亲核加成
亲核加成反应

+ HN
H H R3
H
H N R2 OH R3 H
- H2O
N R2 O R3
+
RHC R1
-H
RHC CH2 R3R2N R1 RHC CH2NR2R3 R1
如是碱催化,则由碱与活泼氢化合物作用生成碳负离子再和醛与胺形成的加成 产物作用。
O O
+ OH
R1 R1
+ H2O
可以采取其它几种方法制备烯胺。如把酮和仲胺混合后,加入四氯化钛作脱 水剂,很快就能生成烯胺,此方法对于普通的胺和有位阻的胺都适用。
O R1 NR1R2 R1
5
R2
NH + 2 RH2C R3
+ TiCl4
2 RHC
R3
+ 4
R2
NH2Cl
+ TiO2
或把仲胺转化成三甲基硅基衍生物,由于硅具有强烈的亲氧不亲氮的性质, 故能在较温和的条件下形成烯胺。
Z=R,Ar,OH,HZAr,HNCONH2.......
在酸性条件下,质子加到羰基的氧原子上,增加了羰基碳原子上的正电荷,有 利于亲核加成,所以这些反应能被酸所催化。
O
+ H
C
OH
但质子又可以结合反应物H2N-Z,使之失去活性。所以此类反应有一最合适的 PH值,从而使相当一部分羰基化合物质子化,又能使游离的含氮化合物保持一 定的浓度。在这一最合适的PH值下,反应速率最大。
O OH
O
R3
+
H H H
H N R2 R2 N
H
R1
R2R3NCH2CH2COR1
- OH
R3
亲核加成

NO2
_ + CH3
H H H C C NO2 CH3 NO2
2
碳-碳双键的亲核加成反应
• 亲核试剂对碳-碳双键加成的反应历程: • 反应的第一步是亲核试剂带着一对电子进攻双键 上的一个碳原子,而电子则被集中到另一个双键 碳原子上形成碳负离子,这是慢的一步。第二步 是碳负离子与质子或带正电荷的物质结合形成产 物。
+ E+ C C Nu E C C Nu
3
C C
+ E Nu
• 一些常见得促进亲核加成反应的取代基有: CHO、 COR、COOR、 CN、NO2、 CONH2、SO2R等。 它们通过降低碳-碳双键碳原子上的p电子云密度 来促进亲核试剂的进攻,但更重要的是,这样的 取代基能使生成的碳负离子中间体的负电荷分散 而得到稳定。
C2H5O
-
H O C C C CH3
1)水解 2)加热
O
7
碳-碳三键的亲核加成反应
• 碳-碳三键通常比双键更容易被亲核试剂进攻,而较难被 亲电试剂进攻。这是因为碳-碳三键之间的距离较短,三 键中的电子被束缚的比双键中的紧,所以进攻的亲电试剂 夺取三键中的一个电子较困难。从杂化角度来考虑,三键 碳原子(sp杂化)比双键碳原子(sp2杂化)具有较多的s成分, 因此它与电子的结合力较强,表现出较强的亲电性。
O
NH2NH2
NNH2
NH2NHCONH2
NNCONH2
RSH
• 羰基化合物与醇的反应
• 醛(酮)能与一分子醇加成生成半缩醛(酮)。半缩醛(酮)不稳 定,容易分解成醛(酮)和醇或与另一分子醇进一步缩合, 生成缩醛(酮)。 • 由于缩醛(酮)生成后又可水解成原来的化合物,故可利用 缩醛(酮)生成还保护醛(酮)基。 • 环状缩醛(酮):最常见的是利用羰基化合物和乙二醇反应, 生成二氧戊环化合物,该化合物比烷基缩醛(酮)更加稳定, 可耐大多数碱性及中性的反应条件。
亲核加成反应机理

亲核加成反应机理一、介绍亲核加成反应是有机化学中一种重要的反应类型。
