7-4线性方程解的结构,齐次方程的解法解析

合集下载

线性代数第三章线性方程组第4节线性方程组解的结构

线性代数第三章线性方程组第4节线性方程组解的结构

c1
1 0
c2
0 1
k1
1 1
k2
2 2
1
0
0
1
得 c1 k2
cc12
k1 k1
2k2 2k2
c1 k2
即 c1 k2 0
cc12
k1 k1
2k2 2k2
0 0
c1 k2 0
解得 c1 k2,c2 k2,k1 k2.

k2 k 0,
则方程组(Ⅰ)、(Ⅱ)的公共解为
(kk21
(k1 k2 )
k2 k2
)0 0
解之得到
k1 k2.
当k1 k2 0时,向量
k1(0,1,1, 0)T k2 (1, 2, 2,1)T k2[(0,1,1, 0)T (1, 2, 2,1)T
满足方程组(Ⅰ).
k2 (1,1,1,1)T
并且它也是方程组(Ⅱ)的解,故它是方程组(Ⅰ)与(Ⅱ)的 公共解.
定理3.17 若0是非齐次线性方程组AX=b的一个解,则方程组 AX=b的任意一个解 都可以表示为 0 其中 是其导出组AX=0的某个解,0称为方程组
AX=b的一个特解.
例7 求线性方程组
x1 2x2 3x3 x4 3x5 5
3x1
2x1 4x2
x2 2x4 6x5 1 5x3 6x4 3x5
0 0
x1 5x2 6x3 8x4 6x5 0
的一个基础解系.并求方程组的通解.
解 方程组中方程个数小于未知量的个数,所以方程组有 无穷多解.
对方程组的系数矩阵施以初等行变换,化为简化的阶 梯形矩阵:
3 1 6 4 2
A 2
2
3 5
3
1 5 6 8 6

线性代数 齐次线性方程组解的结构(1)

线性代数 齐次线性方程组解的结构(1)

齐次线性方程组解的结构⏹齐次线性方程组解的结构⏹非齐次线性方程组解的结构齐次线性方程组解的结构⏹齐次线性方程组解的性质⏹应用举例齐次线性方程组解的结构设齐次线性方程组为00221122221211212111n mn m m n n n n x a x a x a x a x a x a x a x a x a 即 齐次线性方程组解的性质Ax齐次线性方程组解的结构性质1的和仍是解向量.齐次线性方程组的两个解向量0 Ax 齐次线性方程组解的性质设X 1,X 2为齐次线性方程组AX =0的两个解向量,则有AX 1=0,AX 2=0,证因为A (X 1+X 2)即X 1+X 2为方程组AX =0的解向量.=AX 1+AX 2=0,齐次线性方程组解的结构性质2以常数k 仍为解向量.齐次线性方程组的一个解向量乘0 Ax 注:解向量的任意线性组合仍为解向量.因为性质1和性质2可知, 所以齐次线性方程组解向量的任意线性组合仍为其解向量.齐次线性方程组解的结构性质2以常数k 仍为解向量.齐次线性方程组的一个解向量乘0 Ax 注:解向量的任意线性组合仍为解向量.齐次线性方程组解的结构1. α1, α2, …, αk 是线性无关的;2.方程组Ax =0的任意一个解向量均可由α1,定义Ax =0的一组解向量,α2, …, αk 线性表出,则称α1, α2, …, αk 是齐次方程组Ax =0的一个基础解系.设α1, α2, …, αk 是齐次线性方程组并且齐次线性方程组解的结构2.基础解系中含有多少个解向量?与R(A)有何关系?1.方程组是否总有基础解系?0 Ax齐次线性方程组解的结构定理1齐次线性方程组的系数0 Ax 并且基础解系含有n -r 个解向量.方程组有基础解系, n r A R )(矩阵A 的秩时, 齐次线性方程组解的结构齐次线性方程组解的结构(用定义构造法找出一个基础解系即可)证n r A R )(1.因为所以A 中至少有一个r 阶子式不为零,按照上节定理2的分析,并且可以化为:不妨设A 中位于左上角的r 阶子式不为零,0 Ax 方程组有无穷多解,齐次线性方程组解的结构nn r r n rn r r ,r rn n r r ,n n r r ,x x x x x c x c xx c x c x x c x c x11112112211111齐次线性方程组解的结构写成向量形式nrn n n r r ,r r ,r ,r r ,r r ,r ,n r r r x c c c x c c c x c c c x x x x x x100010001212222211112112121 说明方程组任意解均可由α1, α2,…, αn-r 线性表出.齐次线性方程组解的结构, 0,,0,0,1 , 0,,0,1,01,,0,0,0 , 2.代入得到方程的n-r 个解向量:0 Ax 逐次令自由变量为n r r x x x ,,,21齐次线性方程组解的结构100,,010,001212,2,22,121,1,21,11 rn n n r n r r r r r r r r c c c c c c c c c齐次线性方程组解的结构由1. 2. 说明:它可以看成是在n -r 个n -r 维基本单位向量:0 Ax 的一个基础解系.中的每个向量上添加r 个分量而得到的,所以线性无关.α1, α2,…, αn -r 就是方程组(1,0,…,0)T ,(0,1,…,0)T ,…,(0,0,…,1)T齐次线性方程组解的结构推论设齐次方程组m ,,,i x a n j j ij 2101 (2)(因秩为n-r ,所以任n-r 个线性无关的解向量必为基)的系数矩阵的秩为r <n ,则任意的n -r 个线性无关的解向量都是它的基础解系. 证齐次线性方程组解的结构利用此推论证明一组解向量是否是基础解系时,个即可.)(A R n 并且它们的个数是只要证明它们是线性无关的,注。

