2009-2013年北京高考真题--数列试题汇编

合集下载

北京市各地市2013年高考数学 最新联考试题分类汇编(4)数列

北京市各地市2013年高考数学 最新联考试题分类汇编(4)数列

北京市各地市2013年高考数学 最新联考试题分类汇编(4)数列 一、选择题:(7)(北京市东城区2013年4月高三综合练习一文)对于函数)(x f y =,部分x 与y 的对应关系x 1 2 3 4 5 6 7 8 9 y 7 4 5 8 1 3 5 2 6数列n 满足1,且对任意,点1+n n 都在函数)x 的图象上,则201320124321x x x x x x ++++++Λ的值为(A )9394 (B )9380 (C )9396 (D )9400 【答案】A2. (北京市房山区2013年4月高三第一次模拟理)已知{}n a 为等差数列,n S 为其前项和.若19418,7a a a +==,则10S = ( D ) A. 55 B. 81 C. 90 D. 1004.(北京市西城区2013年4月高三一模文)设等比数列{}n a 的公比为q ,前n 项和为n S ,且10a >.若232S a >,则q 的取值范围是(A )1(1,0)(0,)2-U (B )1(,0)(0,1)2-U (C )1(,1)(,)2-∞-+∞U(D )1(,)(1,)2-∞-+∞U【答案】B3. (北京市丰台区2013年高三第二学期统一练习一文)设n S 为等比数列{}n a 的前n 项和,3420a a +=,则31S a ( ) (A) 2 (B) 3 (C) 4 (D) 5 【答案】B(5)(北京市昌平区2013年1月高三期末考试理)设n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 等于 A.1 B. 2 C. 3 D. 4【答案】C【解析】因为124,,S S S 成等比数列,所以2142S S S =,即2111(46)(2)a a d a d +=+,即2112,2d a d d a ==,所以211111123a a d a a a a a ++===,选C. 二、填空题:(9)(北京市朝阳区2013年4月高三第一次综合练习理)在等比数列{}n a 中,32420a a a -=,则3a = ,{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .【答案】2,10(11)(北京市朝阳区2013年4月高三第一次综合练习文)在等比数列{}n a 中,32420a a a -=,则3a = ,若{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .【答案】2,1014.(北京市西城区2013年4月高三一模文)已知数列{}n a 的各项均为正整数,其前n 项和为n S .若1, ,231, ,nn n n n a a a a a +⎧⎪=⎨⎪+⎩是偶数是奇数且329S =, 则1a =______;3n S =______. 【答案】 5,722n +.10. (北京市海淀区2013年4月高三第二学期期中练习理)等差数列{}n a 中,34259,18a a a a +==, 则16_____.a a = 【答案】14三、解答题:20. (北京市房山区2013年4月高三第一次模拟理)(本小题满分13分)对于实数x ,将满足“10<≤y 且y x -为整数”的实数y 称为实数x 的小数部分,用记号x 表示.例如811.20.2 1.20.877=-==,,.对于实数a ,无穷数列{}n a 满足如下条件: 1a a =,11000n n nn a a a a +⎧≠⎪=⎨⎪=⎩,,其中123n =L ,,,.(Ⅰ)若2=a ,求数列{}n a 的通项公式;(Ⅱ)当41>a 时,对任意的n ∈*N ,都有a a n =,求符合要求的实数a 构成的集合A ; (Ⅲ)若a 是有理数,设qpa =(p 是整数,q 是正整数,p ,q 互质),对于大于q 的任意正整数n ,是否都有0=n a 成立,证明你的结论.20(本小题满分13分) (Ⅰ)1221a == ,2111212121a a ===+=- ……….2分若21k a =-,则112121k k a a +⎡⎤⎡⎤===⎢⎥⎣⎦⎣⎦所以21n a =- ……………………………………3分 (Ⅱ)1a a a ==Q ,14a >所以114a << ,从而114a<< ①当112a <<,即112a<<时,211111a a a a a ===-=所以210a a +-= 解得:15a -+=(151,12a --⎛⎫= ⎪⎝⎭,舍去) ……………….4分但小于q 的正整数共有1-q 个,矛盾. 故q a a a a ,,,,321⋅⋅⋅中至少有一个为0,即存在)1(q m m ≤≤,使得0=m a . 从而数列{}n a 中m a 以及它之后的项均为0,所以对于大于q 的自然数n ,都有0=n a ……………………………………………13分20.(北京市丰台区2013年高三第二学期统一练习一文)(本题14分)设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为n (n=2,3,4,…,)阶“期待数列”:① 1230n a a a a ++++=L ; ②1231n a a a a ++++=L .(Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;(Ⅱ)若某个2013阶“期待数列”是等差数列,求该数列的通项公式; (Ⅲ)记n 阶“期待数列”的前k 项和为(1,2,3,,)k S k n =L ,试证:21≤k S .∴(20)(北京市昌平区2013年1月高三期末考试理)(本小题满分14分)已知每项均是正整数的数列123100,,,,a a a a L ,其中等于i 的项有i k 个(1,2,3)i =L ,设j j k k k b +++=Λ21(1,2,3)j =L ,12()100m g m b b b m =+++-L (1,2,3).m =L(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (Ⅱ)若123100,,,,a a a a L 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++=L ,求函数)(m g 的最小值. (20)(本小题满分14分)解: (I) 因为数列1240,30,k k ==320,k =410k =, 所以123440,70,90,100b b b b ====,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=- …………………4分 (II) 一方面,1(1)()100m g m g m b ++-=-,根据j b 的含义知1100m b +≤,故0)()1(≤-+m g m g ,即 )1()(+≥m g m g , ① 当且仅当1100m b +=时取等号.。

2013年普通高等学校招生全国统一考试(北京卷)数学试题 (理科) word解析版

2013年普通高等学校招生全国统一考试(北京卷)数学试题 (理科) word解析版

2013北京高考理科数学试题及解析第一部分 (选择题 共40分)一、选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

