=0,0<P (不确定事件)<1;★概率计算方法:P(A)= ————————————————例如注:对于两种情况时,需注意第二种情况可能发生的结果总数例:①袋子中有形状、大小相同的红球3个,白球2个,取出一个球后再取出一个球,求两个球都是白球的概率; P =110②袋子中有形状、大小相同的红球3个,白球2个,取出一个球后放回..,再取出一个球,求两个球都是白球的概率;P =4251、确定事件 事件A 发生的可能结果总数 所有事件可能发生的结果总数运用列举法(常用树状图)计算简单事件发生的概率…………概率初步单元测评一、选择题1.下列事件是必然事件的是( )A.明天天气是多云转晴B.农历十五的晚上一定能看到圆月C.打开电视机,正在播放广告D.在同一月出生的32名学生,至少有两人的生日是同一天2.下列说法中正确的是( )A.可能性很小的事件在一次实验中一定不会发生B.可能性很小的事件在一次实验中一定会发生C.可能性很小的事件在一次实验中有可能发生D.不可能事件在一次实验中也可能发生3.下列模拟掷硬币的实验不正确的是( )A.用计算器随机地取数,取奇数相当于下面朝上,取偶数相当于硬币正面朝下B.袋中装两个小球,分别标上1和2,随机地摸,摸出1表示硬币正面朝上C.在没有大小王的扑克中随机地抽一张牌,抽到红色牌表示硬币正面朝上D.将1、2、3、4、5分别写在5张纸上,并搓成团,每次随机地取一张,取到奇数号表示硬币正面朝上4.在10000张奖券中,有200张中奖,如果购买1张奖券中奖的概率是( )A.B. C.D.5.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A. B.C.D.6.一个袋子中有4个珠子,其中2个是红色,2个蓝色,除颜色外其余特征均相同,若在这个袋中任取2个珠子,都是红色的概率是( )A.B. C.D.7.有5条线段的长分别为2、4、6、8、10,从中任取三条能构成三角形的概率是( )A.B.C.D.8.一个均匀的立方体六个面上分别标有1,2,3,4,5,6,下图是这个立方体表面的展开图,抛掷这个立方体,则朝上一面的数恰好等于朝下一面的数的的概率是( ) A.B.C.D.9.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )A.B.C.D.10.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( )A.B.C.D.11.如果小明将飞镖随意投中如图所示的圆形木板,那么镖落在小圆内的概率为( )A.B.C.D.12.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖.参加这个游戏的观众有三次翻牌的机会,某观众前两次翻牌均得若干奖金,已经翻过的牌不能再翻,那么这位获奖的概率是( )A.B.C.D.二、填空题13.“抛出的蓝球会下落”,这个事件是事件.(填“确定”或“不确定”)14.10张卡片分别写有0至9十个数字,将它们放入纸箱后,任意摸出一张,则P(摸到数字2)=______,P(摸到奇数)=_______.15.一只布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个黄球和5个蓝球,每一次只摸出一只小球,观察后放回搅匀,在连续9次摸出的都是蓝球的情况下,第10次摸出黄球的概率是_______.16.有五张卡片,每张卡片上分别写有1,2,3,4,5,洗匀后从中任取一张,放回后再抽一张,两次抽到的数字和为_______的概率最大,抽到和大于8的概率为_______.17.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.18.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是,则摸出一个黄球的概率是_______.三、解答题19.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数,从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程,实验中共摸200次,其中50次摸到红球.20.一张椭圆形桌旁有六个座位,A、E、F先坐在如图所示的座位上,B、C、D三人随机坐到其他三个座位,求A与B不相邻而座的概率.21.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.请你:⑴列举(用列表或画树状图)所有可能得到的数字之积⑵求出数字之积为奇数的概率.22.请你依据右面图框中的寻宝游戏规则,探究“寻宝游戏”的奥秘:⑴用树状图表示出所有可能的寻宝情况;⑵求在寻宝游戏中胜出的概率.答案与解析一、选择题1.D2.C3.D4.A5.D6.D7.D8.A9.B 10.B 11.D 12.B二、填空题13.确定 14.;15.16.6; 17. 1818.三、解答题19.设口袋中有个白球,,口袋中大约有30个白球20.21.解:⑴用列表法来表示所有得到的数字之积⑵由上表可知,两数之积的情况有24种,所以P(数字之积为奇数)=.22.解:⑴树状图如下:⑵由⑴中的树状图可知:P(胜出)一、选择题1.下列事件属于必然事件的是( )A .打开电视,正在播放新闻B .我们班的同学将会有人成为航天员C .实数a <0,则2a <0D .