第五节 线性方程组解的结构

第五节 线性方程组解的结构

定理 n元齐次线性方程组 Amn x 0的全体解所构成的 集合S是一个向量空间,当系数矩阵的秩为r时,解空
间S的维数为n-r.
当rank( A) n时,线性方程组只有零解,故没有基础
解系(此时解空间只含有零向量,称为0维向量空间)
当rank( A) n时,线性方程组必有含n-r个向量的基
础解系 1,2 ,L ,nr ,此时线性方程组的解可以表示为 k11 k22 L knr nr
L
a12 L a22 L L
am1
am 2
L
a1n a2n L
,x
x1 x2
amn
xn
则上述方程组(1)可写成向量方程 Ax 0.
二、基础解系及其求法
1、基础解系的定义
方程组 Ax 0 解空间V的一组基称为齐次线性方程组的 一组基础解系,即解空间的某一个部分组 1,2 ,L ,s满足:
a 2 1 1 a 2 1 1
:
a 4a
2 10
1 3
0 0
b c
1 4
:
a 2 a4
1 0
0 0
c
b 3b
1
1
当a 4 0 时,b可由 1,2 ,3 线性表示,且表达式唯一. 当a 4 0 且 c 3b 1 0 时,b可由 1,2 ,3 线性表示,
但表达式不唯一;
1
2 10
,
2
1 5
,
3
1 4
,
b c
,
试问,当a,b,c 满足什么条件时
(1)b可由 1,2 ,3 线性表示,且表达式唯一?
(2)b可由 1,2 ,3 线性表示,且表达式不唯一?
(3)b不能由1,2 ,3 线性表示?

