单管放大器分析与设计1

合集下载

单管放大电路设计实训报告

单管放大电路设计实训报告

一、实训目的1. 理解单管放大电路的基本原理和设计方法。

2. 掌握放大电路静态工作点的调试方法,分析静态工作点对放大器性能的影响。

3. 学会放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

4. 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实训原理单管放大电路是模拟电子技术中最基本的放大电路之一,它主要由晶体管、偏置电路、负载电阻和耦合电容等组成。

放大电路的作用是将输入信号放大到所需的幅度,并保持信号的相位不变。

本实训以共射极单管放大电路为例,介绍其设计方法和实验步骤。

三、实训设备1. 模拟电路实验箱2. 函数信号发生器3. 双踪示波器4. 交流毫伏表5. 万用电表6. 连接线若干四、实训步骤1. 设计电路根据实验要求,设计一个电压放大倍数为40dB,最大不失真输出电压为1V的单管放大电路。

电路如图所示:```+Vcc|R1 ----|---- Q (晶体管)| |R2 ----|---- C2 (耦合电容)| |R3 ----|---- RL (负载电阻)| |GND |```2. 电路仿真使用电路仿真软件对设计好的电路进行仿真,观察电路的静态工作点和动态性能。

3. 电路制作根据仿真结果,制作实际电路板,并检查电路焊接质量。

4. 电路调试将电路接入实验箱,使用万用电表测量电路的静态工作点,包括基极电压、集电极电压和发射极电压。

根据实验要求调整偏置电阻R1和R2,使静态工作点符合设计要求。

5. 性能测试使用函数信号发生器输入一个频率为1kHz,幅度为100mV的正弦波信号,使用交流毫伏表测量输入信号和输出信号的幅度,计算电压放大倍数。

使用示波器观察输入信号和输出信号的波形,分析放大器的失真情况。

五、实验结果与分析1. 静态工作点经过调试,电路的静态工作点为:Vcc=12V,Vb=2.5V,Vc=7.5V,Ic=5mA。

2. 电压放大倍数输入信号幅度为100mV,输出信号幅度为4V,电压放大倍数为40dB。

单管放大电路实验报告

单管放大电路实验报告

单管放大电路实验报告前言单管放大电路是电子学中常用的一个基本元件,广泛应用于各种电子设备,如放音机、放大器、电视机等。

本文旨在探讨单管放大电路实验的基本原理、实验操作步骤和实验结果与分析。

实验目的1.了解单管放大电路的基本结构和工作原理;2.学习单管放大电路的电路分析方法;3.实际操作单管放大电路电路进行实验,掌握实验方法以及实验过程中的一些实用问题的解决方案;4.根据实验结果完成数据分析和讨论,加深理解单管放大电路的原理和特性。

实验原理单管放大电路是由一个晶体管和若干个电阻、电容等组成的。

晶体管的基本结构是由广泛的p型半导体和狭窄的n型半导体构成的。

晶体管有三个引脚,分别为基极、发射极和集电极。

在单管放大电路中,基极通过一个电阻Rb与信号源相连,集电极通过一个负载电阻RL与电源相连,而发射极则接地。

当输入信号通过Rb注入基极时,由于晶体管发生的放大归功于其特性,即当晶体管输在正向区时,它是三极管,将输入信号转换为电流信号并经过电容耦合AC通过变压器通过负载电阻RL输出。

放大系数可以通过电路参数来调节,如增大Rb或降低RL可以提高放大系数。

实验器材本次实验使用的器材包括:晶体管、电容、电阻、示波器、调节电源、万用表等。

实验步骤1.按照图1所示的单管放大电路电路原理图进行连线,并将开关S1关闭;2.接通调节电源,在标准电压下,观察电路是否正常工作;3.将示波器连接到负载电阻RL两端,并调节示波器参数,使信号幅度和频率适合检测;4.调节Rb通过测量输入电压和输入电流确定其值;5.改变RL的电阻值并观察其对电路输出的影响;6.连续进行多次测量,以获取更多数据,以便进行分析和比较。