新疆的冬天不下雪 2.在计算机键盘上,最常使用的是( )A.字母键B.空格键C.功能键D.退格键3.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有4个红球且摸到红球的概率为13,那么口袋中球的总数为( )A.12个 B.9个 C.6个 D.3个4.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,掷得面朝上的点数为奇数的概率为( )A.16 B.13 C.14 D.125.小明准备用6个球设计一个摸球游戏,下面四个方案中,你认为哪个不成功( )A.P (摸到白球)=21,P (摸到黑球)=21B.P (摸到白球)=21,P (摸到黑球)=31,P (摸到红球)=61C.P (摸到白球)=32,P (摸到黑球)=P (摸到红球)=31D.摸到白球、黑球、红球的概率都是316.概率为0.007的随机事件在一次试验中( )A.一定不发生B.可能发生,也可能不发生C.一定发生D.以上都不对7.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来数的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把球放回盒中,不断重复,共摸球400次,其中88次摸到黑球,估计盒中大约有白球( ) A.28个 B.30个 C.36个 D.42个8.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它都完全相同,小明通过多次试验后发现其中摸到红色、黑色的频率分别为15%和45%,则口袋中白色球的个数很可能是( ) A.6 B.16 C.18 D.249.如图1,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“自”的概率是( )A.12 B.13 C.23 D.1610.如图,一个小球从A 点沿轨道下落,在每个交叉口都有向左或向右两种机会相等的结果,小球最终到达H 点的概率是( )A.12B.14C.16D.18二、填空题图1图211.抛掷两枚分别标有1,2,3,4,5,6的正六面体骰子,写出这个试验中的一个随机事件:_______,写出这个试验中的一个必然发生的事件:_______.12.在100张奖券中,有4张中奖,小勇从中任抽1张,他中奖的概率是 .13.小强与小红两人下军棋,小强获胜的概率为46%,小红获胜的概率是30%,那么两人下一盘棋小红不输的概率是_______. 14.在4张小卡片上分别写有实数0,π,13,从中随机抽取一张卡片,抽到无理数的概率是________. 15.在元旦游园晚会上有一个闯关活动,将5张分别画有等腰梯形,圆,平行四边形,等腰三角形,菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形就可以过关,那么一次过关的概率是 .16.小红和小明在操场上做游戏,他们先在地上画了半径为2m 和3m 的同心园,如图,然后蒙上眼睛在一定距离外向圈内掷小石子,掷中阴部分小红胜,否则小明胜,未掷入圈内不算,获胜可能性大的是 .17.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个白球的概率是61,则口袋里有蓝球___个. 18.飞机进行投弹演习,已知地面上有大小相同的9个方块,如图2,其上分别标有1,2,3,4,5,6,7,8,9九年数字,则飞机投弹两次都投中9号方块的概率是_____;两次投中的号数之和是14的概率是______.三、解答题19.“元旦这一天,小明与妈妈去逛超市,他们会买东西回家.”这是一个随机事件吗?为什么? 20.并求该厂生产的电视机次品的概率.21.某鱼塘捕到100条鱼,称得总重为150千克,这些鱼大小差不多, 做好标记后放回鱼塘,在它们混入鱼群后又捕到102条大小差不多的同种鱼,称得总重仍为150千克,其中有2条带有标记的鱼.(1)鱼塘中这种鱼大约有多少千克? (2)估计这个鱼塘可产这种鱼多少千克?22.一个密码柜的密码由四个数字组成,每个数字都是0-9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将柜打开,粗心的刘芳忘了其中中间的两个数字,他一次就能打开该锁的概率是多少?23.将正面分别标有数字6,7,8,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上. (1)随机地抽取一张,求P (偶数).(2)随机地抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,能组成哪些两位数?恰好为“68”的概率是多少?24.一枚均匀的正方体骰子,六个面上分别标有数字1,2,3,4,5,6,•连续抛掷两次,朝上的数字分别是m 、n ,若把m 、n 作为点A 的横、纵坐标,那么点A (m ,n )在函数y =2x 的图像上的概率是多少?参考答案:一、1,C ;2,B ;3,A ;4,D ;5,C ;6,B ;7,A ;8,B ;9,A ;10,B.二、11,两个骰子的点数之和等于7 两个骰子的点数之和小于13;12,251;13,54%;14,12;15,53;16,小红;17,9;18,181、581. 三、19,是.