第一部分一、选择题1.已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ). A .{0} B .{-1,0} C .{0,1} D .{-1,0,1} 答案 B解析 ∵-1,0∈B,1∉B ,∴A ∩B ={-1,0}.2.在复平面内,复数(2-i)2对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限 答案 D解析 (2-i)2=4-4i +i 2=3-4i ,∴对应点坐标(3,-4),位于第四象限.3.“φ=π”是“曲线y =sin(2x +φ)过坐标原点”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件.4.执行如图所示的程序框图,输出的S 值为( ).A .1 B.23 C.1321 D.610987答案 C解析 执行一次循环后S =23,i =1,执行第二次循环后,S =1321,i =2≥2,退出循环体,输出S 的值为1321.5.函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( ).A .e x +1B .e x -1C .e -x +1D .e -x -1 答案 D解析 与y =e x 图象关于y 轴对称的函数为y =e -x .依题意,f (x )图象向右平移一个单位,得y =e -x 的图象.∴f (x )的图象由y =e -x 的图象向左平移一个单位得到.∴f (x )=e -(x +1)=e -x -1.6.若双曲线x 2a 2-y 2b2=1的离心率为3,则其渐近线方程为( ).A .y =±2xB .y =±2xC .y =±12xD .y =±22x答案 B解析 由e =3,知c =3a ,得b =2a .∴渐近线方程y =±bax ,y =±2x .7.直线l 过抛物线C :x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于( ).A.43 B .2 C.83 D.1623 答案 C解析 由C :x 2=4y ,知焦点P (0,1).∴直线l 的方程为y =1.∴所求面积S =4-⎠⎛2-2x 24 d x =4-⎪⎪x 3122-2=83.8.设关于x 、y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m<0,y -m>0表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( ).A .⎝⎛⎭⎫-∞,43B .⎝⎛⎭⎫-∞,13C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53答案 C 解析作不等式组表示的可行域,如图,要使可行域存在,必有m<1-2m.若可行域存在点P(x 0,y 0)满足x 0-2y 0=2,则可行域内含有直线y =12x -1上的点,只需边界点(-m,1-2m)在y=12x -1上方,且(-m ,m)在直线y =12x -1的下方.解不等式组⎩⎪⎨⎪⎧m<1-2m ,1-2m>-12m -1,m<-12m -1.得m<-23.第二部分二、填空题9.在极坐标系中,点⎝⎛⎭⎫2,π6到直线ρsin θ=2的距离等于________. 答案 1解析 极坐标系中点⎝⎛⎭⎫2,π6对应直角坐标系中坐标为(3,1),极坐标系直线ρsin θ=2对应直角坐标系中直线方程为y =2,∴点到直线y =2的距离为d =1.10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.答案 2 2n +1-2解析 设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2.因此S n =a 1(1-q n )1-q=2n +1-2.11. 如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,若PA =3,PD ∶DB =9∶16,则PD =________,AB =________.答案 954解析 由PD ∶DB =9∶16.设PD =9a ,DB =16a ,由切割线定理,PA 2=PD·PB ,即9=9a ×25a ,∴a =15,所以PD =95.在Rt △PAB 中,PB =25a =5,∴AB =PB 2-PA 2=52-32=4.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________. 答案 96解析 将5张参观券分成4堆,有2个联号有4种分法,每种分法再分给4人,各有A 44种分法,∴不同的分法种类共有4A 44=96.13. 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为原点建直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),根据c =λa +μb ⇒(-1,-3)=λ(-1,1)+μ(6,2)有-λ+6μ=-1,λ+2μ=-3,解之得λ=-2且μ=-12,故λμ=4.14. 如图,在棱长为2的正方体ABCDA 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为________.答案 255解析 取B 1C 1中点E 1,连接E 1E ,D 1E 1,过P 作PH ⊥D 1E 1,连接C 1H .∴EE 1⊥平面A 1B 1C 1D 1,PH ∥EE 1,∴PH ⊥底面A 1B 1C 1D 1,∴P 到C 1C 的距离为C 1H .当点P 在线段D 1E 上运动时,最小值为C 1到线段D 1E 1的距离.在Rt △D 1C 1E 1中,边D 1E 1上的高h =2×15=255.三、解答题15.在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值; (2)求c 的值.解 (1)在△ABC 中,由正弦定理 a sin A =b sin B ⇒3sin A =26sin 2A =262sin A cos A∴cos A =63.(2)由余弦定理,a 2=b 2+c 2-2bc cos A ⇒32=(26)2+c 2-2×26c ×63则c 2-8c +15=0. ∴c =5或c =3.当c =3时,a =c ,∴A =C .由A +B +C =π,知B =π2,与a 2+c 2≠b 2矛盾.∴c =3舍去. 故c 的值为5.16.下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 解 (1)在3月1日到3月13日这13天中,5日,8日这两天空气重度污染.∴此人到达当日空气重度污染的概率P =213.(2)依题意X =0,1,2P (X =0)=513,P (X =1)=413,P (X =2)=413.∴随机变量X 的分布列为∴E (X )=0×513+1×413+2×413=1213D (X )=⎝⎛⎭⎫0-12132×513+⎝⎛⎭⎫1-12132×413+⎝⎛⎭⎫2-12132×413=116169. (3)由图知,从3月5日开始连续三天空气质量指数方差最大.17. 如图,在三棱柱ABCA 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求证二面角A 1BC 1B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值.(1)证明 在正方形AA 1C 1C 中,A 1A ⊥AC .又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC , ∴AA 1⊥平面ABC . (2)解在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2=AC 2+AB 2,AB ⊥AC∴以A 为坐标原点,建立如图所示空间直角坐标系Axyz .A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1),平面B 1BC 1的法向量n 2=(x 2,y 2,z 2).∴⎩⎪⎨⎪⎧ A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧4x 1=03y 1-4z 1=0∴取向量n 1=(0,4,3)由⎩⎪⎨⎪⎧B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0.取向量n 2=(3,4,0)∴cos θ=n 1·n 2|n 1|·|n 2|=165×5=1625.(3)证明 设D (x ,y ,z )是直线BC 1上一点,且BD →=λBC 1→. ∴(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ. ∴AD →=(4λ,3-3λ,4λ)又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0则λ=925,因此BD BC 1=925.18.设l 为曲线C :y =ln xx在点(1,0)处的切线.(1)求l 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线l 的下方.(1)解 由y =ln xx ,得y ′=1-ln x x 2,x >0.∴k =y ′|x =1=1-ln 112=1.∴直线l 的方程为y =x -1,即x -y -1=0.(2)证明 要证明,除切点(1,0)外,曲线C 在直线l 下方.只要证明,对∀x >0且x ≠1时,x -1>ln xx.设f (x )=x (x -1)-ln x ,x >0,则f ′(x )=2x -1-1x =(2x +1)(x -1)x因此f (x )在(0,1)上单调递减,在(1,+∞)单调递增. ∴f (x )>f (1)=0,即x (x -1)>ln x故当x >0且x ≠1时,x -1>ln xx成立.因此原命题成立.19.已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.解 (1)由椭圆W :x 24+y 2=1,知B (2,0)∴线段OB 的垂直平分线x =1. 在菱形OABC 中,AC ⊥OB ,将x =1代入x 24+y 2=1,得y =±32.∴|AC |=|y 2-y 1|= 3.因此菱形的面积S =12|OB |·|AC |=12×2×3= 3.(2)假设四边形OABC 为菱形. 因点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则 x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. ∴线段AC 中点M ⎝⎛⎭⎫-4km 1+4k 2,m1+4k 2因为M 为AC 和OB 交点,∴k OB =-14k.又k ·⎝⎛⎭⎫-14k =-14≠-1, ∴AC 与OB 不垂直.故OABC 不是菱形,这与假设矛盾. 综上,四边形OABC 不是菱形.20.已知{a n}是由非负整数组成的无穷数列,该数列前n项的最大值记为A n,第n项之后各项a n+1,a n+2…的最小值记为B n,d n=A n-B n.(1)若{a n}为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N*,a n+4=a n),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:d n=-d(n=1,2,3…)的充分必要条件为{a n}为公差为d的等差数列;(3)证明:若a1=2,d n=1(n=1,2,3,…),则{a n}的项只能是1或者2,且有无穷多项为 1.(1)解d1=1,d2=1,d3=3,d4=2.(2)证明充分性:若{a n}为公差为d的等差数列,则a n=a1+(n-1)d.于是A n=a n=a1+(n-1)d,B n=a n+1=a1+nd.因此d n=A n-B n=-d(n=1,2,3,…).必要性:因为d n=-d≤0,∴A n=B n+d n≤B n∵a n≤A n,a n+1≥B n∴a n≤a n+1,于是A n=a n,B n=a n+1.因此a n+1-a n=B n-A n=-d n=d.故数列{a n}是公差为d的等差数列.(3)证明1°首先{a n}中的项不能是0,否则d1=a1-0=2,矛盾.2°{a n}中的项不能超过2,用反证法证明如下:若{a n}中有超过2的项,设a k是第一个大于2的项.{a n}中一定存在项为1,否则与d1=1矛盾;当n≥k时,a n≥2,否则与d k=1矛盾;因此存在最大的i在2到k-1之间,使得a i=1,此时d i=A i-B i=2-B i≤2-2=0,矛盾.综上{a n}中没有超过2的项.所以由1°,2°知,{a n}中的项只能为1或2.∵对任意n≥1,a n≤2=a,∴A n=2,故B n=A n-d n=2-1=1.因此对任意正整数n,存在m满足m>n,且a m=1,即数列{a n}中有无穷多项为1.。