实验结果本实验的结果如下:1.掌握了单管放大电路的基本原理和使用方法;2.了解了基极电阻对放大倍数的影响;3.测定了电路输入输出电压,并且通过万用表测定了电路中的电流,分析了实验结果的数据;4.测试Rb和RL对音频信号的放大和失真的影响,获得了电压放大倍数和工作参数与输出信号之间的关系曲线。

晶体管单管放大器实验报告

晶体管单管放大器实验报告

一、实验目的1. 理解晶体管单管放大器的基本原理和组成。

2. 掌握晶体管单管放大器静态工作点的调试方法。

3. 熟悉晶体管单管放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

4. 提高对常用电子仪器及模拟电路实验设备的使用能力。

二、实验原理晶体管单管放大器是一种常见的放大电路,主要由晶体管、偏置电阻、负载电阻和耦合电容等组成。

实验电路采用共射极接法,通过输入信号u_i在晶体管的基极输入,放大后的信号u_o从集电极输出。

实验电路中,偏置电阻Rb1和Rb2组成分压电路,为晶体管提供合适的静态工作点。

负载电阻Rl接收放大后的信号,耦合电容C1和C2分别对输入信号和输出信号进行耦合,抑制交流干扰。

三、实验仪器与材料1. 晶体管(例如:3DG6)2. 偏置电阻(例如:Rb1=10kΩ,Rb2=20kΩ)3. 负载电阻(例如:Rl=10kΩ)4. 耦合电容(例如:C1=0.01μF,C2=0.01μF)5. 函数信号发生器6. 双踪示波器7. 万用电表8. 直流稳压电源9. 实验电路板四、实验步骤1. 按照实验电路图连接电路,将各元件和导线接到实验电路板上。

2. 将函数信号发生器输出端连接到双踪示波器,设置信号频率为1kHz,幅值为1V。

3. 将直流稳压电源连接到电路板,调节输出电压为12V。

4. 调节偏置电阻Rb1和Rb2,使晶体管处于合适的静态工作点。

使用万用电表测量晶体管的集电极电流Ic和集电极电压Uc,使其满足Ic=2mA,Uc=6V。

5. 在晶体管基极输入信号,观察双踪示波器上输入信号和输出信号的波形,记录电压放大倍数。

6. 测量输入电阻Ri和输出电阻Rl,计算放大器的输入电阻和输出电阻。

7. 调节输入信号幅值,观察输出波形,记录最大不失真输出电压。

五、实验数据及分析1. 静态工作点调试结果:Ic=2mA,Uc=6V。

2. 电压放大倍数:A_v=20。

3. 输入电阻:Ri=2kΩ。

单管放大器实验报告实验总结

单管放大器实验报告实验总结

竭诚为您提供优质文档/双击可除单管放大器实验报告实验总结篇一:单管放大电路实验报告单管放大电路一、实验目的1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。

二、实验电路实验电路如图2.1所示。

图中可变电阻Rw是为调节晶体管静态工作点而设置的。

三、实验原理1.静态工作点的估算将基极偏置电路Vcc,Rb1和Rb2用戴维南定理等效成电压源。

开路电压Vbb?Rb2Vcc,内阻Rb1?Rb2Rb?Rb1//Rb2则IbQ?Vbb?VbeQRb?(??1)(Re1?Re2),IcQ??IbQVceQ?Vcc?(Rc?Re1?Re2)IcQ可见,静态工作点与电路元件参数及晶体管β均有关。

