浅谈构建物理模型在解题中的作用
高中物理教学中物理模型的作用分析何佳梦

高中物理教学中物理模型的作用分析何佳梦发布时间:2022-10-06T04:30:38.133Z 来源:《比较教育研究》2022年8月作者:何佳梦[导读] 在我国目前的教学体系中,高中阶段的物理知识在难度方面有力进一步提升。
因此,学生在学习过程中,就面对了巨大的学习压力。
受到现代化教学背景的影响,教师在教学内容、方式等方面进行积极改革。
在物理教学课堂中,教师通过对模型的利用,来帮助学生对知识进行更加深入的了解、分析,使学生能够对其进行轻松、深刻的掌握。
何佳梦四川省广汉中学四川广汉 618300【摘要】在我国目前的教学体系中,高中阶段的物理知识在难度方面有力进一步提升。
因此,学生在学习过程中,就面对了巨大的学习压力。
受到现代化教学背景的影响,教师在教学内容、方式等方面进行积极改革。
在物理教学课堂中,教师通过对模型的利用,来帮助学生对知识进行更加深入的了解、分析,使学生能够对其进行轻松、深刻的掌握。
【关键词】高中物理;物理模型;作用分析中图分类号:G652.2 文献标识码:A 文章编号:ISSN1003-7667(2022)8-052-01一、物理模型,是连接师生之间的桥梁作为一种现代化的教学辅助工具,教师在开展高中阶段的物理教学时,通过对模型进行运用,能够对课本知识充分的展现在学生面前。
目前,在高中物理教学课堂上,教师通过对这一方式进行运用,能够对复杂的物理知识进行有效简化。
这样,学生在学习、理解以及掌握的过程中就会更加容易。
模型作为知识的一种全新载体,在实际的使用过程中能够为学生带来全新的学习体验。
在整个教学期间,教师通过对模型的运用,能够将知识更加清晰、有序的呈现在学生的面前。
这样,学生就能够亲自去对其进行观察、感受,进而通过对知识的触摸来对其进行进一步的掌握。
在现代化的教学课堂上,模型已经成为了一种常用的教学辅助工具,通过对其进行充分运用,教师可以将知识的清晰的传授给学生。
而学生通过对模型的接触,也能够对知识进行更深层次的理解。
高中物理教学中物理模型的作用探讨

高中物理教学中物理模型的作用探讨李㊀高(江苏省如东县掘港高级中学㊀226400)摘㊀要:在高中物理的学习过程中ꎬ从最近几年的高考物理题可以看出ꎬ高考物理正在走向综合化㊁抽象化的趋势.这导致很多学生在看到题目之后就望而生畏ꎬ不知从何下手ꎬ找不到正确的思考角度.实际上ꎬ再综合㊁复杂的物理题目都是基于一些固定㊁简单的物理模型融合㊁转变而来的ꎬ因此学生如果能够牢牢掌握高中物理中一些经典的物理模型ꎬ并学会融会贯通㊁综合运用ꎬ那么学生的物理成绩自然就提高了.关键词:高中物理ꎻ课堂教学ꎻ物理模型ꎻ策略方法中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2019)12-0043-02㊀㊀随着新课标的提出ꎬ学生在学习的过程中不仅要注重提高自己的成绩ꎬ而且要有意识地培养自己的逻辑思维能力和自主探究能力.高中物理是一门基于实验操作的学科ꎬ书本中大部分的概念都比较抽象ꎬ如果仅靠教师在讲台上讲是无法取得很好的学习效果的.为此ꎬ教师可以在日常教学中加强学生总结和运用物理模型的意识ꎬ在平时的学习中逐渐积累一些经典的物理过程及其规律特征.接下来ꎬ笔者将就高中物理教学中运用物理模型进行学习展开详细论述.㊀㊀一㊁基于物理课程掌握模型类别在高中物理课程中ꎬ想要让学生取得融会贯通的学习效果ꎬ我们首先要指导学生对课本上学习的内容进行归纳ꎬ总结出一些常用的物理模型.