它通过亲核试剂攻击电荷不饱和的碳原子,形成新的碳-亲核键,并伴随有官能团的转换。
本文将对亲核加成反应的机理进行全面、详细、完整且深入地探讨。
二、亲核加成反应概述亲核加成反应是一类重要的有机化学反应,其主要特点是用亲核试剂攻击双键或三键上的电子,形成新的化学键。
亲核试剂可以是阴离子、中性分子或阳离子。
在亲核加成反应中,亲核试剂通常经历亲核进攻、负离子重排和质子化等阶段。
1. 亲核进攻亲核试剂在亲核加成反应中起到亲核进攻的作用。
通常情况下,亲核试剂具有可用的自由电子对,能与电子不足的碳原子形成新的化学键。
亲核进攻的速率和选择性受到亲核试剂的性质、反应条件和底物的结构等因素的影响。
2. 负离子重排在某些亲核加成反应中,亲核试剂的亲核进攻会导致反应过渡态产生负电荷,形成负离子。
负离子重排是亲核加成反应中的一个重要步骤,可以通过改变碳原子的排列顺序来稳定负离子。
3. 质子化质子化是亲核加成反应中的最后一个阶段,通过给亲核试剂或负离子成员质子化,使反应产物获得更稳定的结构。
质子化通常发生在负离子重排之后。
三、亲核加成反应的分类亲核加成反应可根据亲核试剂和底物的不同进行分类。
下面将对几种常见的亲核加成反应进行介绍。
1. 碱性条件下的亲核加成反应在碱性条件下,亲核试剂通常是醇、酚、胺等带有孤对电子的化合物。
这类亲核试剂能够与电荷不饱和的碳原子形成新的化学键。
碱性条件下的亲核加成反应常用于合成醇、酚、胺等化合物。
2. 酸性条件下的亲核加成反应在酸性条件下,亲核试剂通常是具有孤对电子的阴离子,如卤素离子、亚硫酸根离子等。
酸性条件下的亲核加成反应可以用于合成卤代烷、磺酸酯等化合物。
3. 中性条件下的亲核加成反应在中性条件下,亲核试剂通常是中性分子,如水、醛、酮等。
中性条件下的亲核加成反应常用于合成醇、酮等化合物。
四、亲核加成反应的机理解析1. 碱性条件下的亲核加成反应机理以醇作为亲核试剂为例,碱性条件下的亲核加成反应机理如下:1.酸性条件下,氧上的醇质子化生成质子化醇。
有机化学基础知识点亲核加成反应的机理

有机化学基础知识点亲核加成反应的机理亲核加成反应是有机化学中一种重要的反应类型,常见于碳原子与亲核试剂之间的化学反应。
在亲核加成反应中,亲核试剂攻击电子不饱和化合物中的亲电中心,形成化学键。
本文将探讨亲核加成反应的机理,并介绍几种典型的亲核加成反应。
一、机理介绍亲核加成反应的机理通常分为两步:亲核试剂的攻击和中间物的转变。
1. 亲核试剂的攻击亲核试剂(Nu^-)攻击亲电中心(通常是碳原子)是亲核加成反应的第一步。
亲核试剂的正电荷亲密接触到亲电中心,形成一个新的化学键。
亲核试剂的反应活性基团(如氢、氧、卤素等)与亲电中心形成共价键。
2. 中间物的转变中间物的转变是亲核加成反应的第二步。
在中间物转变过程中,通常发生一系列的质子转移、断裂和重组步骤。
这些步骤可能涉及过渡态的形成和裂解,从而改变化合物的结构。
二、典型亲核加成反应案例以下是几种常见的亲核加成反应,以展示亲核加成反应的机理。
1. 酯的水解反应酯的水解反应是一种典型的亲核加成反应。
在碱性条件下,水分子作为亲核试剂攻击酯的羰基碳,在酸催化下进行酯的水解反应。
反应过程中,产生的中间物经过质子转移和断裂反应后,生成酸和醇。