在实际工作中,一般是通过改变上偏置电阻Rb1(调节电位器Rw)来调节静态工作点的。

Rw调大,工作点降低(IcQ 减小),Rw调小,工作点升高(IcQ增加)。

一般为方便起见,通过间接方法测量IcQ,先测Ve,IcQ?IeQ?Ve/(Re1?Re2)。

2.放大电路的电压增益与输入、输出电阻?u???(Rc//RL)Ri?Rb1//Rb2//rbeRo?Rcrbe式中晶体管的输入电阻rbe=rbb′+(β+1)VT/IeQ ≈rbb′+(β+1)×26/IcQ(室温)。

3.放大电路电压增益的幅频特性放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。

电压增益的大小与频率的函数关系即是幅频特性。

一般用逐点法进行测量。

测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。

由曲线确定出放大电路的上、下限截止频率fh、fL和频带宽度bw=fh-fL。

需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。

单管电压放大器实验报告

单管电压放大器实验报告

一、实验目的1. 学习调试和测量单管电压放大器的静态工作点。

2. 掌握单管放大器的电压放大倍数Au、输出电阻Ro和输入电阻Ri的测试方法。

3. 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理单管电压放大器是模拟电子技术中的一种基本放大电路,主要由晶体管、电阻、电容等元件组成。

本实验采用共射极单管放大器电路,通过调节基极电阻,可以调整晶体管的静态工作点,使晶体管工作在放大区,从而实现电压放大。

三、实验设备1. 单管电压放大器实验电路板2. 信号发生器3. 示波器4. 电压表5. 电流表6. 万用表7. 电阻箱8. 电容箱四、实验步骤1. 搭建单管电压放大器实验电路,按照电路图连接好各个元件。

2. 使用电阻箱和电容箱,根据电路图设置合适的静态工作点。

首先,调节电阻箱,使基极电阻RB的阻值符合要求;然后,调节电容箱,使电容C1的容值符合要求。

3. 使用万用表测量晶体管的静态工作点,即测量晶体管的基极电压U_B、集电极电压U_C和集电极电流I_C。

4. 在放大器的输入端接入信号发生器,输出频率为1kHz的正弦波信号。

5. 使用示波器观察放大器的输出波形,记录输出电压U_O。

6. 使用电压表测量放大器的输入电压U_I和输出电压U_O,计算电压放大倍数Au。

7. 使用电流表测量放大器的输入电流I_I和输出电流I_O,计算输入电阻Ri和输出电阻Ro。

8. 根据实验数据,分析静态工作点对放大器性能的影响,以及电压放大倍数、输入电阻和输出电阻与电路参数的关系。

五、实验结果与分析1. 静态工作点对放大器性能的影响实验结果表明,当静态工作点Q过低时,晶体管进入截止区,输出电压U_O接近于0,放大倍数Au接近于0;当静态工作点Q过高时,晶体管进入饱和区,输出电压U_O接近于电源电压VCC,放大倍数Au也接近于0。

因此,合适的静态工作点对于保证放大器的正常工作至关重要。

2. 电压放大倍数、输入电阻和输出电阻与电路参数的关系实验结果表明,电压放大倍数Au与晶体管的β(放大倍数)和集电极电阻Rc有关,与基极电阻RB和发射极电阻RE关系不大。

单管交流放大电路实验实验一单级交流放大电路实验报告

单管交流放大电路实验实验一单级交流放大电路实验报告

单管交流放大电路实验实验一单级交流放大电路实验报告实验一单级交流放大电路一、实验目的1.熟悉电子元器件和模拟电路实验箱,2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。

3.学习测量放大电路Q点,AV,ri,ro的方法,了解共射极电路特性。

4.学习放大电路的动态性能。

二、实验仪器1.示波器12.信号发生器3.数字万用表三、实验原理1.三极管及单管放大电路工作原理。

以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理: 三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。