物理模型是建立在物理实验结果之上的ꎬ物理模型的建立往往是比较理想化㊁简化了的ꎬ可以将生活中的客观物体转化为书本上的物理规律和物理概念.根据物理过程中的主要要素ꎬ可以将物理模型分为以下几类:(1)对象模型:在对象模型中ꎬ学生研究的主要是物质的本质状态ꎬ而忽略其他的次要因素ꎬ这是一种理想化的模型ꎬ例如电子㊁点电荷㊁电磁场㊁磁感线㊁电阻㊁弹簧㊁轻杆㊁单摆等等.(2)状态模型:在状态模型中ꎬ学生关注的应当主要是物体的理想化状态ꎬ例如物体的平衡状态以及气体的理想状态等ꎬ这也是一种忽略次要因素的理想化模型.(3)过程模型:在过程模型中ꎬ学生主要研究的是物体的运动变化状态ꎬ例如物体的匀速直线运动㊁变速直线运动㊁抛物线运动以及完全弹性碰撞等.在过程模型中ꎬ阻力㊁微小的能量损失往往被忽略不计.(4)条件模型:在条件模型下ꎬ学生可以将实际问题中的一些现有条件进行理想化ꎬ从而更加简便地解决问题ꎬ例如题目中一些常见的条件:理想电表㊁磁场区域无穷大㊁光滑的斜面㊁不计空气阻力㊁路线足够长等ꎬ这些简化后的条件能够让学生的解题更加简单.㊀㊀二㊁借助物理学史学习模型知识纵观整个物理学史ꎬ物理的发展过程同时也是物理模型发展和扩充的过程.在整个物理的发展过程中ꎬ出现了伽利略理想化的斜面㊁牛顿的万有引力定律模型以及波尔和卢瑟福的原子模型ꎬ这些都是一些非常经典的物理模型.在高中物理的课堂教学中加入对物理学史的介绍和学习ꎬ不仅可以让学生了解这些常用的物理模型发展和建构的过程ꎬ而且还能够让学生在此过程中体会前人们科学㊁严谨的研究精神.在物理学上ꎬ人们在解决实际的物理问题时ꎬ可以采用理想化法㊁抽象法㊁等效替代法㊁归纳法以及类比法等方法ꎬ根据研究物体的主要特点来构建合适的物理模型ꎬ从而能够切实反映出问题的本质.例如ꎬ伽利略的自由落体实验就是一个过程模型ꎬ教师可以通过向学生仔细介绍伽利略的这一实验来让学生更好地理解过程模型这一概念.伽利略在自由落体实验中通过羽毛和球体的下落否认了 较重的物体的下落速度大于较轻的下落物体 这一结论ꎬ随后他提出自己的两种假设ꎬ一个是自由落体的物体的速度与下落的距离成正比ꎬ一个是自由落体的物体的速度与时间成正比ꎬ随后他通过实验否认了第一种猜想ꎬ并通过数学推理的方法得出了 做自由落体运动的物体的速度与时间的平方成正比 这一经典结论.在详细㊁深入地学习了物理学史中一些经典物理模型的推导和建立之后ꎬ学生自然就对模型的建立有了更加深入的认识.㊀㊀三㊁借助课堂对话加强模型意识在高中物理课堂教学中ꎬ想要吸引学生的学习兴趣ꎬ获得更好的课堂教学效率ꎬ教师一定要善于引导学生的思维ꎬ从而产生有效对话ꎬ让课堂的氛围变得更加轻松灵动.从一些习题和考试中可以体现出来ꎬ学生虽然学习了一些物理模型ꎬ但在实际的运用过程中还是不具备充足的模型意识.在学生学习了一些物理模型的基础之上ꎬ教师可以开展模型教学ꎬ引导学生将新接触的模型和已经学过的模型进行对比㊁总结ꎬ帮助学生更好的从实际问题中找到已有的物理模型或者归纳总结成新的物理模型.在实际的课堂教学中ꎬ教师要利用好手中的课本ꎬ正确地引导学生开展有效对话ꎬ培养学生运用物理模型的意识.在课堂中ꎬ这种对话不仅可以存在于教师和学生之间ꎬ而且还可以存在于学生和学生之间.例如在学习电磁场这部分内容时ꎬ教师可以采用对话的方式来加强学生的模型意识.一般在学习电场的概念时ꎬ往往是由教师向小学生讲授电场这一模型:在电场中ꎬ每一根电场线的切线所指的方向就是该点的电场方向ꎻ电场线密集ꎬ那么电场强度越强ꎻ电场线越稀疏ꎬ电场强度就弱.