可能性存在.20,0.8、0.92、0.96、0.95、0.956、0.954、0.05. 21,(1)1.5千克.(2)1021002=5100,5100×[(1500+150-2×1.5)÷(100+102-2)]=7573.5(千克).22,1100.点拨:四位数字,个位和千位上的数字已经确定,假设十位上的数字是0,则百位上的数字即有可能是0-9中的一个,要试10次,同样,假设十位上的数字是1,则百位上的数字即有可能是0-9中的一个,也要试10次,依次类推,要打开该锁需要试100次,而其中只有一次可以打开,所以一次就能打开该锁的概率是1 100.23.(1)P(偶数)=23.(2)能组成的两位数为:86,76,87,67,68,78,恰好为“68”的概率为16.24.根据题意,以(m,n)为坐标的点A共有36个,而只有(1,2),(2,4),(3,6)三个点在函数y=2x图像上,所求概率是336=112,即点A在函数y=2x图像上的概率是112。
初一数学统计与概率试题答案及解析

初一数学统计与概率试题答案及解析1.下列事件是不确定事件的是………………………………………………()A.三角形一条中线把三角形分成面积相等的两部分;B.在图形的旋转变换中,面积不会改变C.掷一枚硬币,停止后正面朝上D.抛出的石子会下落【答案】C【解析】ABD都是一定会发生的事件,而C正面朝上的概率为,为不确定时间,故选C2.某班学生在颁奖大会上得知该班获得奖励的情况如下表:-项目三好学生优秀学生干部优秀团员-已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( )- A.3项- B.4项- C.5项- D.6项【答案】B【解析】试题考查知识点:概率问题思路分析:抓住学生和班干部是不兼容的具体解答过程:如果某同学是一位班干部,那么他最多可获得的奖励可以有市级、校级优秀学生干部和市级、校级优秀团员等四项奖励;如果某同学是一位普通学生(是团员),那么他最多可获得的奖励可以有市级、校级三好学生和市级、校级优秀团员等四项奖励;如果某同学是一位普通学生(不是团员),那么他最多可获得的奖励可以有市级、校级三好学生等两项奖励;综上所述,该班获得奖励最多的一位同学可获得的奖励为4项。
试题点评:分情况讨论即可。
3.一个扇形统计图,某一部分所对应扇形的圆心角为108°,则该部分在总体中所占的百分比是.【答案】30%.【解析】因为圆心角的度数=百分比×360°,所以该部分在总体中所占有的百分比=108°÷360°=30%.【考点】扇形统计图.4.小明是2013年入学的,现就读的班级是2014-2015学年八年级2班,座位号是15号,他发现他的学号是20130215.若小英的学号是20120310,则小英现就读的班级是班,座位号是号.【答案】2015届九年级3班,10.【解析】根据学号的表示:前四位是年级, 56位是班级,七八位是座位号,可得答案.小英的学号是20120310,则小英现就读的班级是2015届九年级3班,座位号是10号,【考点】用数字表示事件5.已知样本容量为30,在频数分布直方图中共有三个小长方形,各个小长方形的高的比值是2:4:3,则第三组的频数为()A.10B.12C.9D.8【答案】A.【解析】用30乘以第三组的高所占的比例即可,即第三组的频数为30×=10.故答案选A.【考点】频数(率)分布直方图.6.某次测验后,60﹣70分这组人数占全班总人数的20%,若全班有45人,则该组的频数为.【答案】9.【解析】用总人数45乘以60﹣70分这组人数占全班总人数的百分比即可得该组的频数,即频数=45×20%=9.【考点】频数与频率.7.下列调查方式,你认为最合适的是()A.了解恒安新区每天的流动人口数,采用抽样调查方式B.要了解全市七年级学生英语单词的掌握情况,采用全面调查方式C.了解矿区居民日平均用水量,采用全面调查方式D.旅客进火车站上车前的安检,采用抽样调查方式【答案】A.【解析】选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.由此可得选项A,了解恒安新区每天的流动人口数,宜采用抽样调查方式;选项B,要了解全市七年级学生英语单词的掌握情况,宜采用抽样调查方式;选项C,了解矿区居民日平均用水量,宜采用抽样调查方式;选项D,旅客进火车站上车前的安检,宜采用全面调查方式.故答案选A.【考点】全面调查与抽样调查.8.(3分)下列抽样调查较科学的是()①小琪为了了解某市2007年的平均气温,上网查询了2007年7月份31天的气温情况②小华为了了解初中三个年级平均身高,在2014-2015学年七年级抽取了一个班的学生做调查③小智为了了解初中三个年级的平均体重,在七、八、2015届九年级各抽一个班学生进行调查④小明为了知道烤箱内的面包是否熟了,任意取出一小块品尝.A.①②B.②③C.③④D.②④【答案】C.【解析】抽样调查只考查总体中的一部分个体,因此它的优点是调查范围小,节省人力、物力、财力,但结果往往不如全面调查得到的结果准确,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.由此可得①一年中不同季节气温变化是很大的,调查时只选了一天的情况,调查的对象太少,缺乏代表性,也不符合广泛性;②要了解初中三个年级的情况,一个年级的学生不具代表性,不科学;③和④的抽样调查符合样本的代表性和广泛性的标准,是较科学的,故答案选C.【考点】全面调查与抽样调查.9.下列调查中,适合全面调查方式的是()A.