如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。

如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。

我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

2.放大电路静态和动态测量方法。

2放大电路良好工作的基础是设置正确的静态工作点。

因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。

放大电路的动态特性指对交流小信号的放大能力。

因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。

四、实验内容及步骤1.装接电路与简单测量图1.1 工作点稳定的放大电路(1)用万用表判断实验箱上三极管V的极性和好坏,电解电容C的极性和好坏。

测三极管B、C和B、E极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向3电阻。

三极管导通电压UBE=0.7V、UBC=0.7V,反向导通电压无穷大。

(2)按图1.1所示,连接电路(注意:接线前先测量+12V电源,关断电源后再连线),将RP的阻值调到最大位置。

2.静态测量与调整接线完毕仔细检查,确定无误后接通电源。

改变RP,记录IC分别为0.5mA、1mA、1.5mA时三极管V的β值。

实验一共射极单管放大器


计算值
UB(V)
UE(V)
UC(V) RB2(KΩ) UBE(V) UCE(V) IC(mA)
2、测量电压放大倍数
在放大器输入端加入频率为1KHz的正弦信号uS,调 节函数信号发生器的输出旋钮使放大器输入电压Ui10mV, 同时用示波器观察放大器输出电压uO波形,在波形不失真 的条件下用交流毫伏表测量下述三种情况下的UO值,并用 双踪示波器观察uO和ui的相位关系,记入表1-2。
测量IC时,要先将信号源输出旋钮旋至零 (即使Ui=0)。
表1-3
IC(mA) UO(V)
AV
RC=2.4KΩ RL=∞ Ui= mV
2.0
4、观察静态工作点对输出波形失真的影响
置RC=2.4KΩ,RL=2.4KΩ, ui=0,调节RW使IC=2.0mA,测出 UCE值,再逐步加大输入信号,使输出电压u0 足够大但不失真。 然 后保持输入信号不变,分别增大和减小RW,使波形出现失真,绘出u0 的波形,并测出失真情况下的IC和UCE值,记入表1-4中。每次测IC 和UCE 值时都要将信号源的输出旋钮旋至零。
表1-4 RC=2.4KΩ RL=∞ Ui=
IC(mA)
UCE(V)
u0波形
失真情况
mV
管子工作状 态
2.0
*5、测量输入电阻和输出电阻
置RC=2.4KΩ,RL=2.4KΩ,IC=2.0mA。输入 f=1KHz的正弦信号,在输出电压uo不失真的情况 下,用交流毫伏表测出US,Ui和UL记入表1-5。
实验一 共射极单管放大器
图1-1 共射极单管放大器实对放大器性能的影响。 掌握放大器电压放大倍数、输入电阻、输 出电阻及最大不失真输出电压的测试方法。 熟悉常用电子仪器及模拟电路实验设备的 使用。

实验三晶体管共射极单管放大器 (1)

实验二晶体管共射极单管放大器预习部分一、实验目的L学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2.掌握放大器主要性能指标及其测试方法。

3.熟悉示波器、函数发生器、交流亳伏表、直流稳压电源及模拟实验箱的使用。

二、实验原理1.静态工作点对放大器性能的影响及调试1)静态工作点当放大电路未加输入信号(为=0)时,在直流电源作用下,晶体管基极和集电极回路的直流电流和电压用/BQ、UBEQ、I CQ、UCEQ表示,它们在晶体管输入和输出特性上各自对应一个点,称为静态工作点。

放大器静态工作点Q的位置对放大器的性能和输出波形有很大影响。

以NPN型三极管为例,如工作点偏高(如图2-2・1中的Ql点),放大器在加入交流信号以后易产生饱和失真, 此时儿的负半周将被削底;如工作点偏低(如图2-2-1中的Qz点)则易产生截止失真,即〃”的正半周被缩顶(一般截止失真不如饱和失真明显这些情况都不符合不失真放大的要求。

所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的加,检查输出电压〃〃的大小和波形是否满足要求。

如不满足,则应调节静态工作点的位置。

图2-2-1静态工作点不合适产生波形失真最后还要申明电笔上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。