2013年普通高等学校招生全国统一考试数学理试题(北京卷)

2013年普通高等学校招生全国统一考试数学理试题(北京卷)

2013北京高考理科数学试题 第一部分 (选择题 共40分)一、 选择题共8小题。

每小题5分,共40分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项。

1.已知集合A={-1,0,1},B={x |-1≤ x <1},则A∩B= ( ) A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}2.在复平面内,复数(2-i)2对应的点位于( )A.第一象限B. 第二象限C.第三象限D. 第四象限 3.“φ=π”是“曲线y=sin(2x +φ)过坐标原点的”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件S 值为A.1B.23 C.1321D.610987 5.函数f (x )的图象向右平移1个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= A.1ex + B. 1e x - C. 1ex -+ D. 1ex --6.若双曲线22221x y a b-=,则其渐近线方程为A.y =±2xB.y =C.12y x =±D.y x = 7.直线l 过抛物线C : x 2=4y 的焦点且与y 轴垂直,则l 与C 所围成的图形的面积等于 A.43 B.2 C.83D.38.设关于x ,y 的不等式组210,0,0x y x m y m -+>⎧⎪+<⎨⎪->⎩表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是 A.4,3⎛⎫-∞ ⎪⎝⎭ B. 1,3⎛⎫-∞ ⎪⎝⎭ C.2,3⎛⎫-∞- ⎪⎝⎭ D.5,3⎛⎫-∞- ⎪⎝⎭第二部分(非选择题 共110分)二、填空题共6题,每小题5分,共30分. 9.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于 . 10.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = . 11.如图,AB 为圆O 的直径,P A 为圆O 的切线,PB 与圆O 相交于 D.若PA=3,916PD DB =::,则PD= ;AB=.12.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 .13.向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ= .14.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,1B三、解答题共6小题,共80分。

2013北京高考数学真题(理科)及答案

2013北京高考数学真题(理科)及答案
(Ⅲ)从 3 月 5 日开始连续三天的空气质量指数方差最大. (17)(共 14 分)
解:(Ⅰ)因为 AA1C1C是正方形 ,所以 AA1⊥AC .
因为 平面ABC 平面AA1C1C ,且 AA1 垂直于这两个平面的交线 AC,
所以 AA1 ⊥平面 ABC .
z A1
B1
(Ⅱ)由(Ⅰ)知 AA1⊥AC , AA1 ⊥ AB .
gx
1
f
x=
x2
1 x2
ln
x