调查人们的环保意识B.调查端午节期间市场上粽子的质量C.调查某班50名同学的体重D.调查某类烟花爆炸燃放安全质量【答案】C【解析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.A、人数多,不容易调查,因而适合抽样调查;B、数量较多,不易全面调查;C、数量较少,易全面调查;D、数量较多,具有破坏性,不易全面调查.【考点】全面调查与抽样调查10.下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查【答案】C.【解析】A、对重庆市中学生每天学习所用时间的调查,人数众多,适宜采用抽样调查,故此选项错误;B、对全国中学生心理健康现状的调查,人数众多,适宜采用抽样调查,故此选项错误;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查,人数不多,适宜采用全面调查,故此选项正确;D、对重庆市初中学生课外阅读量的调查,人数众多,适宜采用抽样调查,故此选项错误;故选C.【考点】全面调查与抽样调查.11.綦江县教委在推进课堂教学改革的过程中,为了切实减轻学生的课业负担,对义务教育阶段低年级学生原则上要求老师不布置课外作业,2015届九年级学生每天的课外作业总时间不得超过1小时(学生阅读、自学除外):为了了解各校情况,县教委对其中40个学校2015届九年级学生课外完成作业时间调研后进行了统计,并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)计算出学生课外完成作业时间在30~45分钟的学校对应的扇形圆心角;(2)将图中的条形图补充完整;(3)计算出学生课外完成作业时间在60~75分钟的学校占调研学校总数的百分比.【答案】(1)162°;(2)补图见解析,(3)10%.【解析】由扇形统计图可知:(1)学生课外完成作业时间在30~45分钟的学校对应的扇形圆心角为360°×45%=162°;(2)15-30段的学校个数为40×30%=12个;(3)60-75分的学校为40-12-18-6=4个,则占的百分比为×100%=10%.试题解析:(1)360°×45%=162°;(2)40×30%=12;如图;(3)40-12-18-6=4,×100%=10%.【考点】1.条形统计图;2.扇形统计图.12.(4分)一组样本数据:101,98,102,100,99的方差是()A.0B.1C.10D.2【答案】D【解析】欲求“方差”,根据题意,先求出这组数据的平均数,再利用方差公式计算.即平均数=(99+98+101+102+100)=100,方差s2=[(99﹣100)2+(98﹣100)2+(101﹣100)2+(102﹣100)2+(100﹣100)2]=2.故选D.【考点】方差13.下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园全年的游客流量,选择抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查【答案】B【解析】:A、为了了解某一品牌家具的甲醛含量,因为普查工作量大,适合抽样调查,故本选项错误;B、为了了解某公园的游客流量,选择抽样调查,故本项正确;C、为了了解神州飞船的设备零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项错误;D、为了了解一批袋装食品是否有防腐剂,选择抽样调查,故本项错误,故选:B.【考点】抽样调查和全面调查14.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A.1500B.1000C.150D.500【答案】 D【解析】大、中、小学生的人数比为2:3:5,所以3份为150人,每份50人,故总数为50×10=500人,故选D.【考点】抽样调查15.已知样本数据为1,2,3,4,5,则它的方差为()A.10B.C.2D.【答案】C.【解析】先计算出数据的平均数,然后根据方差公式计算.平均数=(1+2+3+4+5)=3,所以s2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.故选C.【考点】方差.16.(2015秋•陕西校级期末)在“国庆车展”期间,某汽车经销商推出A、B、C、D四种型号的轿车共1000辆进行展销.C型号轿车销售的成交率为50%,图①是各型号参展轿车的百分比,图②是已售出的各型号轿车的数量.(两幅统计图尚不完整)(1)参加展销的D型号轿车有多少辆?(2)请你将图②的统计图补充完整;(3)通过计算说明哪一款型号的轿车销售情况最好?【答案】(1)250辆;(2)见解析;(3)D型号的轿车销售的情况最好【解析】(1)先利用扇形统计图计算出参加展销的D型号轿车所占的百分比,然后用这个百分比乘以1000即可得到参加展销的D型号轿车的数量;(2)先利用扇形统计图得到参加展销的C型号轿车所占的百分比,则可计算出参加展销的C型号轿车的数量,然后把参加展销的C型号轿车的数量乘以50%得到售出的C型号轿车的数量,再补全条形统计图;(3)分别计算出各型号轿车的销售的成交率,然后比较它们的大小即可判断哪一款型号的轿车销售情况最好.