2. 溴代烃的亲核取代反应在碱性条件下,亲核试剂(如氢氧化钠)攻击溴代烃中的溴原子,形成亲核取代产物。
此过程中,亲核试剂中的氧原子攻击溴原子,形成碳氧双键,然后其他基团进行重排,最终生成相应的取代产物。
3. 醛/酮的亲核加成反应醛和酮是常见的亲电中心,可以与亲核试剂发生亲核加成反应。
例如,醛和酮可以与氢氰酸反应形成氰醇化合物。
在这个过程中,氰离子作为亲核试剂攻击醛或酮的羰基碳,形成碳氮键,同时产生一个羟基。
4. 酸催化的醇与双键的加成反应在酸催化下,醇可以与烯烃中的双键发生亲核加成反应。
在反应过程中,醇中的氧原子攻击烯烃的亲电中心,形成一个新的碳氧键。
此外,酸催化也可促进醇与烯烃的异构化反应,产生具有不同结构的化合物。
总结:亲核加成反应是有机化学中常见的反应类型,可以用于合成新的有机分子。
有机化学中的亲核加成与消除反应

有机化学中的亲核加成与消除反应亲核加成和消除反应是有机化学中两种重要的反应类型,广泛应用于有机合成、药物化学、材料科学等领域。
本文将对亲核加成和消除反应的概念、机理和应用进行介绍。
一、亲核加成反应亲核加成反应是指亲核剂(也称为亲核物质)与电子不足的亲电试剂发生反应,亲核剂的亲电性中心攻击亲电试剂上的正电子中心,形成新的化学键。
常见的亲核加成反应有醇与卤代烃的反应、醛或酮与亲核试剂的反应等。
1. 醇与卤代烃的反应醇与卤代烃的反应是亲核加成反应中的一种常见类型。
在此反应中,醇中的氧原子攻击卤代烃中的卤原子,生成醚化合物。
例如,乙醇与溴甲烷反应可得到乙基溴化物。
2. 醛或酮与亲核试剂的反应醛或酮与亲核试剂的反应也是亲核加成反应的一种重要类型。
在这类反应中,亲核试剂的亲电性中心攻击醛或酮分子中的羰基碳原子,形成新的化学键。
例如,丁酮与甲胺反应可得到丁酮胺。
二、消除反应消除反应是指一个分子中两个基团之间的共价键发生断裂,形成另外两个分子。
消除反应可以分为酸性消除和碱性消除两种类型。
1. 酸性消除酸性消除是指在酸性条件下,分子中的负电荷离子与负电荷中心形成的碳阳离子相互消除。
酸性消除是有机化学中最常用的消除反应之一。
例如,酮中的α-碳上的氢可以被酸催化的消除剂(如氢气和铂催化剂)去除,生成烯烃。
2. 碱性消除碱性消除是指在碱性条件下,负电中心与负电荷离子形成的碳阴离子相互消除,产生另外两个分子。
例如,醇中的β-羟基在碱性条件下可以消除,生成烯烃。
三、应用亲核加成和消除反应在有机合成中有着广泛的应用。
它们可以用于构建碳-碳和碳-氧化学键,实现分子结构的定向调整和功能的引入。
通过选择不同的反应条件和催化剂,可以实现对化合物结构和立体化学的精确控制。
此外,亲核加成和消除反应还常用于药物化学和材料科学领域。
在药物合成中,这些反应可以用于构建具有特定生物活性的分子骨架。
而在材料科学中,亲核加成和消除反应则被应用于构建高分子聚合物和功能性材料的合成。
第七章 亲核加成反应

高等有机化学第七章亲核加成反应食品学院应用化学系郑福平杨绍祥第七章亲核加成反应一、碳-碳双键的亲核加成反应二、碳-碳三键的亲核加成反应三、羰基亲核加成反应四、羧酸衍生物与亲核试剂的反应五、金属氢化物与羰基的亲核加成反应六、α,β-不饱和羰基化合物的亲核加成反应七、碳-氮重键的亲核加成反应八、分子内的自催化亲核加成反应2一、碳吸电子取代基(一)氰乙基化反应(二)Micheal二、碳C CC正电荷处于p轨道属于杂化碳电负性大,难以容纳正电荷。