所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。

若要获得最大的不失真输出电压,静态工作点最好尽量靠近交流负载线的中点,如图2-2-2中的Q点。

图2・2-3共射极单管放大器2)静态工作点的调试和测量方法静态工作点由偏置电路设置。

放大电路常用的偏置电路有固定和分压式偏置电路。

固定偏置电路仅由一个基极电阻构成,要求电阻在兆欧数量级上,Q点易受晶体管参数变化和基极电阻值误差的影响。

图2-2-3所示是分压式偏置的共射极放大电路。

偏置电路由两个千欧数量级的基极电阻RBl和R B2构成,并添加射极电阻,也称射极偏置。

晶体管共射极单管放大器实验报告10页

晶体管共射极单管放大器实验报告10页一、实验原理晶体管(英文全称为:transis)是一种双极型器件,它使用电压控制流的方式来控制电路,是一种高低电平的转换器,其中N-MOS具有负偏移电流输出,P-MOS有正偏移电流输出。

而晶体管共射极单管放大器(CE amplifier)是利用晶体管放大输入信号,并且输出放大后的信号,它具有以下几个特点:1.具有高增益:某些应用时,可以获得高达1000倍的增益。

2.具有良好的抗杂散比:它的抗杂散比比其他放大器要好。

3.低成本:CE放大器成本低,是很多电路应用的实用设计。

二、实验准备实验准备包括晶体管共射极单管放大器原理、电路电子元件、实验接线、虚拟示波器、实验电源等:1.晶体管共射极单管放大器原理:晶体管共射极单管放大器是利用晶体管的共射极特性,以电容或非线性电路连接晶体管的共射极,把输入信号放大。

2.电路电子元件:该实验采用的电子元件有晶体管、电阻、电容、变压器等,详见实验设置部分提供的原理图。

3.实验接线:实验接线由晶体管的共射极连接电路的共射极部分,将电路中晶体管的此极和源极和源之间、此极与集电极之间等处可接电容等电子元件。

4.虚拟示波器:实验采用数字示波器,用于监测放大器输出脉冲电平变化,以及便于测量电路中其他因素对放大器性能的影响。

5.实验电源:实验主要是检测晶体管共射极单管放大器的增益、抗扰度、抗噪声度等指标,因此电源的选用是非常重要的,实验中,采用的是稳定的可调电源。

三、实验设置1.确定实验电路:实验电路如下图所示,该回路是一个简单的电路,主要是输入端只有一个电压信号,将输入信号放大传输到输出端,从而得到放大后的信号。

2.确定晶体管型号:实验采用的晶体管型号为:MJE15031。

3.确定实验电路的元件参数:该实验电路中的电容为:C1,用于共射极的电容值为:560uF;用于分压电阻的电阻值为: 10kΩ和4.7kΩ;电源电压为: 12V 。

四、实验结果1.检查输出电压:实验准备完毕后,量出输出端的脉冲电平,结果为7V,较预期值(12V)稍有偏差,约为10%,说明实验设置有较小的偏差。

低频单管电压放大器实验报告

低频单管电压放大器实验报告一、实验目的本次实验的主要目的是了解低频单管电压放大器的基本原理和工作方式,掌握其电路组成和参数计算方法,以及熟悉实验中所用到的仪器设备和操作方法。

