动能定理和机械能守恒的区别

合集下载

正确理解动能定理、机械能守恒定律、能的转化与守恒定律

正确理解动能定理、机械能守恒定律、能的转化与守恒定律

正确理解动能定理、机械能守恒定律、能的转化与守恒定律动能定理、机械能守恒定律、能的转化与守恒定律是中学生最容易混淆的三条规律,只有正确理解三条规律的内容才能在解决问题时正确应用。

分析如下。

一、内容区别动能定理是说物体的动能变化是伴随物体所受外力做功来完成的,这个外力可以是各种性质的力,包括重力;这个功是所有外力所做的总功;且有,外力做的总功等于物体动能的变化,外力对物体做正功,物体的动能积累,外力对物体做负功,物体的动能释放。

机械能守恒定律是说只有机械能中的动能与势能发生转化时的情况。

这种情况要求物体运动过程中只有重力做功。

意为,重力做功只完成了重力势能向动能转化,重力做负功,则是动能向重力势能转化,而机械能的总量是不变的。

能的转化与守恒定律则是从大范围上对功与能的关系进行说明,即各种形式能之间在条件满足时都是可以转化的,且做功的过程是能量转化的过程,做功的多少是能量转化的量度,总的能量是不变的。

也可以说动能定律是能的转化与守恒定律在动能问题上的一个具体表现,而机械能守恒又可以认为是动能定理的一个特殊情况。

然而这三个规律都是描述能量转化时所遵守的规律,只是对象条件不同。

二、各规律的意义及应用注意事项(1)动能定律动能定理表示物体的动能与其它形式能或其它物体的能量之间的转化量度,所以,动能定理中的功为合外力的功或物体所受外力的总功,它是以物体的动能变化为主体研究对象,通过合外力做功的多少来分析说明问题的。

所以在应用动能定理时,首先要选好物体的初末状态,正确表达出物体的初末动能;其次是分析物体在运动过程中都受到哪些力,其中哪些力做功,哪些力不做功,有可能还要分析是变力还是恒力,各力是做正功还是做负功,各功应如何表示。

只有做到了这些才能正确利用动能定理。

(2)机械能守恒定律机械能守恒定律表示物体只有重力做功的情况下的动能与重力势能之间的转化规律,而机械能的总量是不变的。

所以,在利用机械能守恒定律时,首先要判断,物体的运动过程是否满足机械能守恒定律成立的条件,条件成立了,还要选好初末状态及重力势能的零势能面,这样才能正确表示出初末状态的机械能,才能准确的列出方程。

区分动能定理、功能关系、机械能守恒、能量守恒及解题时如何选用(含典例分析)

区分动能定理、功能关系、机械能守恒、能量守恒及解题时如何选用(含典例分析)

区分动能定理、功能关系、机械能守恒、能量守恒及解题时选用技巧(含典例分析)一、动能定理物体所受合外力做的功等于物体动能的变化量,即使用动能定理时应注意以下2个方面的问题:(1)由于作用在物体上的诸多力往往不是同时同步作用,而是存在先后顺序,因此求合外力做的功W 合一般采取先分别求出单个力受力然后代数和相加即可,即:比如一个物体收到了三个F 1、F 2、F 3三个力的作用,三个力所做的功分别为“+10J ”、“-5J ”、“-7J ”,这样以来三个力所做的总功W 合=10+(-5)+(-7)=-2J 。

(2)动能的变化量(或称动能的增量)因此在使用动能定理之前首先要明确对哪一段过程使用,这样才能确定谁是初始,谁是末尾,下面举例说明:图1例1:如图1所示,AB 为粗糙的水平地面,AB 段的长度为L ,右侧为光滑的竖直半圆弧BC 与水平地面在B 点相切,圆弧的半径为R ,一个质量为m 的小物块放置在A 点,初速度为V 0水平向右,物块受到水平向右恒力F 的作用,但水平恒力F 在物块向右运动L 1距离时撤去(L 1<L ),物块恰好通过C 点,重力加速度为g。