叁键比双键易于亲核加成的原因1. 碳原子杂化状态不同。
叁键碳sp杂化,双键碳sp2杂化。
叁键碳s轨道成分多,电子云更靠近原子核,不易给出电子,易接受电子。
2. 亲核加成活性中间体稳定性不同。
决定性作用。
12三、羰基亲核加成反应15(一)羰基的亲核加成反应历程酸除了使羰基质子化外,还能与羰基形成氢键:2注意:不论是酸还是碱催化的反应,控制反应速度的一步都是亲核试剂进攻碳原子这一步,故它们都是亲核加成。
19(二)影响羰基亲核加成反应的因素当(2)2.(3)(三)羰基加成反应中立体化学(四)羰基化合物的亲核加成反应实例1、杂原子亲核试剂的加成除NaHSO外,一般K<1。
3许多羰基化合物与含杂原子亲核试剂发生不同程度的加成。
半缩醛(酮)天然产物中有重要作用。
链状K<1,环状K>1(葡萄糖,开链式占0.003%,主要以α和β-吡喃环式存在。
)31①39醛:第一步负碳离子的生成为速控步骤,第二步为快反应,第一步不可逆。
酮:速控步骤为第二步。
C -进攻酮比进攻醛羰基碳难得多。
碱催化利于有醛的缩合,而不利于酮的缩合。
②四、羧酸衍生物与亲核试剂的反应(二)结构与活性的关系作为酰基化试剂,其活性为:RCOCl>RCOSR'>(RCO)2O>RCOOR>RCONH2 X: 具有-I效应,C-Cl键的极性大。
酯中烷氧基具有+C效应,增大了酰基与烷氧基间的电子云密度,使酰氧键难于断裂。
有机化学—亲核加成

H+ H2 O △
CH2-CHCHO OH OH
4. 与含硫亲核试剂的反应
与含硫亲核试剂的反应
• 与亚硫酸氢钠的加成: 与亚硫酸氢钠的加成: • 亚硫酸氢钠可以和 醛 或甲基酮及8个C以下的环酮的羰 甲基酮及 个 以下的 以下的环酮的羰 发生加成反应,产物称为:亚硫酸氢钠加成物。 基发生加成反应,产物称为:亚硫酸氢钠加成物。
H3C
O H CH3CH2MgBr H+ H2O H3C H3C
H CH2CH3
H3C ph
ph
(R)-3-苯基-2-丁酮
与金属炔化物的加成
ONa OH C C≡CR
C O + NaC≡CR
δ+
C C≡CR
H2O
炔醇
例1
O
KOH
OH H 3C C CH 3 C CH
H2 Lindlar Pd
CH3CCH3 + KC≡CH
醇钠
C=O + NaHSO3
- + C O Na SO3H
强酸
C OH SO3Na
α-羟基磺酸 钠盐 羟
强 酸盐
与含硫亲核试剂的反应
• ① 可逆 • ② 醛、脂肪族甲基酮、8个碳以下环酮。 个碳以下环酮。 脂肪族甲基酮、 个碳以下环酮
甲醛 甲基酮 Me3C C O H3C C
6%
反应变慢 Me2HC C
H H : : H +O O C O-
O
H O C
H
C
O H 胞二醇
1)与水的加成
• 甲、乙醛易生成水合物,但难以分离出来。甲醛在水中 乙醛易生成水合物,但难以分离出来。 几乎以水合物存在,长时期放置, 几乎以水合物存在,长时期放置,水合甲醛会聚合成多 聚甲醛, 聚甲醛,如:
第七章 亲核加成反应

高等有机化学第七章亲核加成反应食品学院应用化学系郑福平杨绍祥第七章亲核加成反应一、碳-碳双键的亲核加成反应二、碳-碳三键的亲核加成反应三、羰基亲核加成反应四、羧酸衍生物与亲核试剂的反应五、金属氢化物与羰基的亲核加成反应六、α,β-不饱和羰基化合物的亲核加成反应七、碳-氮重键的亲核加成反应八、分子内的自催化亲核加成反应2一、碳吸电子取代基(一)氰乙基化反应(二)Micheal二、碳C CC正电荷处于p轨道属于杂化碳电负性大,难以容纳正电荷。