然而这些概念往往较为抽象ꎬ不易于学生理解和掌握.教师可以向学生提问: 正点电荷的电场是什么样的? 学生通过自己动手实践发现正点电荷的电场线是向外发散的.随后教师可以趁热打铁ꎬ问学生一些更加深入的问题: 异种点电荷所构成的电场具有怎样的特点? 通过这些问题激发学生动手操作和探究的欲望ꎬ因此在交流时也会更加有效ꎬ这对于学生今后利用物理模型进行解题或者解决生活中的实际问题是非常有帮助的.总之ꎬ高中物理的知识点虽然抽象㊁难懂ꎬ但这些知识点都是从生活中的物理现象中推导得出的.因此ꎬ学生在学习物理知识时不能是死记硬背ꎬ而是应当理解各个物理概念在生活中的实际意义ꎬ并且能够灵活运用这些物理概念构建恰当的物理模型进而解决生活中的实际问题ꎬ学生不仅能够学到知识ꎬ而且还能够培养自身探究问题的能力.㊀㊀参考文献:[1]刘向辉.高中物理模型教学方法和策略探讨[J].成才之路ꎬ2018(29):19.[责任编辑:闫久毅]让高中物理 简单而不简约丁东进(江苏省前黄高级中学国际分校㊀213161)摘㊀要:高中物理点多㊁面广㊁题如海ꎬ物理难学成为大多数高中生共同的感受.本文结合教学实践和经验体会ꎬ从教学引入ꎬ难点突破ꎬ知识迁移ꎬ生活化教学四个方面提出如何对高中物理课堂进行 艺术加工 ꎬ以求实现物理教学的 通俗化 ꎬ让学生易于接受和掌握.关键词:高中物理ꎻ课堂教学ꎻ技巧中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2019)12-0044-02㊀㊀高中物理作为一门自然学科ꎬ与实际生活联系密不可分.但对许多高中生来说却是难以理解和掌握ꎬ甚至对一些同学而言到了 谈理色变 的程度.虽然许多中学物理教师在新课改下做出了许多努力和尝试ꎬ但 物理难 的 事实 仍然困扰着广大师生.因此ꎬ随着新课改的不断深入ꎬ作为一名高中物理教师ꎬ不能仅仅是知识的驾驭者ꎬ更要为学生竖好梯子ꎬ使其转变课堂角色ꎬ变 要我学 为 我想学 再到 我要学 .这需要教师在教学中通过精心的设计ꎬ让学生自然地去开动脑筋ꎬ主动地投入到课堂中去ꎬ更好地落实生本教育.作为引玉之砖ꎬ本文浅谈了个人在高中物理课堂教学中的几点尝试和体会:㊀㊀一㊁将物理知识 打比方 举例子很多物理知识对学生来说既抽象ꎬ又难懂.若单是一味地强调物理含义和意义ꎬ就会让学生觉得乏味和枯燥ꎬ没有吸引力ꎬ无法激发学生的兴趣ꎬ而且容易遗忘和出错ꎬ这种情况在教学中很普遍.如果此时转化一下教学思路ꎬ将一个物理问题类比为一个生活场景ꎬ或实际问题ꎬ学生们就会感到生动有趣ꎬ且记忆深刻.例如ꎬ在讲变加速直线运动的时候ꎬ学生对于加速度减小而速度却在增加的加速直线运动不能理解.这个问题对于大部分学生。
物理模型在解题中的应用

物理模型在解题中的应用罗建内容摘要:高考命题近年来更加侧重于对考生应用能力及创新能力的考查,大量实践应用型、信息给予型和估算型试题频繁出现。
如何从实际情景中迅速、准确地构建物理模型,借助物理规律解决实际问题,是考查考生思维品质的一个重要因素,本文采撷几例予以归纳,说明如何构建物理模型来快速解答物理习题。
关键词:物理模型;建模;实际问题;物理习题生活中的物理问题往往十分复杂,为了便于研究分析常常采用简化的方法将这些复杂问题进行科学化的抽象处理。
在这个过程中,用一种能反映原物质本质特征的理想结构去描述实际的物理过程、现象或事物,而这种理想结构就称之为物理模型。