解:(1)1000×(1﹣35%﹣20%﹣20%)=1000×25%=250(辆),所以参加展销的D型号轿车有250辆;(2)1000×20%×50%=100(辆),如图2,(3)四种轿车的成交率分别为:A:×100%=48%,B:×100%=49%,C:50%,D:×100%=52%.所以D型号的轿车销售的情况最好.【考点】条形统计图;扇形统计图.17.下列调查中,适合采用普查方式的是()A.对小北江水质情况的调查B.对市场上腊味质量情况的调查C.对某班48名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查【答案】C.【解析】A、对小北江水质情况的调查,不适合采用普查,故选项错误;B、对市场上腊味质量情况的调查,费事费力,不适合采用普查,故选项错误;C、对某班48名同学体重情况的调查,调查范围较小,比较容易做到,适合普查,故本选项正确;D、对某类烟花爆竹燃放安全情况的调查,不适合采用普查,故选项错误.故选C.【考点】全面调查与抽样调查.18.为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是()A.1500名学生是总体B.1500名学生的体重是总体C.每个学生是个体D.100名学生是所抽取的一个样本【答案】B【解析】根据题意由抽样调查的意义,可知总体是1500名学生的体重情况,每个学生的体重是个体,100名学生的体重是所抽取的一个样本.故选B【考点】抽样调查19.为了解参加运动会的2000名运动员的年龄情况,从中抽查了100•名运动员的年龄.就这个问题来说,下面说法中正确的是()A.2000名运动员是总体B.每个运动员是个体C.100名运动员是抽取的一个样本D.抽取的100名运动员的年龄是样本【答案】D【解析】2000名运动员的年龄是总体;每个运动员的年龄是个体;100名运动员的年龄是抽取的样本.【考点】总体、个体、样本的定义20.(2015•路北区一模)如图所示是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民家庭教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一样大D.无法确定哪一户大【答案】B【解析】根据条形统计图及扇形统计图分别求出甲乙两人教育支出所占的百分比,比较大小即可做出判断.解:由条形统计图可知,甲户居民全年总支出为1200+2000+1200+1600=6000(元),教育支出占总支出的百分比为×100%=20%,乙户居民教育支出占总支出的百分比为25%,则乙户居民比甲户居民教育支出占总支出的百分比大.故选B.【考点】条形统计图;扇形统计图.21.(2014•湖州)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b= .【答案】12【解析】根据折线图即可求得a、b的值,从而求得代数式的值.解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案为:12.【考点】频数(率)分布折线图.22.(2015秋•岑溪市期末)为了了解我区2014年一模考试数学学科各分数段成绩分布情况,从中抽取150名考生的一模数学成绩进行统计分析.在这个问题中,样本是指()A.150B.被抽取的150名考生C.被抽取的150名考生的一模数学成绩D.我区2014年一模考试数学成绩【答案】C【解析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解:了解我区2014年一模考试数学学科各分数段成绩分布情况,从中抽取150名考生的一模数学成绩进行统计分析.样本是被抽取的150名考生的一模数学成绩.故选:C.【考点】总体、个体、样本、样本容量.23.某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.(1)这里采用的调查方式是(填“普查”或“抽样调查”),样本容量是;(2)表中a= ,b= ,并请补全频数分布直方图;(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是.【答案】(1)抽样调查,40;(2)a=0.350;b=5;(3)45°.【解析】(1)由于前往参观的人非常多,5月中旬的一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,由此即可判断调查方式,根据已知的一组数据可以求出接受调查的总人数c;(2)总人数乘以频率即可求出b,利用所有频率之和为1即可求出a,然后就可以补全频率分布直方图;(3)用周角乘以其所在小组的频率即可求得其所在扇形的圆心角;解:(1)填抽样调查或抽查;总人数为:8÷0.200=40;(2)a=1﹣0.200﹣0.250﹣0.125﹣0.075=0.350;b=8÷0.200×0.125=5;频数分布直方图如图所示:(3)“40~50”的圆心角的度数是0.125×360°=45°.故答案为:抽样调查,40;a=0.350,b=5;45°.【考点】频数(率)分布直方图;频数(率)分布表;扇形统计图.24.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生【答案】D【解析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解:因为要了解初中的视力情况范围较大、难度较大,所以应采取抽样调查的方法比较合适,本题考查的是调查方法的选择,正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析,故只有D符合实际并具有普遍性,故选:D.