当 0<x<1 时, x2 1<0,ln x<0,所以 g x<0,故 g x 单调递减;
当 x>1 时, x2 1>0,ln x>0,所以 g x>0,故 g x 单调递减.
所以 g x>g 1 =0x 0,x 1.
(9)1
(10)2
2n1 2
(11) 9 5
(6)B 4
(7)C
(8)C
(12)96 (13)4
三、解答题(共 6 小题,共 80 分) (15)(共 13 分)
(14) 2 5 5
解:(Ⅰ)因为 a 3 , b 2 6 , B 2A ,
所以在△ABC 中由正弦定理得 3 2 6 . sin A sin 2A
指指指指指指
250 200 150 100 86 50
220 160
143
57
217 160 158
121 86 79
25
37
0 1指
2指
指指 3指 4指 5指 6指 7指 8指 9指 10指 11指 12指13指 14指
(Ⅰ)求此人到达当日空气重度污染的概率; (Ⅱ)设 X 是此人停留期间空气质量优良的天数,求 X 的分布列与数学期望; (Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

2013年全国高考理科数学试题分类汇编4:数列

2013年全国高考理科数学试题分类汇编4:数列

2013年全国高考理科数学试题分类汇编4:数列一、选择题1 .(2013年高考上海卷(理))在数列{}n a 中,21nn a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j == )则该矩阵元素能取到的不同数值的个数为( )(A)18 (B)28 (C)48 (D)63【答案】A.2 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于(A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-【答案】C3 .(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n = ,若11111,2b c b c a >+=,111,,22n nn nn n n n c a b a a a b c +++++===,则( )A.{S n }为递减数列B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列【答案】B4 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3【答案】B5 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A.数列{}n b 为等差数列,公差为m qB.数列{}n b 为等比数列,公比为2mq C.数列{}n c 为等比数列,公比为2mq D.数列{}n c 为等比数列,公比为mmq【答案】C6 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31-(C)91 (D)91-【答案】C7 .(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )A.3B.4C.5D.6【答案】C8 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))下面是关于公差0d >的等差数列()n a 的四个命题:{}1:n p a 数列是递增数列; {}2:n p na 数列是递增数列; 3:n a p n ⎧⎫⎨⎬⎩⎭数列是递增数列;{}4:3n p a nd +数列是递增数列; 其中的真命题为(A)12,p p (B)34,p p (C)23,p p (D)14,p p【答案】D9 .(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24【答案】A二、填空题10.(2013年高考四川卷(理))在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为n s .由已知,可得 ()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n n s -=11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}n a 的前n 项和为n S ,已知10150,25S S ==,则n nS 的最小值为________.【答案】49-12.(2013年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n 个三角形数为()2111222n n n n +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式: 三角形数 ()211,322N n n n =+正方形数 ()2,4N n n = 五边形数 ()231,522N n n n =-六边形数 ()2,62N n n n =-可以推测(),N n k 的表达式,由此计算()10,24N =___________. 选考题【答案】100013.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为_____________. 【答案】1214.(2013年高考湖南卷(理))设n S 为数列{}n a 的前n 项和,1(1),,2nn n nS a n N *=--∈则(1)3a =_____; (2)12100S S S ++⋅⋅⋅+=___________.【答案】116-;10011(1)32-15.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=-两边同时积分得:1111122222211.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn n n n n n C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+ 16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a =,公差0d ≠,n S 为其前n 项和,若125,,a a a 成等比数列,则8_____S =【答案】6417.(2013年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n项和n =S __________.【答案】25766n n -18.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}n a 中,已知3810a a +=,则573a a +=_____.【答案】2019.(2013年高考陕西卷(理))观察下列等式:211=22123-=-2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n1--32-1121-n 222+=+++n n n ()( ____.【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()(20.(2013年高考新课标1(理))若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______.【答案】n a =1(2)n --.21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A A X和12,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设.n n OA a =若121,2,a a ==则数列{}n a 的通项公式是_________.【答案】*,23N n n a n ∈-=22.(2013年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +-23.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}n a 是递增数列,nS 是{}n a 的前n 项和,若13a a ,是方程2540x x -+=的两个根,则6S =____________.【答案】63 三、解答题24.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22222()1(,)23n nn x x x f x x x R n N n=-+++++∈∈ ,证明: (Ⅰ)对每个n n N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =; (Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<.【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f nx y x n n n ++++++-=∴=> 是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数. 011)1(,01)0(=+-≥<-=n n f f 且.010)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x ,且满足存在唯一xxx xxxx x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322 时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n nnn n n x x x x x x x f综上,对每个n n N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕)(Ⅱ) 由题知04321)(,012242322=++++++-=>>≥+nx x x x x x f x x nn n n n n n n p n n0)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n 上式相减:22122423222242322)()1(432432p n x n x nx x x x x nx x x x x pn pn n pn np n p n p n p n p n nn n n n n ++++++++++=++++++++++++++ )()(2212244233222)()1(-4-3-2--p n x n x nx x x x x x x x x x pn pn n pn nnnp n np n np n np n p n n +++++++++=+++++++++ nx x npn np n n 1-111<⇒<+-=+.法二:25.(2013年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈.(1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c +∈-≥,;(3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为0c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=, 3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c ≥+⇔++-+≥+即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立;若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立 综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n a a c +-≥(3)由(2)知,若{}n a 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0n a > 此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++ 即8d c =+故21111()2|4|||8a f a a c a c a c ==++-+=++, 即1112|4|||8a c a c a c ++=++++,当10a c +≥时,等式成立,且2n ≥时,0n a >,此时{}n a 为等差数列,满足题意;若10a c +<,则11|4|48a c a c ++=⇒=--,此时,230,8,,(2)(8)n a a c a n c ==+=-+ 也满足题意; 综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.设数列{}122,3,3,34444n a :,-,-,-,-,-,-,,-1-1-1-1k k k k k个(),,(),即当1122k kk k n -+<≤()()()k N +∈时,11k nak -=(-),记12n n S a a a =++ ()n N+∈,对于l N+∈,定义集合{}l P 1n n n S a n N n l +=∈≤≤是的整数倍,,且 (1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列{}n a 的定义得:11=a ,22-=a ,23-=a ,34=a ,35=a ,36=a ,47-=a ,48-=a ,49-=a ,410-=a ,511=a ∴11=S ,12-=S ,33-=S ,04=S ,35=S ,66=S ,27=S ,28-=S ,69-=S ,1010-=S ,511-=S∴111a S ∙=,440a S ∙=,551a S ∙=,662a S ∙=,11111a S ∙-= ∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i S i i 事实上,① 当1=i 时,3)12(13)12(-=+∙-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+∙-=+m m S m m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m )32)(1()352(2++-=++-=m m m m综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a j i i ,所以)12()12()12(++=+++i j S S i i j i i 是)12,,2,1(}12)(1(+=+++i j a j i i 的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数, 而)22,,2,1)(22(}12)(1(+=+-=+++i j i a j i i所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i 的倍数故当)12(+=i i l 时,集合l P 中元素的个数为2i 1-i 231=+++)(于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合l P 中元素的个数为j i 2+ 又471312312000++⨯⨯=)( 故集合2000P 中元素的个数为100847312=+27.