高中物理模型可以分为几大类:一是对象模型,如质点、点电荷、单摆、理想变压器、纯电阻、点光源等;二是条件模型,如光滑、轻质、均匀分布、缓慢、不可伸长等;三是过程模型,如匀速直线运动、匀变速直线运动、匀速圆周运动、简谐运动、弹性碰撞等。
物理模型是科学研究的理论依据,是一种重要的科学方法,也是物理习题中常常需要用到的一种重要的解题手段。
物理习题中的实际问题多数是密切联系生活、生产和科学技术的问题,这类问题大多没经过加工处理成纯粹的物理模型,这要求我们在熟悉上述模型的基础上,通过一些方法来构建实际问题中的物理模型。
如果我们能够在解决物理问题时构建恰当的物理模型,将问题简化,能大大提高解决问题的效率。
当然物理模型的构建并非是随意的,而是要遵守一定的原则。
首先,物理模型要反映研究对象的本质特征,认真把握住研究对象的本质特征,做出正确的抽象。
其次,要抓住主要因素,事物之间的联系很复杂,应该抓住其主要联系来建立模型。
一、对于简单的问题,可直接构建物理模型对于涉及到的知识点不多,过程比较简单,能够一眼看穿的问题,提取需要求解的物理量,直接用相应的物理模型按相应规律列方程求解。
例1(2009,浙江卷)某校物理兴趣小组决定举行遥控赛车比赛。
比赛路径如图一所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越图一过壕沟。
物理建模在解题中应用论文

浅谈物理建模在解题中的应用摘要:研究物理问题有两条重要途径:一是实验,二是理论。
在做理论分析时,往往需要从造模型着手.物理学中所总结出来的反映物质运动变化的客观规律,实质上都是物理模型的运动变化规律。
关键词:物理模型;建模;物理过程;解题方法研究物理问题有两条重要途径:一是实验,二是理论。
在做理论分析时,往往需要从造模型着手,物理学中所总结出来的反映物质运动变化的客观规律,实质上都是物理模型的运动变化规律。
所谓物理模型,就是指将现实中表面的、次要的条件舍去,将复杂具体的物理现象用简单抽象的、理想化的模型来代替。
为了让问题能变得清晰、自然、有条理,我们常常忽略某些次要因素,抓住主要因素各个击破,方法是利用建模思想,寻找模型,明确分析思路。
这就是“建模—规律—处理”的分析解决问题的思路。
物理模型是在抓住主要因素忽略次要因素的基础上建立起来的,能具体、形象、生动、直观、深刻地反映出事物的本质和特征。
我们遇到许多的新模型,常常是在旧模型的基础上演变而来的,对于与原模型有相近的运动状态或相似的物理现象,可以根据已熟悉的事实经验,找到彼此间的联系,将问题简化。
例1.水在1个标准大气压下沸腾时,汽化热为l=2264 j/g,这时质量m=1 g的水变为水蒸气,其体积由v1=1.043 cm3变为v2=1676 cm3,在该过程中吸收的热量是多少?水蒸气对外界所做的功是多少?增加的内能是多少?解此题的关键是确定物体的初末状态,这也是学生最困惑的问题。
大家都知道是体积变大,对外做功,并且是克服大气压力做功,由w=fs来求解,但是s如何来求?气体是向周围立体空间膨胀的,是球型?还是立方体?球型不好求s,立方体应怎样建立模型?如下图建立模型求解易得:这一模型保持了横截面积不变.解析:1 g水汽化吸热q=ml=1×2264 j=2264 j。
水汽在1标准大气压下膨胀对外做功w=p0sδl=p0δv=p0(v2-v1)=1.013×105×(1676-1.043)×10-6 j≈170 j。
谈物理模型在教学中的作用

谈物理模型在教学中的作用物理是一门研究物质运动规律以及物质与能量的相互转化关系的科学。