叁键比双键易于亲核加成的原因1. 碳原子杂化状态不同。
叁键碳sp杂化,双键碳sp2杂化。
叁键碳s轨道成分多,电子云更靠近原子核,不易给出电子,易接受电子。
2. 亲核加成活性中间体稳定性不同。
决定性作用。
12三、羰基亲核加成反应15(一)羰基的亲核加成反应历程酸除了使羰基质子化外,还能与羰基形成氢键:2注意:不论是酸还是碱催化的反应,控制反应速度的一步都是亲核试剂进攻碳原子这一步,故它们都是亲核加成。
19(二)影响羰基亲核加成反应的因素当(2)2.(3)(三)羰基加成反应中立体化学(四)羰基化合物的亲核加成反应实例1、杂原子亲核试剂的加成除NaHSO外,一般K<1。
3许多羰基化合物与含杂原子亲核试剂发生不同程度的加成。
半缩醛(酮)天然产物中有重要作用。
链状K<1,环状K>1(葡萄糖,开链式占0.003%,主要以α和β-吡喃环式存在。
)31(2)①39醛:第一步负碳离子的生成为速控步骤,第二步为快反应,第一步不可逆。
酮:速控步骤为第二步。
C -进攻酮比进攻醛羰基碳难得多。
碱催化利于有醛的缩合,而不利于酮的缩合。
②四、羧酸衍生物与亲核试剂的反应(二)结构与活性的关系作为酰基化试剂,其活性为:RCOCl>RCOSR'>(RCO)2O>RCOOR>RCONH2 X: 具有-I效应,C-Cl键的极性大。
酯中烷氧基具有+C效应,增大了酰基与烷氧基间的电子云密度,使酰氧键难于断裂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二 炔烃的亲核加成
定义:亲核试剂进攻炔烃的不饱和键而引起的加成 反应称为炔烃的亲核加成。
常用的亲核试剂有: ROH(RO-)、HCN(-CN)、RCOOH(RCOO-)
碱,150-180oC
1. CHCH + HOC2H5
聚合,催化剂
[ CH2-CH]n
CH2=CHOC2H5 粘合剂
OC2H5
炔烃亲核加成的区域选择性:优先生成稳定的碳负离子。
第七章 亲核加成
(nucleophilic Addition)
反应类型:
烯烃的亲核加成反应 炔烃的亲核加成 羰基的亲核加成 羧酸衍生物与亲核试剂的反应 金属氢化物与羰基加成反应 α,β-不饱和羰基化合物的加成反应 碳-氮的亲核加成反应
一.烯烃的亲核加成反应
当烯烃连有吸电子基团时易发生亲核加成反应
产物中基团拥挤程度增大。
R 越大,妨碍Nu进攻C原子。
角张力缓解:
OH C N
O H C NK = 1 0 0 0 0
sp2杂化,键角应为120°, 实际为60°, 角张力较大; 反应中,键角由60°转化为109°28 ′, 角张力得 到缓解。
O + H C N
C O N HK = 1 0 0 0
O
O H
ACB O H
ACB+HN u O H
N uH
N u
ACBA ACB+H A
O H
O H
羰基质子化,可以提高羰基的反应活性,
羰基质子化后,氧上带有正电荷,很不稳定, π电子发生转移,使碳原子带有正电荷。
决定反应速率的一步,是Nu -进攻中心碳原子的 一步。
酸除了活化羰基外,还能与羰基形成氢键:
典型应用?