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列.(1)求n a d ,; (2)若0<d ,求.||||||||321n a a a a ++++【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+224112122125253404611n n d d d dd dd a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或; (Ⅱ)由(1)知,当0d <时,11n a n =-, ①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩ ; 28.(2013年高考湖北卷(理))已知等比数列{}n a 满足:2310a a -=,123125a a a =.(I)求数列{}n a 的通项公式; (II)是否存在正整数m ,使得121111ma a a +++≥ ?若存在,求m 的最小值;若不存在,说明理由.【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}n a 的通项或253n n a -=⨯(II)若1q =-,12111105ma a a +++=-或,不存在这样的正整数m ;若3q =,12111919110310mma a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,不存在这样的正整数m . 29.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}na的前n 项和为n S ,且424S S =,221n n a a =+. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n b 前n 项和为n T ,且 12n n na T λ++=(λ为常数).令2n n cb =*()n N ∈.求数列{}n c 的前n项和n R .【答案】解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由424S S =,221n n a a =+得11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d = 因此21n a n =-*()n N ∈(Ⅱ)由题意知:12n n n T λ-=-所以2n ≥时,112122n n n n n n n b T T ----=-=-+故,1221221(1)()24n n n n n c b n ---===- *()n N ∈所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n nn R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯ 两式相减得1231311111()()()()(1)()444444n n n R n -=+++⋅⋅⋅+--⨯ 11()144(1)()1414nnn -=---整理得1131(4)94n n n R -+=-所以数列数列{}n c 的前n 项和1131(4)94n n n R -+=-30.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c为实数.(1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈); (2)若}{n b 是等差数列,证明:0=c .【答案】证明:∵}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和∴d n n na S n 2)1(-+=(1)∵0=c ∴d n a nS b n n 21-+==∵421b b b ,,成等比数列 ∴4122b b b = ∴)23()21(2d a a d a +=+∴041212=-dad ∴0)21(21=-d a d ∵0≠d ∴d a 21=∴a d 2=∴a n a n n na d n n na S n 222)1(2)1(=-+=-+=∴左边=a k n a nk S nk 222)(== 右边=a k n S n k 222= ∴左边=右边∴原式成立(2)∵}{n b 是等差数列∴设公差为1d ,∴11)1(d n b b n -+=带入cn nS b n n +=2得:11)1(d n b -+cn nS n +=2∴)()21()21(11121131b d c n cd n d a d b n d d -=++--+-对+∈N n 恒成立∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(0021021111111b d c cd d a d b d d由①式得:d d 211=∵ 0≠d ∴ 01≠d由③式得:0=c法二:证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(ad n b n +-=.当421b b b ,,成等比数列,4122b b b =,即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=.由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=. 故:k nk S n S 2=(*,N n k ∈).(2)cn ad n n cn nS b n n ++-=+=22222)1(,cn ad n ca d n cad n n ++--+-++-=2222)1(22)1(22)1(cn ad n c ad n ++--+-=222)1(22)1(. (※)若}{n b 是等差数列,则Bn An b n +=型. 观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-ad n c,而22)1(ad n +-≠0,故0=c .经检验,当0=c 时}{n b 是等差数列.31.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式.【答案】32.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列. (Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1nn nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.【答案】33.(2013年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0n n s n n s n n -+--+=(1)求数列{a n }的通项公式a n ; (2)令221(2)n n b n a+=+,数列{b n }的前n 项和为n T .证明:对于任意的*n N ∈,都有564n T <【答案】(1)解:由222(1)()0n n S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦. 由于{}n a 是正项数列,所以20,n n S S n n >=+.于是112,2a S n ==≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=. 综上,数列{}n a 的通项2n a n =. (2)证明:由于2212,(2)n n nn a n b n a +==+.则222211114(2)16(2)n n b n n n n ⎡⎤+==-⎢⎥++⎣⎦.222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦ (2222)11111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦.34.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n+=---,*n ∈N .(Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174na a a +++<.【答案】.(1) 解:2121233n n S a n n n+=---,n N *∈.∴ 当1n =时,112212221233a S a a ==---=-又11a =,24a ∴= (2)解:2121233n n S a n n n+=---,n N *∈.∴ ()()321112122333n n n n n n S na n n n na ++++=---=-①∴当2n ≥时,()()()111213n n n n n S n a =-+=--②由① — ②,得 ()()112211n n n n S S na n a n n -+-=---+1222n n n a S S -=-()()1211n n n a na n a n n +∴=---+ 111n na a n n +∴-=+ ∴数列n a n ⎧⎫⎨⎬⎩⎭是以首项为111a =,公差为1的等差数列. ()()2111,2n n a n n a n n n∴=+⨯-=∴=≥当1n =时,上式显然成立. 2*,n a n n N ∴=∈ (3)证明:由(2)知,2*,n a n n N =∈①当1n =时,11714a =<,∴原不等式成立.②当2n =时,121117144a a +=+<,∴原不等式亦成立.③当3n ≥时, ()()()()221111,11n n n nn n >-⋅+∴<-⋅+()()()2221211111111111121324211na a a nn n n n ∴+++=+++<+++++⨯⨯-⋅-⋅+111111111111111121322423522211n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111112132435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭ 1111171117121214214n n n n ⎛⎫⎛⎫=++--=+--< ⎪ ⎪++⎝⎭⎝⎭ ∴当3n ≥时,,∴原不等式亦成立.综上,对一切正整数n ,有1211174na a a +++<.35.(2013年高考北京卷(理))已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n项之后各项1n a +,2n a +,的最小值记为B n ,d n =A n -B n .(I)若{a n }为2,1,4,3,2,1,4,3,,是一个周期为4的数列(即对任意n ∈N *,4n n a a +=),写出d 1,d 2,d 3,d 4的值; (II)设d 为非负整数,证明:d n =-d (n =1,2,3)的充分必要条件为{a n }为公差为d 的等差数列; (III)证明:若a 1=2,d n =1(n =1,2,3,),则{a n }的项只能是1或者2,且有无穷多项为1.【答案】(I)12341, 3.d d d d ====(II)(充分性)因为{}n a 是公差为d 的等差数列,且0d ≥,所以12.n a a a ≤≤≤≤ 因此n n A a =,1n n B a +=,1(1,2,3,)n n n d a a d n +=-=-= . (必要性)因为0(1,2,3,)n d d n =-≤= ,所以n n n n A B d B =+≤. 又因为n n a A ≤,1n n a B +≥,所以1n n a a +≤. 于是n n A a =,1n n B a +=. 因此1n n n n n a a B A d d +-=-=-=,即{}n a 是公差为d 的等差数列.(III)因为112,1a d ==,所以112A a ==,1111B A d =-=.故对任意11,1n n a B ≥≥=. 假设{}(2)n a n ≥中存在大于2的项.设m 为满足2n a >的最小正整数,则2m ≥,并且对任意1,2k k m a ≤<≤,. 又因为12a =,所以12m A -=,且2m m A a =>.于是211m m m B A d =->-=,{}1min ,2m m m B a B -=≥. 故111220m m m d A B ---=-≤-=,与11m d -=矛盾.所以对于任意1n ≥,有2n a ≤,即非负整数列{}n a 的各项只能为1或2. 因此对任意1n ≥,12n a a ≤=,所以2n A =. 故211n n n B A d =-=-=. 因此对于任意正整数n ,存在m 满足m n >,且1m a =,即数列{}n a 有无穷多项为1.36.(2013年高考陕西卷(理))设{}n a 是公比为q 的等比数列. (Ⅰ) 导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}na +不是等比数列.【答案】解:(Ⅰ) 分两种情况讨论.①.}{111111na a a a S a a q n n =+++== 的常数数列,所以是首项为时,数列当 ②n n n n n n qa qa qa qa qS a a a a S q ++++=⇒++++=≠--1211211 时,当.上面两式错位相减: .)()()()-11123121n n n n n qa a qa qa a qa a qa a a S q -=--+-+-+=- (qq a qqa a S nnn -1)1(.-111-=-=⇒.③综上,⎪⎩⎪⎨⎧≠--==)1(,1)1()1(,11q qq a q na S n n(Ⅱ) 使用反证法.设{}n a 是公比q ≠1的等比数列, 假设数列{1}n a +是等比数列.则①当1*+∈∃n a N n ,使得=0成立,则{1}n a +不是等比数列.②当01*≠+∈∀n a N n ,使得成立,则恒为常数=++=++-+11111111n nn n qa q a a a1,0111111=≠⇒+=+⇒-q a qa q a n n 时当.这与题目条件q ≠1矛盾.③综上两种情况,假设数列{1}n a +是等比数列均不成立,所以当q ≠1时, 数列{1}na +不是等比数列.。