【考点】全面调查与抽样调查.25.(2015•南昌)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?【答案】(1)120,30°;(2)见解析;(3)1375人.【解析】(1)用“从来不管”的问卷数除以其所占百分比求出回收的问卷总数;用“严加干涉”部分的问卷数除以问卷总数得出百分比,再乘以360°即可;(2)用问卷总数减去其他两个部分的问卷数,得到“稍加询问”的问卷数,进而补全条形统计图;(3)用“稍加询问”和“从来不管”两部分所占的百分比的和乘以1500即可得到结果.解:(1)回收的问卷数为:30÷25%=120(份),“严加干涉”部分对应扇形的圆心角度数为:×360°=30°.故答案为:120,30°;(2)“稍加询问”的问卷数为:120﹣(30+10)=80(份),补全条形统计图,如图所示:(3)根据题意得:1500×=1375(人),则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【考点】条形统计图;用样本估计总体;扇形统计图.26.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款不少于15元的有()A.40人B.32人C.20人D.12人【答案】B【解析】利用频数分布直方图可得各捐款数段的人数,然后把后两组的人数相加即可.解:由频数分布直方图得后两组的捐款不少于15元,所以捐款不少于15元的有20+12=32(人).故选B.【考点】频数(率)分布直方图.27.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A 1.5小时以上;B 1~1.5小时;C 0.5~1小时;D 0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【答案】(1)本次一共调查了200位学生;(2)画图见解析;(3)学校有150人平均每天参加体育锻炼在0.5小时以下.【解析】(1)读图可得:A类有60人,占30%即可求得总人数;(2)计算可得:“B”是100人,据此补全条形图;(3)用样本估计总体,若该校有3000名学生,则学校有3000×5%=150人平均每天参加体育锻炼在0.5小时以下.解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;本次一共调查了200位学生;(2)“B”有200﹣60﹣30﹣10=100人,画图正确;(3)用样本估计总体,每天参加体育锻炼在0.5小时以下占5%;则3000×5%=150,学校有150人平均每天参加体育锻炼在0.5小时以下.【考点】扇形统计图;用样本估计总体;条形统计图.28.在我市百万读书工程活动中,就我县中小学教师阅读状况进行了一次问卷调查,并根据调查结果绘制了教师每年阅读书籍数量的统计图(不完整),设x表示阅读书籍的数量(x为正整数,单位:本),其中A:1≤x≤3,B:4≤x≤6,C:7≤x≤9,D:x≥10.(1)本次共调查了名教师;(2)扇形统计图中扇形D的圆心角的度数为 °.【答案】(1)200;(2)72.【解析】(1)用A组的频数除以A组所占的百分比即可求得抽查的教师人数;(2)用总人数减去A、B、C组的频数即可求得D组的频数,用该组的频数除以总人数乘以周角的度数即可求得圆心角的度数.解:(1)本次共调查教师38÷19%=200(人),故答案为:200;(2)D组的频数为:200﹣38﹣74﹣48=40,扇形统计图中扇形D的圆心角的度数360°×=72°,故答案为:72.29.为了了解某校七年级期末考数学科各分数段成绩分布情况,从该校七年级抽取200名学生的期末考数学成绩进行统计分析,在这个问题中,样本是()A.200B.被抽取的200名学生C.被抽取的200名学生的期末考数学成绩D.某校七年级期末考数学成绩【答案】C【解析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解:为了了解某校七年级考数学科各分数段成绩分布情况,从中抽取200名考生的段考数学成绩进行统计分析,在这个问题中,样本是被抽取的200名考生的段考数学成绩,故选:C.30.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A.2B.4C.12D.16【答案】B【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:=,解得:x=4.∴黄球的个数为4.故选B.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x, 0 x 1, 1 f ( x) ,1 x 2, 2 其他, 0,
求 X 的分布函数 F(x). 解:x<=0 时,F(x)=0 0
四、综合题(本大题共 2 小题,每小题 12 分,共 24 分) 28.设二维随机变量(X,Y)的概率密度为
cx,0 x 1,0 y 1, f ( x, y) 其他, 0, (c=2)
(1)求常数 c;(2)求(X,Y)分别关于 X,Y 的边缘概率密度;(3)试问 X 与 Y 是否相互独立,为 什么?