二、实验原理1. 低频单管电压放大器的基本原理低频单管电压放大器是一种常用的电子元件,主要由一个晶体管和几个被动元件组成。

其基本原理是通过晶体管对输入信号进行放大,并将输出信号送到输出端口,以提高信号的幅度和质量。

2. 低频单管电压放大器的工作方式在低频单管电压放大器中,输入信号首先经过一个耦合电容进入晶体管基极,然后经过一个发射极负载电阻Rc进行放大,最终输出到负载上。

同时,为了保证稳定性和可靠性,在晶体管之间还需要加入反馈网络。

3. 低频单管电压放大器的参数计算方法在设计低频单管电压放大器时,需要计算出一系列参数来确定其具体工作方式。

其中包括输入输出阻抗、增益、带宽等等。

这些参数的计算方法需要根据具体的电路和元器件来进行。

三、实验步骤1. 准备工作首先需要检查所有设备和仪器是否正常工作,包括信号发生器、示波器、直流电源等等。

然后根据实验要求,选择合适的晶体管和被动元件,并将其连接在一起。

2. 测试输入输出阻抗接下来需要测试低频单管电压放大器的输入输出阻抗,以确定其适用范围和性能。

具体测试方法为:将信号发生器连接到输入端口,并调整频率使得输出信号最大。

然后使用示波器测量输入输出端口的电压和电流,并计算出相应的阻抗值。

3. 测试增益和带宽接着需要测试低频单管电压放大器的增益和带宽,以确定其放大效果和传输能力。

具体测试方法为:将信号发生器连接到输入端口,并调整频率使得输出信号最大。

然后使用示波器测量输入输出端口的电压并计算出增益值;同时使用频谱分析仪测量输出信号在不同频率下的功率谱密度,并计算出带宽值。

4. 调整参数根据测试结果,需要对低频单管电压放大器的参数进行调整,以使其能够更好地适应实际应用需要。

具体调整方法为:根据输入输出阻抗、增益和带宽等参数计算出相应的元件值,并将其替换原有元件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频率响应的近似分析方法
节点近似法:每一个节点给传输函数贡献一个极 点,决定该极点的时间常数为该节点对地的总电 容量与该节点对地的总电阻量的乘积
主要应用于各节点的阻抗不会对其它节点阻抗的 计算产生影响的电路中
Vout (s) A1 • A2 • 1
Vin
1 RSCins 1 R1CN s 1 R2CPs
vo (s) K
vi
1 s / p1
输入信号为阶跃信号
vi
(s)
va s
输出信号
阶跃信号输入
vo
(s)
Kva
(1 s
s
1
p1
)
tr
t2 t1
1 ln 9 p1
0.35 f3dB
vo (t) Kva (1 e p1t )
复数极点系统:无限冲击响应
sp p jp
Ket sin(pt )
单管放大器分析与设计(一)
提要
电阻做负载的共源放大器
大信号特性 低频小信号特性
频率响应分析
波特图 频率响应与时间响应的关系 Miller定理
频率响应的近似分析方法*
共源放大器的频率响应
✓电阻作负载的共源放大器 大信号特性 小信号特性
✓大信号分析与小信号分析的区别 ✓模型的选择
电阻作负载的共源放大器
电阻作负载的共源放大器:大信号分析
Vi Vt Vo
Vo
1
kn
(W
VDD / L)RD
(Vi
Vt
)
Vi Vt Vo VDD
av
Vo Vi
RDkn (W
/ L)(Vi
Vt ) gmRD
Vi
Vt ,Vo
Vi
Vt
Vo
VDD
RD
1 2
kn
W L
(Vi
Vt )2
Vi
Vt ,Vo
Vi
a(s)
a0
(1 s / p1)(1 s / p2 )(1 s / p3)
重叠极零点
在每一个零点频率 处,幅度以+ 6×NdB/oct的速率 上升;在每一个极 点频率处,幅度以 -6×NdB/oct的速 率下降
对于左半平面极点 (左半平面零点) wm, 相位在0.1wm 频率处开始减小 (增加),在wm 频率处减小(增加) N×45o,在10wm 频率处减小(增加) 接近N×90o
多极点系统
若包含复数极点,可能出现过冲和阻尼振荡现象
Miller定理