2009-2013年北京高考真题--导数大题汇编

2009-2013年北京高考真题--导数大题汇编

_________高考题库,荣誉出品__________●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●2009-2013年北京高考真题--导数大题汇编5年高考真题分类汇编-教师卷题号一总分得分△注意事项:1.本系列试题包含2009至2013年北京市高考真题,并经过精心校对。

2.本系列文档包含全部试题分类汇编,命名规律为:2009-2013年北京高考真题--******试题汇编。

3.本系列试题涵盖北京高考所有学科,均有相关实体书出售。

i.、解答题(本大题共5小题,共0分)1.(2013年北京高考真题数学(文))已知函数2()sin cos f x x x x x (1)若曲线()y f x 在点(,())a f a 处与直线y b 相切,求a 与b 的值。

(2)若曲线()y f x 与直线y b 有两个不同的交点,求b 的取值范围。

【答案解析】解:(1)'()2cos (2cos )f x x x x x x 因为曲线()y f x 在点(,())a f a 处的切线为y b 所以'()0()f a f a b ,即22cos 0sin cos a a a a a a a b ,解得01a b (2)因为2cos 0x 所以当0x 时'()0f x ,()f x 单调递增当0x 时'()0f x ,()f x 单调递减所以当0x 时,()f x 取得最小值(0)1f ,所以b 的取值范围是(1,)2.(2012年北京高考真题数学(文))。

十年高考真题汇编之专题06 数列(新课标1)(教师版)

十年高考真题汇编之专题06 数列(新课标1)(教师版)