在物理学的学习过程中,物理模型作为重要的工具,扮演了重要的角色。
物理模型是对真实物体、现象或者系统进行抽象和简化后得到的一种描述,它可以帮助学生理解物理原理、预测实验现象,并培养学生的实验设计和问题解决的能力。
本文将深入探讨物理模型在教学中的作用。
首先,物理模型能够帮助学生更好地理解物理原理。
物理原理往往比较抽象和难以直观理解,而物理模型可以将这些抽象的原理转化为具体的形象,使学生能够通过观察和亲身实践来理解相关概念。
例如,当教授牛顿第三定律时,我们可以使用弹簧和小球的模型来说明力的相互作用,以及等大反作用力的产生。
学生通过实际操作模型,能够更加清楚地认识到作用力与反作用力的相等和方向相反的关系,从而更深入地理解这一物理原理。
其次,物理模型可以帮助学生预测和解释实验现象。
物理学实验是学习物理的重要环节,但有时实验现象并不总是与学生预期的相符合。
利用物理模型,学生可以对实验结果进行预测,并解释其中的原因。
例如,在学习光的折射定律时,我们可以使用平面镜和光线模型来预测光线通过不同介质时的折射角度。
通过物理模型的使用,学生可以对实验进行预期,并逐步提升自己对物理规律的理解和解释能力。
第三,物理模型培养了学生的实验设计能力。
在学习物理的过程中,学生需要进行实验来验证理论,而设计一个合适的实验则需要一定的实验设计能力。
通过使用物理模型,学生可以培养实验设计的能力。
例如,当教授电路的学习时,我们可以使用电子元器件的模型来帮助学生理解电流、电压的变化规律,并设计一些简单的电路实验来验证相关理论。
通过模型实验的设计,学生可以掌握实验方法和步骤,培养实验设计和问题解决的能力。
最后,物理模型能够提高学生的创新思维和问题解决能力。
在真实的物理系统中,有些参数可能影响到整个系统的行为,但不易在实验中改变。
而通过物理模型,学生可以灵活地调整不同参数,观察和分析结果的变化,培养出创新思维和问题解决的能力。
浅谈“物理模型”的作用及其建立

浅谈“物理模型"的作用及其建立布鲁纳的发现法学习理论认为:“认识是一个过程,而不是一种产品”。
探究式学习法是学习物理的一种重要的认知方法;它以学生的需要为出发点,以问题为载体,从学科领域或现实社会生话中选择和确定研究主题,创设类似于科学的情境,通过学生自主、独立地发现问题、实验探究、操作、调查、信息搜集与处理、表达与交流等探索活动,获得知识技能,发展情感与态度,培养探索精神和创新能力的学习方式.在这探究式学习的过程中,最难的一点在于如何创设科学的物理情境;这个科学物理情境的创建过程就是“物理模型”的建立过程.所以说要想学好中学物理,就要学会对生活中的现象多观察,多思考,并能从中学会如何建立“物理模型”。
一、什么是“物理模型”自然界中任何事物与其他许多事物都有这千丝万缕的联系,并处在不断的变化当中。
面对复杂多边的问题,人们在着手研究时,总是遵循这样一条重要的法则,即从简到繁,从易到难,循序渐进,逐次深入;基于这样一种思维,人们创建了“物理模型”,物理模型是指:物理学所分析的、研究的问题往往很复杂,为了便于着手分析与研究,物理学中常采用“简化"的方法,对实际问题进行科学抽象处理,用一种能反应原物本质的理想物理(过程)或遐想结构,去描述实际的事物(过程),这种理想物质(过程)或假象结构称之为“物理模型”。
物理模型的建立是人们认识和把握自然的一个典范,是前人的一种创举。
二、物理模型的种类和特点1、中学中常见物理模型的种类(1)研究对象理想化模型,例如:质点、刚体、理想气体、恒压电源等;(2)运动变化过程中理想化模型,如:“自由落体运动"、“简谐运动”、“热平衡方程"等等。