求:小物块与地面之间的动摩擦因数u。

思路梳理:物块恰好通过C点,意味着小物块在C点时对轨道无压力,物块的重力恰好提供物块转弯所需的向心力,可据此求出物块在C点的速度V c,剩下的问题就变成了到底选哪一段过程使用动能定理进行解题的问题,大多数同学习惯一段一段分析,即先分析A至B段,再分析B至C段,也有同学指出可以直接分析A至C全过程即可,到底哪种比较简单,这其实要看题目有没有在B点设定问题,下面详细解答:解法一:对A至B过程运用动能定理,设小物块在B点的速度为V B再对B至C过程运用动能定理,设小物体在C点的速度为V C小物块恰好通过C点,则联立(1)(2)(3)式即可求出u。

解法二:对A至C过程运用动能定理,设小物块在C点的速度为V C小物块恰好通过C点,则联立(1)(2)式即可求出u。

动能定理和机械能守恒的区别

动能定理和机械能守恒的区别

能量是贯穿整个高中物理的一条主线,也是解决动力学问题的三大主要观点之一,动能定理和机械能守恒定律是能量里的两个最基本的定律,也是高中物理中最重要的定律之一,是每年高考必考的知识点,也是高中物理的一个难点。

动能定理:合力对物体所做的功等于物体动能的变化!机械能守恒:在只有重力做功的情况下,物体的动能和重力势能发生相互转化,而机械能的总量保持不变!【例1】如图1所示,光滑的倾斜轨道与半径为R的圆形轨道相连接,质量为m的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高解析:方法1:小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒。

取轨道最低点为零重力势能面,因小球恰能通过圆轨道的最高点C,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列,由此可得:。

在圆轨道最高点小球机械能为,在释放点,小球机械能为。

根据机械能守恒定律,即。

解得方法2:设小球释放点离圆形轨道最低点高为h ,从小球释放点到圆轨道的最高点C ,由动能定理得:mg(h-2R)=m ,解得:【点评】通过例题1我们可以看出,在研究对象为一个物体(地球除外),且符合机械能守恒条件时,动能定理和机械能守恒定律都可以。

;否则,动能定理还可以用,机械能守恒定律就不能用了。

【例2】如图2,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。

一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。

开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向。

现在挂钩上挂一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升。

若将C 换成另一个质量为(m 1+m 3)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地面时D 的速度的大小是多少已知重力加速度为g 。

动能定理与机械能守恒

动能定理与机械能守恒

动能定理和机械能及其守恒定律1.动能定理:(合外力的功等于物体动能的变化量)(1)“221mv ”是一个新的物理量(2)2221mv 是物体末状态的一个物理量,2121mv 是物体初状态的一个物理量。

其差值正好等于合力对物体做的功。

(3)物理量221mv 定为动能,其符号用E K表示,即当物体质量为m ,速度为V 时,其动能:E K=221mv (4)动能是标量,单位焦耳(J )(5)含义:动能是标量,同时也是一个状态量(6)动能具有瞬时性,是个状态量:对应一个物体的质量和速度就有一个动能的值。

①当合力做正功时,物体动能增加。

②当合力做负功时,物体动能减小。

③当物体受变力作用,可把过程分解成许多小段每一段按照恒力运动是直线分段求解。

④当物体做曲线运动时,可把过程分解成许多小段每一段按照恒力运动是直线分段求解。

2. 机械能及其守恒定律(关键是把握什么能转化为什么能,在不守恒情况下一般都是有摩擦力做功即产生热能)1、机械能(1)定义:物体的动能和势能之和称为物体的机械能。

机械能包括动能、重力势能、弹性势能。

(2)表达式:E=EK+EP这些不同形式的能是可以相互转化的,那么在相互转化的过程中,他们的总量是否发生变化?这节课我们就来探究这方面的问题。

2、机械能守恒定律推导:质量为m 的物体自由下落过程中,经过高度h 1的A 点时速度为v 1,下落至高度h 2的B 点处速度为v 2,不计空气阻力,取地面为参考平面,试写出物体在A 点时的机械能和B 点时的机械能,并找到这两个机械能之间的数量关系。