一.基础题组1. 【2013课标全国Ⅰ,理7】设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ). A .3 B .4 C .5 D .6 【答案】C【解析】∵S m -1=-2,S m =0,S m +1=3,∴a m =S m -S m -1=0-(-2)=2,a m +1=S m +1-S m =3-0=3. ∴d =a m +1-a m =3-2=1.∵S m =ma 1+12m m (-)×1=0,∴112m a -=-. 又∵a m +1=a 1+m ×1=3,∴132m m --+=.∴m =5.故选C. 2. 【2012全国,理5】已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5 D .-7 【答案】D3. 【2008全国1,理5】已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .23【答案】C.【解析】由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=. 4. 【2013课标全国Ⅰ,理14】若数列{a n }的前n 项和2133n n S a =+,则{a n }的通项公式是a n =__________. 【答案】(-2)n -1 【解析】∵2133n n S a =+,①∴当n ≥2时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-,即1n n a a -=-2.∵a 1=S 1=12133a +,∴a 1=1. ∴{a n }是以1为首项,-2为公比的等比数列,a n =(-2)n -1.5. 【2009全国卷Ⅰ,理14】设等差数列{a n }的前n 项和为S n .若S 9=72,则a 2+a 4+a 9=___________. 【答案】24【解析】∵2)(972219a a S +==,∴a 1+a 9=16. ∵a 1+a 9=2a 5,∴a 5=8.∴a 2+a 4+a 9=a 1+a 5+a 9=3a 5=24.6. 【2011全国新课标,理17】等比数列{a n }的各项均为正数,且2a 1+3a 2=1,23239a a a =.(1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列1{}nb 的前n 项和. (2)31323(1)log log log (12)2n n n n b a a a n +=+++=-+++=-故12112()(1)1nb n n n n =-=--++, 121111111122(1)()()22311n nb b b n n n ⎡⎤+++=--+-++-=-⎢⎥++⎣⎦. 所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为21nn -+. 7. 【2010新课标,理17】(12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1. (1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n . 【解析】 (1)由已知,当n≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n·22n -1知S n =1·2+2·23+3·25+…+n·22n -1. ① 从而22·S n =1·23+2·25+3·27+…+n·22n +1. ② ①-②,得(1-22)S n =2+23+25+…+22n -1-n·22n +1, 即S n =19[(3n -1)22n +1+2]. 8. 【2005全国1,理19】设等比数列}{n a 的公比为q ,前n 项和S n >0(n=1,2,…) (1)求q 的取值范围;(2)设,2312++-=n n n a a b 记}{n b 的前n 项和为T n ,试比较S n 和T n 的大小.解①式得q>1;解②,由于n 可为奇数、可为偶数,得-1<q<1. 综上,q 的取值范围是).,0()0,1(+∞⋃-(Ⅱ)由得1223++-=n a n a a b .)23(),23(22n n n n S q q T q q a b -=-=于是)123(2--=-q q S S T n n n).2)(21(-+=q q S n.,0,2,21;,0,0221;,0,2211,,001,0n n n n n n n n n n n n n S T S T q q S T S T q q S T S T q q q q S ==-=-=<<-≠<<->>->-<<-><<->即时或当即时且当即时或当所以或且又因为 9. 【2015高考新课标1,理17】n S 为数列{n a }的前n 项和.已知n a >0,2n n a a +=43n S +.(Ⅰ)求{n a }的通项公式; (Ⅱ)设11n n n b a a +=,求数列{n b }的前n 项和. 【答案】(Ⅰ)21n +(Ⅱ)11646n -+ 【解析】试题分析:(Ⅰ)先用数列第n 项与前n 项和的关系求出数列{n a }的递推公式,可以判断数列{n a }是等差数列,利用等差数列的通项公式即可写出数列{n a }的通项公式;(Ⅱ)根据(Ⅰ)数列{n b }的通项公式,再用拆项消去法求其前n 项和.【考点定位】数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法 10.【2016高考新课标理数3】已知等差数列{}n a 前9项的和为27,10=8a ,则100=a (A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.【考点】等差数列及其运算【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.二.能力题组1. 【2011全国,理4】设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6 D .5 【答案】 D2. 【2006全国,理10】设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80则a 11+a 12+a 13=( ) (A )120 (B )105 (C )90 (D )75 【答案】 B 【解析】3. 【2012全国,理16】数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为__________. 【答案】1 830【解析】:∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1, ∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+ (234)15(10234)18302⨯+=.4. 【2014课标Ⅰ,理17】已知数列{}n a 的前n 项和为n S ,11a =,0n a ≠,11n n n a a S λ+=-,其中λ为常数, (I )证明:2n n a a λ+-=;(II )是否存在λ,使得{}n a 为等差数列?并说明理由. 【答案】(I )详见解析;(II )存在,4λ=.5. 【2009全国卷Ⅰ,理20】 在数列{a n }中, a 1=1,a n+1=(n 11+)a n +n n 21+. (Ⅰ)设na b nn =,求数列{b n }的通项公式; (Ⅱ)求数列{a n }的前n 项和S n . 【解析】(Ⅰ)由已知得b 1=a 1=1,且n n n n a n a 2111+=++,即n n n b b 211+=+. 从而2112+=b b ,22321+=b b , (1)121--+=n n n b b (n≥2).于是1121212212121---=++++=n n n b b (n≥2).又b 1=1.故所求的通项公式1212--=n n b .(Ⅱ)由(Ⅰ)知1122)212(---=-=n n n nn n a .令∑=-=nk k n kT 112,则∑=-=nk k n kT 1222.于是T n =2T n -T n =∑-=---111221n k n k n =1224-+-n n .又)1()2(1+=∑=n n k nk ,所以422)1(1-+++=-n n n n n S . 6.【2016高考新课标理数1】设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值为 .【答案】64【考点】等比数列及其应用【名师点睛】高考中数列客观题大多具有小、巧、活的特点,在解答时要注意方程思想及数列相关性质的应用,尽量避免小题大做.7.【2017新课标1,理4】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .8【答案】C 【解析】试题分析:设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C.【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.三.拔高题组1. 【2013课标全国Ⅰ,理12】设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=2n n c a +,c n +1=2n nb a +,则( ). A .{S n }为递减数列 B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列 【答案】B 【解析】2. 【2011全国,理20】设数列{a n }满足a 1=0且111111n na a +-=--.(1)求{a n }的通项公式; (2)设11n n a b n+-=,记1nn kk S b==∑,证明:S n <1.【解析】(1)由题设111111n na a +-=--,即{11na -}是公差为1的等差数列. 又111n a =-,故11nn a =-. 所以11n a n=-. (2)由(1)得1111111n n a n n b nn n n n +-+-===-+⋅+, 11111()1111nnn k k k S b k k n ====-=-<++∑∑. 3. 【2006全国,理22】(本小题满分12分)设数列{a n }的前n 项和,3,2,1,32313421=+⨯-=+n n nn a S …。