7-4高阶ODE的降阶和幂级数解法_29950336

7-4高阶ODE的降阶和幂级数解法_29950336

例:分别求方程x x 0的满足初值条件x(0) 1, x(0) 0和x(0) 0, x(0) 1的解.
解:设方程的通解为x(t ) cnt n , 代入方程得 n 0 cn cn 2 , n2 n (n 2)(n 1) n(n 1)cnt cnt 0, n2 n 0 n 0. 当x(0) 1, x(0) 0时, c0 1, c1 0, n (1) c2n , c2n1 (0) 0, x(t ) cos t; (2n)! 当x(0) 1, x(0) 0时, c0 0, c1 1, n (1) c2n1 , c2n (0) 0, x(t ) sin t. (2n)!
(n) ( n 1) x a ( t ) x an (t ) xk 1 k k y0
(3)
因为xk为(2)的解, 所以(3)中y的系数恒为0. 引入新的未知函数z y, 并在xk 0的区间上用xk 除(3)的各项, 得到n 1阶齐次线性方程
z
( n1)
1 2 kM 由v( x) 0得 v0 0.故第二宇宙速度为 2 R
2kM v0 R
2gR
11.2 10 m s .
3
地球表面重力加速度 kM g 2 9.81 m s 2 R 5 R 63 10 m
3)m次齐次方程(m为正整数): F (t , x, x,, x( n) ) 0
2阶线性ODE的常数变易法
§4.高阶ODE的降阶与幂级数解法
1.可降阶的ODE
1)方程不显含未知函数x : F (t , x( k ) , x( k 1) ,, x( n) ) 0 (k ) 令y x , 则方程降为关于y的n k阶方程 ( nk ) F (t , y, y ,, y )0 1 (4) (5) 例: 求y y 0的通解. x (4) 解:方程不显含未知函数y.令u y , 则原方程化为 du dx 1 . u u 0, u x x 于是, u y(4) cx, c . 5 3 2 y c x c x c x c4 x c5 , 逐次积分得 1 2 3

线性方程组解的结构(重要知识)

线性方程组解的结构(重要知识)

3x5
令自由变量为任意实数
x1 2k1 k2 3k3
x2 x3
k1 4k2 5k3
x2 k1, x4 k2 , x5 k3
x4
k2
x5
k3
2
1
3
说明:
1
0ห้องสมุดไป่ตู้
0
1.基础解系不惟一
x
k1
0 0
k2
4 1
k3
-5 0
2.但所含向量的 个数唯一且等于n-R(A)
1
2
3
2
3 2
,2,
5 2
,3
T
0
通解为:X 2,3,4,5T k3,4,5,6T ,k R
-13-
例6
x
1
x1
x2 x2
x3 x3
x4 0, 3 x4 1,
x1 x2 2 x3 3 x4 1 2.

A~
1 1
1 1
1 1
1 3
0 1 1 0 1 1 2 1 0 0 1 2 1 2,
2.如果当非齐次线性方程组Ax 有无穷多解时,
其通解的结构如何?如何写出其向量形式的通解?
-2-
§4.1 线性方程组解的存在性定理
非齐次方程组解的判别定理
对于非齐次方程组 Amn x b(b 0)
(1) 有解 r( A) r( A~) 无解 r( A) r( A~)
(2) 有惟一解 r( A) r( A~) n (3) 有无限多解 r( A) r( A~) n 齐次方程组解的判别定理
(A)AX 0仅有零解,则AX b有唯一解
(B)AX 0有非零解,则AX b有无穷多解 (C)AX b有无穷多解,则AX 0仅有零解

第11讲齐次线性方程组解的结构

第11讲齐次线性方程组解的结构

(m n)
am1x1 am2 x2 amnxn 0。
它的矩阵形式为
AX 0 ,
其中,
a11 a12
A
a21
a22
am1 am2
a1n
x1
a2n
,
amn
X
xxn2

也可用向量来表示齐次线性方程组。
a11
a12
a1n

1 aam211 , 2 aam222 , , n aam2nn ,
四 解线性方程组的一个应用
本节讨论矩阵的特征值与特征向量
定义 4.1
设 A Rnn , 如果存在数 及 n 维非零向量,使得:
A .
(4.1)
则称 为矩阵 A 的一个特征值, 而 称为矩阵 A 相应 于特征值 的一个特征向量。
由于
A ( A E) 0.
为矩阵 A的一个特征值的充要条件是齐次方程组
2 (1, 1, 0, 1, 0 )T 。
齐次线性方程组的通解
若齐次线性方程组(2*) 的基础解系为
1, 2 , , nr
r(A) r
则(2*) 的通解为
C11 C22 Cnrnr ,
其中, Ci 为任意常数 ( i 1, 2, , n r )。
例 求齐次线性方程组的通解: x1 x2 2x3 2x4 7x5 0 , 2x1 3x2 4x3 5x4 0 , 3x1 5x2 6x3 8x4 0。
就是说 , 方程组(2*) 的任何一个解均可由方程组 (3)中所定义
的 1, 2, , nr 线性表出。于是称方程组(3)中的这一组向
量为齐次线性方程组(2*) 的基础解系。
齐次线性方程组的基础解系