这些都是把复杂的物理过程理想化了的“物理模型"。
2、物理模型的特点(1)物理模型是形象性和抽象性的统一,物理模型的建立是舍弃次要因素,把握主要因素,化复杂为简单,完成由现象到本质,由具体到抽象的过程,而模型的本身又具有直观形象的特点。
物理模型在高中物理解题中的作用

物理模型在高中物理解题中的作用作者:李宇晨来源:《文理导航》2016年第05期【摘要】模型的建立对高中物理很多题目的求解至关重要。
例如理想模型,有很多题都需要我们将理想模型与实际问题联系起来。
所谓的联系就是将实际问题进行简化,保留其中的主要因素而忽略次要因素,抽象成一个容易求解的物理模型,熟练的运用模型可以大幅度提高解题效率。
但现在人们大都将高中物理学习的重点放在了解背过的一个个物理模型,而忽略了物理模型的使用技巧。
我们在这篇文章中用解高考物理题的方式,系统性的讲解怎样更好的运用物理模型解题,旨在对物理模型在高中物理解题中的作用做进一步的探究。
【关键词】物理模型;理想模型;等效模型高中学生经常会遇到这样的情况:在解物理题时,很顺利的把题解完了,但看到答案以后发现自己和答案相差甚远。
这种情况一般不是计算的问题,而是对题中受力或运动过程等的分析出错。
究其原因是不能熟练运用物理模型和解题技巧。
为了更熟练的运用模型解题,本文首先对高中物理常见的模型进行分类,并讨论它们在解题中的具体作用,希望能给大家一些启发和思考。
一、模型分类1.理想模型理想模型是高中物理模型中最常见最重要的模型,在理想模型中我们会忽略一些次要因素,将研究对象简化。
比如质点、点电荷、光滑斜面、匀强电磁场、自由落体、完全弹性碰撞、各种匀速运动以及题中暗示的理想条件等。
理想模型还可以进一步细分为实物模型和过程模型。
下面用几个简单的例子对这类模型的建立和运用进行说明。
(1)匀速圆周运动质点在以某点为圆心半径为r的圆周上运动时,其轨迹是圆周的运动叫“圆周运动”。
这里要注意的是,匀速圆周运动中的“匀速”是匀速率,做匀速圆周运动的物体速度方向是时刻改变的。
匀速圆周运动考题中容易出现的物理量有:重力(G)、向心力(a)、线速度(v)、角速度(ω)、半径(r)。
常用的规律主要有:基本公式(如向心加速度等于线速度的二次方与半径的比值a=);质点所受合外力指向圆心;系统机械能守恒等。
浅谈如何构建物理模型

浅谈如何构建物理模型【摘要】高中学生普遍感觉高中物理难学:听听还懂,解决实际问题就困难。
关键在于他们还是习惯于初中的那种形象思维方式,只会记概念、规律的静态结论,而不重视得出结论的发展过程;只会照葫画瓢,模仿性地解决一些简单的物理问题,而不善于通过观察分析,提炼出现实情景的物理模型,尔后纳入到相关的知识体系中去加以处理,最后得到问题的解决。
所以,物理教师在完成教学任务的过程中,一定要重视对学生建模意识的培养,只有这样,才使学生在解决物理问题时能清晰地构建出情景条件的物理模型,迅速找到解决问题的方法,从而达到培养学生灵活思变、创造性思维的能力。
本文着重从三个方面阐述如何建构物理模型:一、加强基础训练,积累实战经验、二、注重情境变换,拓展思维空间、三、精心整合归类,构建物理模型,目的在于教会学生一种思考问题的方式。
【关键词】夯实基础;情境变换;整合归类众所周知,理想模型的建构是研究物理的一种重要手段和方法,大物理学家如伽利略、牛顿、爱因斯坦等,他们都是善于建构物理模型的人。