Miller定理
定理:如果一个电路能进行如下的转换,则
Z1
Z 1 Av
Z2
Z 1 Av1
( Av
VY VX
)
物理机理
Miller定理
应用注意事项(一)
阻抗Z不能是X和Y之间唯一的信号通道
Miller定理主要用在阻抗Z形成与主信号通道并 联的另一条信号通道的场合
如果电路的增益随信号摆幅变化很大, 电路工作在大信号模式下
电阻作负载的共源放大器:设计考虑
增益最大化
av gm RD 2kn (W / L)I D RD
多维设 计空间
av (W / L) , RD , I D (W / L) Cgs
R D , ID VRD Output Voltage Swing RD TimeConstant f(av , B, Swing, Power Consumption)
给出传输函数后波特图的画法
波特图
不同极零点
在每一个零点频率 处,幅度以+ 6dB/oct的速率上 升;在每一个极点 频率处,幅度以- 6dB/oct的速率下 降
对于左半平面极点 (左半平面零点) w频m率, 相处位开在始0减.1小wm (频增率加处)减,小在(增wm加) 4率5处o,减在小1(0w增m加频) 接近90o
1W 2 kn L
(Vi
Vt
)2
Vo Vi
av
RD gm RD I Dav
av
gm RD
1 RDID
gm (ro
||
RD )
大 信 号 分 析
Ro
ro
|| RD
大信号分析可以提供电路的全局特性,但分析相对复杂 小信号分析提供电路在某工作点附近的特点,分析简单
大信号分析是森林,小信号分析是其中的树木
a(s)
(1
a0 s/
p1
)3
复数极零点
在每一个复数零点 频率处,幅度以+ 12dB/oct的速率 上升;在每一个复 数极点频率处,幅 度以-12dB/oct 的速率下降
对于左半平面复数 极点(左半平面复 数零点)wm, 相位 在0.1wm 频率处开 始减小(增加), 在(w增m加频)率90处o,减在小 1(0增wm加频)率接处近减18小0o
Vt
Vo
VDD
RD
1 2
kn
W L
[2(Vi
Vt )Vo
Vo2 ]
电阻作负载的共源放大器:小信号分析
av
Vo Vi
gmRD
Gm gm
Ro RD
避免跨导gm减小,晶体管工作于饱和区
信号摆幅很大时,小信号分析得到的 表达式仍然适用,但小信号参量的大 小会随着信号的变化而变化
增益变化的幅度反应了电路的非线性
主极点近似:如果主极点存在,则可以用来预测 电路的3dB带宽
通用传输函数
A(s)
N (s) D(s)
a0 a1s a2s2 amsm 1 b1s b2s2 bnsn
传输函数没有零点或者零点不重要
A(s)
(1
s
/
p1 )(1
s
K / p2
)(1
s
/
pn
)
b1 in1(1/ pi )
输出电压摆幅:保证晶体管工作于饱和区时输出电压的范围(考 虑到正弦型信号的特点,SW=2×Min(VQ-Vmin,Vmax-VQ)
电阻作负载的共源放大器:高负载电阻
RD很高时,需要考虑晶体管ro的影响
Vo
VDD
RD
1 2
kn
W L
(Vi
Vt )2 (1 Vo )
Vo Vi
RD
kn
W L
(Vi
Vt )(1 Vo ) RD
应用注意事项(二)
Av会随频率变化,但通常使用低频下的增益值以 简化计算(Miller近似)
Miller定理可以用来计算电路的输入阻抗和正向 传输函数(增益),则不能用来同时计算电路的 输出阻抗或者反向传输函数(计算正向或者反向 特性的传输函数不同)
Miller效应常用来计算电路的主极点,但它忽略 了传输函数的零点
存在主极点 p1 p2 , p3 , 1/ p1 in2 (1/ pi )
a(s)
s2
a0m2 2ms
m2
频率响应与时间响应的关系
单极点系统:正弦型信号输入
传输函数:
vo (s) K
vvi
(s)
va s2
2
输出为
vo (s)
va s2 2
Kp1 p1 s
vo (t) Asin(t ) Ce p1t
单极点系统
传输函数:
相关文档
最新文档