齐次线性方程组解的结构

齐次线性方程组解的结构

crn kn 1kr 2 0kn
kn 0kr 1 0kr 2 1kn
于是
k1
k2
M
kr 1 1
kr 22
L
knnr
kn
因此方程组的每一个解向量,都可以由这nr个解向量
ξ1 ,ξ2 ,L ,ξnr 线性表示,
所以
ξ1 ,ξ2 ,L ,ξnr是方程组的基础解系.
a21 x1
a22
x2
L LL
a2n xn
b2 ,
am1x1 am2 x2 L amn xn bm
(2)
称为非齐次线性方程组(
b1 ,b2 ,L ,bm 不全为0).
如果把它的常数项都换成0,就得到相应的齐次线性方程组,称它为非齐次线性方程组(2)的导出方程组, 简称导出组.
定理 3 (非齐次线性方程组解的结构定理)如果非齐次线性方程组有 解,那么它的一个解与其导出方程组的解之和是非齐次线性方 程组的一个解,非齐次线性方程组的任意解都可以写成它的一 个特解与其导出方程组的解之和。
11

x
1
21
称为方程组(1) 的解向量,它也是向量方程的解.
n1
Ax 0.
就是该显方然程齐组次的线一性个方解程,组这总个是解有叫解做,零解,若方程组还x有1其他解0,, x那2么这些0解,L就叫,做x非n零解.0
方程组 Ax 有非0零解的充要条件是
齐次线性方程组的解有如下的性质

LL
xr cr ,r1xr 1 L crn xn .
xr1 1 0 0

xr 2
0, 1,
, 0,
xn
0 0
1
可得 从而得到(1)的n-r个解

线性方程组解的结构

线性方程组解的结构

xr
1
br 1 1
0
xr
2
br 2 0
1
L
xn
br ,nr 0
0
(4)
M
xn
M
0
M
0
M
1
令(4)为 k11 k22 L knr nr
(5)
易知:1,2 ,L ,nr 为齐次线性方程组(1)的一个
基础解系,(5)为方程组 Ax 0的通解.
x1 6 x2 4 x3 x4 4 x5 0
- 1 2 3
- 7 2 1
1
4 1