物理模型是根据研究的问题和内容在一定条件下对研究客体的抽象,从多维的具体图像中,抓住最具有本质特征的图像,建立起一个易于研究的、能从主要方面反映研究客体的新图像,物理教学的主要任务就是要教会学生这种思考问题的方式,并尝试用所学知识来分析和解决实际问题。
新课程改革把课程目标定位于满足学生发展与终身学习需要,为造就适应社会需要的高素质人才奠定基础。
学以致用正是基于这一基本要求,但自然界实际问题是千变万化的,我们既要考虑这些知识的“去脉”,更不能轻视它的“来龙”,做到“以物带理”和“以理说物”。
“以理说物”要求我们要弄清其中基本的原理,搞清它们所遵循的基本规律,对复杂的情境进行简化抽象,建立起物理模型,这样我们就可以通过纷繁而复杂的表面现象去认清事物的本质,用理论来指导我们的行动去改造世界。
1.加强基础训练,积累实战经验扎实的基础,为理想模型的建立提供一个知识平台,因此教学的首要任务是夯实基础,培养学生基本的思维方法,而新课教学中的知识传授则是理想模型建立的初级阶段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈构建物理模型在解题中的作用
大多数学生进入高中学习以后,感到物理是一门比较难学的科目,解题时往往感到无从下手,这是由于物理的基本概念和规律建立的基础是理想化过程模型和理想化实体模型,因此在解答物理问题时应首先创设物理情景,构建物理模型。
物理概念和规律具有高度的抽象性和客观性,而物理习题由于是描述一些理想物体的基本运动或基本状态,所以物理习题具有理想性、具体性和形象性。
为了沟通概念规律与习题的联系,解题中就应创设具有这种联系的“图景”,通过物理图景,构建物理模型,这样可以使物理过程变得更为形象和清晰,对启发学生思维,正确理解物理概念,分析物理问题起到良好的辅助作用。
同时使学生形成科学的思维方法和掌握科学的研究方法。
模型最能反映现象和事物的本质,建立模型就是找出、抓住现象和事物的本质和主要矛盾,抽象出物理本质,研究和解决事物的主要矛盾,这样,解决问题时就会取得事半功倍的效果。
为了便于研究物理问题和对物理现象进行客观描述,现就以下几个方面作出分析:
一、简化确定“研究对象”是建立正确物理模型的基础
“研究对象”是参与所研究的物理对象的客体。
由于实际参与的客体众多,影响因素复杂,因此在建立物理模型时,首先要对客体进行简化,抓住其主要特征,舍弃其次要因素,因此,要建立正确的物理模型,首先应具有将实际的物理问题简化成理想模型的能力。
对于多个物理客体参与的物理问题,我们要认真分析各个“研究对象”
之间的相互联系,从现状和所求结果入手,找出关键的客体,作为研究对象,它们是物理模型中的“主角”。
比如,对一列水平横波的研究。
如果研究质点的振动,可选取某个质点(如振源)为研究对象;要研究波的周期性,可选取水平距离是波长整数倍的两个质点来研究;要研究质点的振动与波动的关系,就要选取某个质点和波动的形态为对象,就可得到这样一幅简单、清晰的物理图景:质点在竖直方向作简谐振动,波在水平方向作匀速运动,质点的振动方向决定了波的传播方向,在质点完成一次全振动的时间内,波恰好向前移动了一个波长。
下面举例说明物理模型在解题中的实际应用。
例一、(见图1)劲度度系数为k 的弹簧一端固定于
墙壁,另一端连着质量为M 的物体,物体静止于光滑水
平面的O 点上,现有一质量为m 的子弹以水平速度v 0 射进且留在物体中,试问最少需要多少时间物体又到达O 点?物体的最大位移是多少?