A 点 12121mgh mv E E E PA kA A+=+= B 点 22221mgh mv E E E PB kB B +=+=根据动能定理,有21222121mv mv W G -=重力做功在数值上等于物体重力势能的减少量。

21mgh mgh W G -=由以上两式可以得到121222mgh mv 21mgh mv 21+=+ 即 1122p k p k E E E E +=+即 12E E =可见:在只有重力做功的物体系统内,动能和重力势能可以相互转化,而总的机械能保持不变。

动能定理和机械能守恒定律的综合应用

动能定理和机械能守恒定律的综合应用
12345
(1)小球在A点时的速度大小; 答案 2gh
小球在 A 点时,根据牛顿第二定律得 mg=mv2Ah2 解得 vA= 2gh
12345
(2)小球从C点抛出时的速度大小; 答案 3 2gh
12345
小球恰好水平进入圆轨道内侧运动,小球经过B点时 对轨道的压力9mg,由牛顿第三定律可得,小球经 过B点时圆轨道对小球的支持力为9mg, 根据牛顿第二定律可得 9mg-mg=mv2Bh2 解得 vB=4 gh,从 C 点到 B 点根据机械能守恒定律得12mvC2=12mvB2 +mgh,解得 vC=3 2gh;
12345
(3)要使赛车能通过圆轨道最高点D后沿轨道回到水平赛道EG,轨道半径 R需要满足什么条件? 答案 0<R≤2456 m
12345
当赛车恰好通过最高点 D 时,设轨道半径为 R0,有:mg=mvRD02 从 C 到 D,由动能定理可知:-mgR0(1+cos 37°)=12mvD2-12mvC2,解 得 R0=2456 m 所以轨道半径 0<R≤4265 m.
二、动能定理和机械能守恒定律的综合应用
动能定理和机械能守恒定律,都可以用来求能量或速度,但侧重不同, 动能定理解决物体运动,尤其计算对该物体的做功时较简单,机械能守 恒定律解决系统问题往往较简单,两者的灵活选择可以简化运算过程.
例1 如图,足够长的光滑斜面倾角为30°,质量相等的甲、乙两物块通过 轻绳连接放置在光滑轻质定滑轮两侧,并用手托住甲物块.使两物块都静 止,移开手后,甲物块竖直下落,当甲物块下降0.8 m时,求乙物块的速 度大小(此时甲未落地,g=10 m/s2).请用机械能守恒定律和动能定理分 别求解,并比较解题的难易程度. 答案:2 m/s
(3)小球通过BC后压缩弹簧,压缩弹簧过程中弹簧弹

高中物理(机械能守恒定律、能量守恒定律、动能定理的区别)

高中物理(机械能守恒定律、能量守恒定律、动能定理的区别)

⾼中物理(机械能守恒定律、能量守恒定律、动能定理的区别)专题⼀:机械能守恒定律、能量守恒定律、动能定理的综合应⽤⼀、基本知识点:1、机械能守恒定律:(1)概念:物体在只有重⼒和弹⼒做功的情况下,物体的动能与势能的总和不变。

(2)适⽤条件:只有重⼒和弹⼒做功(3)注意事项:a、这⾥的势能可以是重⼒势能,也可以是弹性势能;b、等式的两边,左边表⽰初始时刻的动能与势能之和,右边为末了时刻的动能与势能之和。

2、能量守恒定律:(1)概念:能量总和不变(2)表达式:(初始时刻各种能量之和)=(末了时刻各种能量之和)(3)注意事项:a、这⾥的各种形式的能包括动能、势能(重⼒势能、弹性势能、电势能)、内能(摩擦⼒产⽣、电流的热效应产⽣);b、根据热⼒学第⼆定律,功可以全部转化成热,热不可全部转化成功,热⼀般加在末了时刻⼀侧。

3、动能定理:(1)概念:外⼒做的功等于物体的末动能减掉物体的初动能(2)表达式:外⼒做功=末动能-初动能(3)注意事项:a、功有“正”、“负”之分,⼀定要注意⼒与位移的关系,同向为“正”,反向为“负”;b、等式右边是末动能减去初动能,不是初动能减去末动能,也不是初始时刻的能量减去末了时刻的能量。