底物: RCHCHZ
Z: 含杂原子的不饱和键且与双键共轭的基团
C H 2 C HCHC H 2 C HCRC H 2 C HCO R
O
O
O
C H 2 C HCNC H 2 C HN O 2
试剂:能够产生C- 的试剂:
C H 2C O O E t2 C H 3C O C H 2C O O E t N C C H 2C O O E t R C H 2N O 2
C NC N
氰乙基化反应
C H 2 C H C N C 6 H 5 O HC 6 H 5 O C H 2 C H 2 C N C H 2 C H C N N H 3 二 苯 胺 H 2 N C H 2 C H 2 C N
H 2 N C H 2 C H 2 C N H 2 O H 2 N C H 2 C H 2 C O O H
Michael 加成反应:
碳负离子对于缺电子的C=C双键的加成反应称为迈 克尔加成,其中双键碳原子与吸电子基如羧基直接相连构 成共轭体系。
R R2C C C R RO
R 2CCCR R ' RO
R 2CCCR R ' RO
HO
H R2C C C R R2C C C R
R' R OH
R' R
Micheal 加成的反应体系:
Y
C
O
当羰基与具有+I或+C的基团直接相连时, 由于增加了中心碳原子的电子云密度,故
使反应活性降低。
当Y: CC, C C,Ph时,基团具有+C效应,
羰基活性降低。
C H 3C H O H C NC H H 3CO C H N K > 104
P h C H O H C N
H O H C
K = 2 1 0
CN
人造羊毛(腈纶)
三、羰基的亲核加成反应
一 反应机理
O慢 O
碱催化: Nu A C B A C B
Nu
O
OH
A
C
B
H 或E+
ACB
Nu
Nu
① 试剂进攻羰基上C原子,生成氧负离子的一步
是决定反应速率的一步。
② 为使亲核试剂的负电荷裸露出来,增加亲核性,
常需碱催化:HNu+B Nu+HB
酸催化:
ACB HA-A ACB
C H 3 C H 2
C H 3 C H 2 C N
(( C C H H 3 3 )) 3 3 C C COH C N(( C C H H 3 3 )) 3 3 C C C O C H NK < < 1
Nu
R CO
R'
R
O
C Nu R'
sp2杂化 平面三角型
sp3杂化 四面体
键角:120° 109°28 ′
C H 3C H O+H 2O C H 3C H (O H )2 K ≈1 C H 3C H O+H C N C H 3C H O H K ≈104
C N
③ 空间效应
具有较小体积的亲核试剂,利于反应进行。
Et C OHCN Et2COH
Et
2. CHCH + CH3COOHZn (OAc)2
150-180oC
CH2=CH-OOCCH3
聚合,催化剂
[ CH2-CH]n
H2O
OOCCH3 乳胶粘合剂
[ CH2-CH]n OH
现代胶水
3. CHCH + HCN CuCl2H2O, 70oC
CH2=CH -CN
聚合,催化剂
[ CH2-CH]n
反应机理:
Y CC
EN u
Y CC E Nu
YCC
N u
Eቤተ መጻሕፍቲ ባይዱ
E
Y CC
Nu
Y: C H O C O R C O O R C O N H 2 C NN O 2 SO 2R
举例:
H P h CC
P h C N
-C N
P hC HC _ P C h NH _ C -N C NP hC HH CP h
C N
P h C N
CCl3CHOH2OCl3H CCO O H H
Cl
Cl C Cl HC H
OH O
① Cl3C 是强吸电子基团,使 羰基带有更多的正电荷;
② 产物中形成分子内氢键,使 产物稳定,平衡向右移动。
(2) 空间效应
与羰基相连的基团空间效应越大,越不利于反应进行。
C H 3COH C N C H 3CO HK > 1
δ
δ
C O H Cl
都使羰基活化。
质子性溶剂也起到同样作用:
δ
δ
C O H Sol
二. 影响羰基加成反应活性的因素
1. 底物
H C O H > R C H O > R C O C H 3 > R C O R > C 6 H 5 C O R 反应活性取决于羰基的中心碳原子带有正电
荷的多少。
(1) 电子效应
这里,角张力缓解程度不大。
角张力:当分子内的键角 由于某种原因偏离正常键 角时会产生张力,这种张 力称为角张力。
2. 试剂的亲核性
① 对于同一羰基化合物,试剂的亲核性越强, 反应的平衡常数越大。
C>N > O>X
试剂的亲核性依次减弱
如: CH3 >NH2 >OH
② 试剂的可极化度越大,则利于亲核加成 反应的进行。