解:开始时取子弹和物体组成的系统为研究对象,忽略子弹的转动,认为子弹射进物体的过程为平动,从而建立质点系统模型。
因为从子弹开始射进物体到停留在物体中这一过程时间极短,弹簧的形变微小到可以忽略,所以可认为在此过程中,沿水平方向系统所受合力为零,系统的变化为完全非弹性碰撞,从而可建立完全非弹性碰撞过程模型。
系统动量守恒,故有:
(m+M)v=mv 0 由此可得系统的初速度:v=mv 0/(m+M)
又系统获得速度v 的过程短暂,它们的位移微小到可以忽略,故可以认为系统虽已具有速度v 但还处在平衡位置O 点处.此后,选取子弹、物体和
弹簧组成的系统为研究对象,忽略弹簧质量、 空气阻力与摩擦力,建立弹簧振子模型;振子从平衡位置O 处以速度v 向左运动的过程,满足简谐运动模型,故可得方程: k
M m T +=π2 22)(2
121v m M kA += 由上二式即可获知物体再次到达O 点的最短时间t 与物体的最大位移A 分别为 k m M t +=π )
(10m M k mv A += 在求解这个题目中,我们先后建立了两个研究对象的理想化模型(相互作用的质点及弹簧振子)和两个运动变化的理想化模型(完全非弹性碰撞及简谐振动),这些模型一建立,我们就知道用动量守恒和简谐运动的公式求解,问题就迎刃而解。
二、正确分析物理过程是建立物理图景的关键
物理过程是指“研究对象”发生物理变化的历程。
在物理图景中所体现的是:通过对实际过程的想象和模拟,所出现的连续、动态的变化过程。
应该说,正确分析物理过程是建立清晰、正确物理图景的关键。
比较复杂的物理过程往往表现出这样的特点:如短暂性、隐含性及交叉性。
这样的过程难以被学生所感知,是建立物理图景的难点所在。
针对以上特点,介绍以下几种可行的方法:
1 “慢镜头”显示法。
主要是针对短暂的物理过程,通过想象,使短暂的物理过程变缓,从而使得隐含于其中的因素得以展现、外露。
例2.两块完全相同的木块,质量均为M ,从同一高度由静止同时下落,
A 木块顺利下落,
B 木块在下落到一半距离时,被一颗水平飞来、质量为m 的子弹击中 (未穿出),则A 、B 两木块落地时间关系为:
A. t A =t B ;
B. t A >t B ;
C. t A <t B ;
D. 不能确定
由于子弹与木块碰撞在瞬间进行,学生往往错误地认为:子弹射中木块后,使木块获得水平方向的速度,但对木块竖直方向的运动没有影响,故选(A )。
如果把镜头放慢,并把子弹与B 木块看为一个系统,可看到子弹射入B 木块瞬间,系统的内力比外力大得多,可以认为系统动量守恒。
在竖直方向上,若子弹击中木块前木块的速度为v ,则击中瞬间有:
/)(v m M Mv +=,即v v </,B 木块在竖直方向上的速度减小,因此选(C )。
2 “反复搜索”显示法。
当一个物理过程结束后,很可能隐藏着另一个过程,在建立物理图景时,“镜头”不能就此停止“扫描”。
“反复搜索”就是要求我们运用思维的方式,全面严谨地分析问题,这也是展现隐含过程的常用方法。
比如,物体沿主光轴向凸透镜运动,“像长是物长的两倍”,可能出现的就应该是两种物理图景,因为像既可以是实像也可以是虚像。
3 “隔离”显示法。
对于比较复杂的物理过程,物体的运动往往是交叉进行的,学生对图景的想象难以做到一步到位,我们可把较复杂的过程分解成较为简单的基本过程。
这样做,一则为显示复杂过程做些铺垫,二则也有利于比较分析,使学生明确不同情况下得到不同物理图景的原因。
例如,做平抛运动的物体,在学生刚刚接触到此运动时,很难把握其运动规律,我们将其分解成水平方向的匀速运动和竖直方向的自由落体运动后,其运动规律便很清晰地展现在学生面前。
4 “模拟”显示法。
对有些难以被人们所感知的物理过程,通过“模拟”显示的方法,也可以建立形象的物理图景。
比如,在讨论分子力的大小随着分子间的距离如何变化时,我们就可以针对分子力的特点,建立起
“弹簧模型”。
“模拟”显示法虽然有助于物理图景的建立,对理解物理现象起辅助作用,但它具有一定的局限性,讨论时必须说明清楚。
三、准确选取物理状态是建立物理图景的保证
任何物理过程,都是由所研究的对象经历的无数个连续的状态依时间先后组成的。
如果说通过物理过程构成的是动态图景,那么物理状态就是对图景中关键点的“定格”。
因此,准确选取物理状态是建立物理图景,并最终解决物理问题的关键。
综上所述,通过对研究对象的简化,物理过程的分析及物理状态的确定,实际上是建立物理图景必不可少的组成部分,认真、细致地分析所讨论物理问题所处的条件,简化成相应的物理模型,才能建立起正确的物理图景。