2
4 0

0
2
基础解系:
0
1
二、非齐次线性方程组解的性质
非齐次线性方程组
Ax b. (1)
与非齐次方程组 Ax b 对应的齐次方程组 Ax 0 称为该非齐次方程组的导出组.
(2)当 1时,方程组的矩阵为
1 2 2 1 0 0
A
2 3
1 1
1 1
:
0 0
1 0
1 0
所以 R A 2
k1, k2 , , ks ,有k11 k22 kss 也是 Ax 的0解.
齐次线性方程组基础解系的求法
若A的秩为r,则(1)的全部解不妨写成:
x1 b11 xr1 b12 xr2 L b1,nr xn
x2
b21 xr1 b22 xr2 L
b2,nr xn
M
xr
br1 xr1 br 2 xr2 L
br ,nr xn
xr1 xr1
(3)
xr
2
xr2
M
xn
xn
其中 xr1, xr2 ,L , xn 是任意实数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习: 一阶线性方程
y e 常数变易法
y P ( x ) y Q( x )
P ( x ) dx P ( x ) dx [ Q( x )e dx C ]
y Ce
P ( x ) dx
e
P ( x ) dx
P ( x ) dx Q( x )e dx
证毕
说明:若求 y p( x ) y q( x ) y f ( x ) 的通解
只需求它的一个特解 y * 和 y p( x ) y q( x ) y 0
的两个线性无关的特解 y1 , y 2 . 则 y p( x ) y q( x ) y f ( x ) 的通解为
y1 e x , y 2 e x 例如 y y 0的两个特解为: ex x e2x 常 数 线性无关 e
y C1 e C 2 e 就是y y 0的通解.
x x
例如 y y 0的两个特解为: y1 cos x, y2 sin x,
y1 e , y 2 e 又知y y 0的两个特解为:
x
y C1 e C 2 e 就是y y 0的通解.
x x
个函数 , 定义: 设y1 ( x), y2 ( x)是定义在某区间上的两
y1 ( x ) . 若 k (常 数), 则称y1 ( x ),y 2 ( x )线性无关 y2 ( x) y1 ( x ) 若 k (常 数), 则称y1 ( x ),y 2 ( x )线性相关 . y2 ( x)
的一个特解 , Y 是与(2) 对应的齐次方程 (1) 的通 解, 那么 y Y y * 是二阶非齐次线性微分方程(2) 的通解.
证明 y * 是(2)的解
( y*) p( x )( y*) q( x ) y* f ( x ) Y是(1)的解 Y pY qY 0 将y y * Y代入( 2)的左边,得
二、二阶线性微分方程的解的结构
1.二阶齐次方程解的结构:
y p( x ) y q( x ) y 0
(1)
定理 1 如果函数 y1 ( x ) 与 y2 ( x ) 是方程(1)的两个 解,那末 y C1 y1 C 2 y2 也是(1)的解.(C1 , C 2 是常 y1 y 2 , 2 y1 , 2iy1 数)
y2 且 tan x 常数, y1
y C1 cos x C 2 sin x .
2.二阶非齐次线性方程的解的结构:
ቤተ መጻሕፍቲ ባይዱ
定理 3
设 y * 是二阶非齐次线性方程
y y) (x f( x )f ( x ) yP ( px ()x y Q q)(yx )y
( 2 ) ( 2)
p( x ), q( x ), f ( x )均为已知函数 , f ( x)叫自由项,
当 f ( x ) 0时, 二阶线性齐次微分方程 当 f ( x ) 0时,二阶线性非齐次微分方程
n阶线性微分方程
y ( n ) P1 ( x ) y ( n1) Pn1 ( x ) y Pn ( x ) y f ( x ).
y C1 y1 C 2 y 2 y * .
定理 4
* *
设非齐次方程(2) 的右端 f ( x ) 是几个函
(( xx )y x()x y) )( xf ( x) 数之和, 如 y Q yPp )y (q yf f1 )2 f 2 ( x) 1( x
例如 当x ( , )时, y1 e x,y2 e x线性无关
ex x e2x 常 数 e x x y1 e , y2 2e 线性相关 ex 1 x 常数 2 2e
定理 2:如果 y1 ( x )与 y 2 ( x ) 是方程(1)的两个线 性无关的特解, 那么 y C1 y1 C 2 y2 就是方程(1) 的通解.
p( y * Y ) q( y * Y ) 左边 (y * Y) (y * Y ) p( y * Y ) q( y * Y )
(y * py * qy*) (Y pY qY )
f ( x ) 0 f ( x ) 右边
证明 由于y1 , y 2是(1)的解 解的线性组合
p( x ) y1 q( x ) y1 0 则y1 y 2 p( x ) y 2 q( x ) y 2 0 将y C1 y1 C 2 y2 代入( 1)的左边,得
左边 (C1 y1 C 2 y 2 ) p(C1 y1 C 2 y 2 ) q(C1 y1 C 2 y 2 ) C 2 y (C1 y1 2 ) p(C1 y1 C 2 y 2 ) q(C1 y1 C 2 y 2 )
对应齐次 方程通解
非齐次方程特解
二阶微分方程 F ( x , y, y , y ) 0,
y f ( x, y, y ).
§6-5 二阶线性微分方程解的结构
一.二阶线性微分方程的定义 2 d y dy p( x ) q( x ) y f ( x ) 形如: 2 dx dx 特点: 是关于 y, y , y 的一次方程 .
py1 qy1 ) C 2 ( y C1 ( y1 2 py 2 qy2 )
0 右边
证毕
x x
问题: y C1 y1 C 2 y2一定是通解吗?
y1 e , y 2 2e 例如 y y 0的两个特解为:
x
而y C1 e x C 2 2e x (C1 2C 2 )e x 就不是通解 .
相关文档
最新文档