29.设随机变量 X 的分布律为
.记 Y=X2,求:(1)D(X),D(Y);(2)Cov(X,Y).
五、应用题(10 分) 30. 某电 子元件的使用 寿命 X( 单 位:小时 ) 服从参数 为 的指数分布 ,其概率 密度为
2. 对于任意两事件 A,B, P( A B) =( C A. P( A) P( B) C.
B. P( A) P( B) P( AB) D. P( A) P( A) P( AB)
P( A) P( AB)
3. 设随机变量 X 的分布律为 P{ X n} a ( ) , n (1, 2,…) 则 a=(
X
i 1
100
i
10 }近似于(
B
) B. (l) D. (100)
2
10.设 x1,x2,…,xn 是来自正态总体 N( , )的样本, x ,s2 分别为样本均值和样本方差,
则
( n 1) s 2
2
2
~(
A ) B. (n)
2
A. (n-1)
C.t(n-1) D.t(n) 二、填空题(本大题共 15 小题,每小题 2 分,共 30 分) 请在每小题的空格中填上正确答案。错填、不填均无分。 11.设随机事件 A 与 B 相互独立,且 P(A)=0.4,P(B)=0.5,则 P(AB)=___0.2_____. 12.从数字 1,2, …, 10 中有放回地任取 4 个数字, 则数字 10 恰好出现两次的概率为________. 13.设随机变量 X 的分布函数为 F(x)=
得分
评卷人
四、综合题(每题 8 分,共 24 分)
1、设总体 X P , 未知.从总体抽到一样本为 X1 , X 2 ,, X n .求参数 的矩估计, 并证明所求估计为无偏估计.
2、如果一危险情况发生时,一电路闭合并发出警报,我们可以借用两个或多个开关并联以
提高可靠性, 在危险发生时这些开关每一个都应闭合, 且若至少一个开关闭合, 警报就发出. 每个开关具有 0.96 的可靠度, 如果需要有一个可靠性至少为 0.9999 的系统, 则至少需要用 多少个开关并联?(各开关闭合与否都是相互独立的). 解:设需要 n 盏灯并联。则: N=3
4、设随机变量 X 的概率密度为:
f
x
x, 0 x 1 2 x ,1 x 2 0, 其他
,求 E ( X ) , D( X )
5、设总体 X N (60, 225) ,从总体 X 中抽取一个样本容量为 100 的样本,求样本均值与总 体均值之差的绝对值大于 3 的概率.( (1.5) 0.933, (2) 0.977, (2.5) 0.994 ) 解:2(1-t(0))
得分
评卷人
一、 填空题(每小题 2 分,共 20 分)
注: 绿色 为基础题 1、设 A, B, C 为三个事件, A, B, C 都不发生可表示为: 2、若 A 与 B 互不相容,则 P( AB) = . . . .