⼆、典型习题讲解:如下图所⽰,光滑的半径R=10cm半圆形导轨BC与AB相切于点B,现有⼀质量为m=2kg的物体从A点出发,其恰好能够通过C 点,若AB=50cm,其动摩擦因数为µ=0.4,(g=10N/kg)求:(1)物体的最⼩初速度v0;(2)在B点,轨道对物体的⽀持⼒的⼤⼩;(3)物体通过C点后,落点D与B的距离。

【解析】:(1)过程分析:在AB段,物体做匀加速直线运动,只受到摩擦⼒的作⽤,故可以应⽤能量守恒定律(物体的初动能=物体的末动能+摩擦⼒做功)或者⽤动能定理(摩擦⼒做功=物体的末动能-物体的初动能);在BC段,物体做圆周运动,在这个过程中,只有重⼒做功,故可以应⽤机械能守恒定律(B点的动能+B点的势能=A点的动能+A点的势能);在AD段,物体只受到重⼒的作⽤,做平抛运动,可以将物体的运动分解成⽔平⽅向和竖直⽅向来进⾏求解。

动能定理与机械能守恒定律的区别

动能定理与机械能守恒定律的区别

动能定理和机械能守恒的区别:
1、定义不同:动能定理是描述物体动能变化的量与合外力对物体所做的功的关系,机械能守恒定理表示的是若物体只受到重力或弹力做功,则物体的动能和势能相互转化,而总的机械能保持不变。

2、表达式不同:动能定理的表达式为:W=(1/2)mv1²-(1/2)mv0²,机械能守恒定理的表达式为:Ek0+Ep0=Ek1+Ep1。

3、适用范围不同:动能定理适用于各种情况下的做功,机械能守恒定理只使用于重力或弹力做功时。

机械能守恒定律:在只有重力或弹力做功的物体系统内(或者不受其他外力的作用下),物体系统的动能和势能(包括重力势能和弹性势能)发生相互转化,但机械能的总能量保持不变。

这个规律叫做机械能守恒定律。

(机械能守恒定律、能量守恒定律、动能定理的区别)

(机械能守恒定律、能量守恒定律、动能定理的区别)

-μmgL-mgR=-E,
解得 CD 圆弧半径至少为 R=3mEg.
答案
2E (1)3mgL
E (2)3mg
解析 (1)设小车在轨道 CD 上加速的距离为 s,由动能定理得
Fs-μMgs2=12Mv2①
设小车在轨道 CD 上做加速运动时的加速度为 a,由牛顿运动定律得
F-μMg=Ma②
7
s=12at2③ 联立①②③式,代入数据得 t=1 s.④ (2)设小车在轨道 CD 上做加速运动的末速度为 v′,撤去力 F 后小车做减速运动时的加速度为 a′, 减速时间为 t′,由牛顿运动定律得 v′=at⑤ -μMg=Ma′⑥ v=v′+a′t′⑦ 设滑块的质量为 m,运动到 A 点的速度为 vA,由动能定理得 mgR=12mvA2 ⑧ 设滑块由 A 点运动到 B 点的时间为 t1,由运动学公式得 s1=vAt1⑨ 设滑块做平抛运动的时间为 t1′,则 t1′=t+t′-t1⑩ 由平抛规律得 h=12gt1t2⑪ 联立②④⑤⑥⑦⑧⑨⑩⑪式,代入数据得 h=0.8 m.
A.mgLcos θ
B.FLsin θ
C.mgL(1-cos θ)
D.FL(1-cos θ)
图 5-2-9 图 5-2-10 4.如图 5-2-10 所示,质量为 M 的木块放在光滑的水平面上,质量为 m 的子弹以速度 v0 沿水平 方向射中木块,并最终留在木块中与木块一起以速度 v 运动.已知当子弹相对木块静止时,木块前 进距离 L,子弹进入木块的深度为 s,若木块对子弹的阻力 F 视为恒定,则下列关系式中正确的是 A.FL=12Mv2 B.-Fs=12mv2-12mv20 C.-F(L+s)=12mv2-12mv20 D.F(L+s)=12Mv2 5.一质量为 m 的物体在水平恒力 F 的作用下沿水平面运动,在 t0 时刻撤去力 F, 其 v-t 图象如图 5-2-11 所示.已知物体与水平面间的动摩擦因数为 μ,则下列关于力 F 的大小和 力 F 做的功 W 的大小关系式,正确的是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能量是贯穿整个高中物理的一条主线,也是解决动力学问题的三大主要观点之一,动能定理和机械能守恒定律是能量里的两个最基本的定律,也是高中物理中最重要的定律之一,是每年高考必考的知识点,也是高中物理的一个难点。

动能定理:合力对物体所做的功等于物体动能的变化!
机械能守恒:在只有重力做功的情况下,物体的动能和重力势能发生相互转化,而机械能的总量保持不变!
【例1】如图1所示,光滑的倾斜轨道与半径为R的圆形轨道相连接,质量为m的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高
解析:
方法1:小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒。

取轨道最低点为零重力势能面,因小球恰能通过圆轨道的最高点C,说明此时,轨道对小球作用力为零,只有重力
提供向心力,根据牛顿第二定律可列,由此可得:。

在圆轨道最高点小球机械能为,在释放点,小球机械能为。

根据机械能守恒定律,即。

解得
方法2:设小球释放点离圆形轨道最低点高为h,从小球释放点到圆轨道的最高点C,由动能定理得:mg(h-2R)=m,解得:
【点评】通过例题1我们可以看出,在研究对象为一个物体(地球除外),且符合机械能守恒条件时,动能定理和机械能守恒定律都可以。

;否则,动能定理还可以用,机械能守恒定律就不能用了。

的物体A经一轻质弹簧与下方地面上的质量为m2的物体B 【例2】如图2,质量为m
1
相连,弹簧的劲度系数为k,A、B都处于静止状态。

一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩。

开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向。

现在挂钩上挂一质量为m
的物体C并从静止状态释放,已知它恰好能使B离开
3
地面但不继续上升。

若将C换成另一个质量为(m
1+m
3
)的物体D,仍从上述初始位置由静
止状态释放,则这次B刚离地面时D的速度的大小是多少已知重力加速度为g。

方法1:开始时,A、B静止,设弹簧压缩量为x1,有k x1=m1g,挂C并释放后,C向下运动,A向上运动,设B刚要离地时弹簧伸长量为x2,有k x2=m2g;B不再上升,表示此时A和C的速度为零,C已降到其最低点。

由机械能守恒与初始状态相比,弹簧性势能的
增加量为△E=m
3
g(x1+x2)-m1g(x1+x2);C换成D后,当B刚离地时弹簧势能的增量与前一次相同,由能量关系得。

解得:
方法2:开始时,A、B静止,设弹簧压缩量为x1,k x1=m1g。

挂C并释放后,C向下运动,A向上运动,设B刚要离地时弹簧伸长量为x2,有k x2=m2g。

B不再上升,表示此时A和C的速度为零,C已降到其最低点。

取A、C和弹簧为系统,由质点组动能定理有:
m
3
g(x1+x2)-m1g(x1+x2) -△E=0;C换成D后,当B刚离地时弹簧势能的增量与前一次相同,由质点组动能定理得:
解得:
【点评】通过例题2可以看出,研究对象为一个系统(地球除外),且符合机械能守恒条件时,动能定理和机械能守恒定律都可以用;否则只能运用动能定理。

动能定理和机械能守恒定律的本质是一样,都是功能原理,这也是学生容易混淆的原因。

它们除了内容不一样外,主要的区别时适用条件不同:机械能守恒的条件是“在只有重力或弹力做功的物体系统内,动能和势能可以互相转化,而总的机械能保持不变”,只有满足这条件的物理过程才能用机械能守恒定律列方程。

动能定理适用于一切过程。

相关文档
最新文档