0, x 1 0.4, 1 x 1 4、 设随机变量 X 的分布函数为:F ( x) , 则 P 1 X 3 0.6,1 x 3 5、若 X 与 Y 相互独立,则 X 与 Y 的相关系数 = . 1, x 3 6、 D( X ) 2 , D(Y ) 4 ,且 X 与 Y 相互独立,则 D(3 X Y ) . 0.3 , P AB 0.2 ,则 P AB 3、 A, B 为两事件, P A 0.5 , P B
3、某保险公司多年统计资料表明,在索赔户中,被盗索赔户占 20% ,以 X 表示在随机抽 取的 100 个索赔户中,因被盗向保险公司索赔的户数. (1)写出 X 的概率分布; (2)利用中心极限定理,求被盗索赔户不少于 14 户且不多余 30 户的概率近似值. ( (1.5) 0.933, (2) 0.977, (2.5) 0.994 )(0.927)
5.设随机变量 X 服从参数为 的泊松分布, 且满足 P{ X 1} A.1 C.3 B.2 D.4
2 P{ X 3} , 则 =( 3
C
)
6.设随机变量 X~N(2,32), (x)为标准正态分布函数,则 P{2<X≤4}=(
A
)
2 1 A. ( )3 2 2 C. 2 ( )-1 3
e x , x 0, 测得其平均使用寿命 x =1000, 求 f ( x; ) 0. 现抽取 n 个电子元件, 0, x 0,
的极大似然估计. 解:λ=
1 X
一、 单项选择题(本大题共 10 小题,每小题 2 分,共 20 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题目的 括号内。错选、多选或未选均无分。 1. 设 A、B 为随机事件,且 A B ,则 AB =( A. A B. B C. A B ) B ) D. AB
得分
评卷人
三、应用题(每题 8 分,共 16 分)
1、从自动车床加工的一批零件中随机抽取 16 件,测得各零件的长度,经计算得 x 2.125
s 2 0.000293 ,设零件长度服从正态分布,试求零件长度方差 2 的置信度为 0.95 置信区
2 2 2 2 间.( 0.025 (15) 27.488 , 0.975 (16) 28.845 , 0.975 (15) 6.262 , 0.025 (16) 6.908 )
Y P (2)不独立
-1 0.375
0 0.250
1 0.3ห้องสมุดไป่ตู้5
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.设 A,B 为随机事件,则(A-B)∪B 等于( A.A C. AB 2.设 A,B 为随机事件,B A,则( A.P(B-A)=P(B)-P(A) C.P(AB)=P(A) D D B.AB D.A∪B ) B.P(B|A)=P(B) D.P(A∪B)=P(A) C ) )
7、若 X N ( , ) , Y aX b(a 0) ,则 Y 服从
2
. .
8、二维随机变量 ( X , Y ) ~ N (1,0, 4,10,0.2) ,则随机变量 X ~ 9、若 F ( x) 为随机变量 X 的分布函数,则 lim F ( x)
x
.
10、10件产品,有2件次品,从中随机取两次,每次任取一件,作不放回抽样,则至少一件 是正品的概率为: 得分 评卷人 .
x 为 的无
i 1 i
n
偏估计,则常数 c=______1/n_________. 23.在单边假设检验中,原假设为 H0: ≤ 0,则其备择假设为 H1:_u>u0______________. 24.设总体 X 服从正态分布 N( , 2),其中 2 未知,x1,x2,…,xn 为其样本.若假设检验 问 题 为 H0 : =
3、已知 ( X , Y ) 的联合分布律为:
X
-1 0 1
Y
-1 0.125 0.125 0.125
0 0.125 0 0.125
1 0.125 0.125 0.125
(1) 求 X 与 Y 的边缘分布; (2) X 与 Y 是否独立? 解: (1) X P -1 0.375 0 0.250 1 0.375
2 、某厂生产的螺杆直径服从正态分布 N (, ) , 现从中抽取 5 件,测得直径,经计算
2
2 得 , x 21.8 , s 0.367 , 若 未 知 , 试 在 显 著 性 水 平 0.05 下 , 检 验 假 设
H0 : 21 ; H1 : 21.( t0.025 (5) 2.5706 , t0.025 (4) 2.776 )
17.设随机变量 X 服从参数为 2 的泊松分布,则 E(2X)=_____4__________.
18.设随机变量 X~N(1,4),则 D(X)=____4___________. 19.设 X 为随机变量, E(X)=0, D(X)=0.5, 则由切比雪夫不等式得 P{|X|≥1}≤____0.5_______. 20.设样本 x1, x2, …, xn 来自正态总体 N(0, 9), 其样本方差为 s2, 则 E(s2)=_____9__________. 21.设 x1,x2,…,x10 为来自总体 X 的样本,且 X~N(1,22), x 为样本均值,则 D( x )= _______________. 22.设 x1,x2,…,xn 为来自总体 X 的样本,E(X)= , 为未知参数,若 c
1 e2 x , x 0, 则 P{X 2 }=_______________. x 0, 0,
14.设随机变量 X~N(1,1),为使 X+C~N(0,l),则常数 C=___-1____________. 15.设二维随机变量(X,Y)的分布律为
则 P{Y=2}=0.5 16.设随机变量 X 的分布律为 则 E(X2)=___1____________.