2013年高考理数真题试卷(北京卷)及解析

2013年高考理数真题试卷(北京卷)及解析

2013年高考理数真题试卷(北京卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}2.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.若双曲线x2a2−y2b2=1的离心率为√3,则其渐近线方程为()A.y=±2xB.y=±√2xC.y=±12xD.y=±√22x4.设关于x,y的不等式组{2x−y+1>0x+m<0y−m>0表示的平面区域内存在点P(x, y),满足x﹣2y=2,求得m的取值范围是()A.(−∞,43)B.(−∞,13)C.(−∞,−23)D.(−∞,−53)第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)答案第2页,总12页……装…………○…………订………○…………线……※※不※※要※※在※※装※※订※※线※※内※※答※※题……装…………○…………订………○…………线……5.在极坐标系中,点(2, π6 )到直线ρsinθ=2的距离等于 .6.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q= ;前n 项和S n = .7.如图,AB 为圆O 的直径,PA 为圆O 的切线,PB 与圆O 相交于D ,若PA=3,PD :DB=9:16,则PD= , AB= .8.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是 .9.向量 a →, b →, c → 在正方形网格中的位置如图所示,若 c →=λa →+μb →(λ,μ∈R),则 λμ = .10.如图,在棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .三、解答题(题型注释)11.在△ABC 中,a=3,b=2 √6 ,∠B=2∠A.(1)求cosA 的值; (2)求c 的值.12.如图是预测到的某地5月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择5月1日至5月13日中的某一天到达该市,并停留2天…………○…………订…………○…………线…………○…:___________班级:___________考号:___________…………○…………订…………○…………线…………○…(1)求此人到达当日空气质量优良的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 13.如图,在三棱柱ABC ﹣A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC⊥平面AA 1C 1C ,AB=3,BC=5.(1)求证:AA 1⊥平面ABC ;(2)求证二面角A 1﹣BC 1﹣B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD⊥A 1B ,并求 BDBC 1的值.14.设l 为曲线C :y=lnxx在点(1,0)处的切线. (1)求l 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线l 的下方. 15.已知A ,B ,C 是椭圆W : x 24+y 2=1 上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由.16.已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n , 第n 项之后各项a n+1 , a n+2…的最小值记为B n , d n =A n ﹣B n . (1)若{a n }为2,1,4,3,2,1,4,3…,是一个周期为4的数列(即对任意n∈N * , a n+4=a n ),写出d 1 , d 2 , d 3 , d 4的值;(2)设d 是非负整数,证明:d n =﹣d (n=1,2,3…)的充分必要条件为{a n }是公差为d 的等差数列;(3)证明:若a 1=2,d n =1(n=1,2,3,…),则{a n }的项只能是1或者2,且有无穷多项为1.答案第4页,总12页…………线……………线…参数答案1.B【解析】1.解:∵A={﹣1,0,1},B={x|﹣1≤x<1}, ∴A∩B={﹣1,0}. 故选B【考点精析】认真审题,首先需要了解集合的交集运算(交集的性质:(1)A∩B A ,A∩B B ,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB ,反之也成立).2.A【解析】2.解:φ=π时,曲线y=sin (2x+φ)=﹣sin2x ,过坐标原点. 但是,曲线y=sin (2x+φ)过坐标原点,即O (0,0)在图象上,将(0,0)代入解析式整理即得sinφ=0,φ=kπ,k∈Z,不一定有φ=π. 故“φ=π”是“曲线y=sin (2x+φ)过坐标原点”的充分而不必要条件. 故选A . 3.B【解析】3.解:由双曲线的离心率 √3 ,可知c= √3 a , 又a 2+b 2=c 2 , 所以b= √2 a ,所以双曲线的渐近线方程为:y= ±ba x =± √2 x .故选B . 4.C【解析】4.解:先根据约束条件 {2x −y +1>0x +m <0y −m >0画出可行域,要使可行域存在,必有m <﹣2m+1,要求可行域包含直线y= 12 x ﹣1上的点,只要边界点(﹣m ,1﹣2m )在直线y= 12 x ﹣1的上方,且(﹣m ,m )在直线y= 12 x ﹣1的下方,故得不等式组 {m <−2m +11−2m >−12−1m <−12m −1,解之得:m <﹣ 23 .…外…………○…………装………○…………订………○…………线…………○…学校:___________姓名_________班级:___________考号:_______…内…………○…………装………○…………订………○…………线…………○…故选C .5.1【解析】5.解:在极坐标系中,点 (2,π6) 化为直角坐标为( √3 ,1),直线ρsinθ=2化为直角坐标方程为y=2,( √3 ,1),到y=2的距离1,即为点 (2,π6) 到直线ρsinθ=2的距离1,所以答案是:1.【考点精析】关于本题考查的点到直线的距离公式,需要了解点到直线的距离为:才能得出正确答案.6.2;2n+1﹣2【解析】6.解:设等比数列{a n }的公比为q ,∵a 2+a 4=20,a 3+a 5=40,∴ {a 1q +a 1q 3=20a 1q 2+a 1q 4=40,解得 {a 1=2q =2 .∴ S n =a (q n −1)1q−1= 2×(2n −1)2−1 =2n+1﹣2.所以答案是:2,2n+1﹣2.【考点精析】本题主要考查了等比数列的通项公式(及其变式)和等比数列的前n 项和公式的相关知识点,需要掌握通项公式:;前项和公式:才能正确解答此题.7.95;4【解析】7.解:由PD :DB=9:16,可设PD=9x ,DB=16x . 2答案第6页,总12页外…………○…………装…………○…………订※※请※※不※※要※※在※※装※※订※※线※※内内…………○…………装…………○…………订∴32=9x•(9x+16x ),化为 x 2=125 ,∴ x =15.∴PD=9x= 95 ,PB=25x=5.∵AB 为圆O 的直径,PA 为圆O 的切线,∴AB⊥PA. ∴ AB =√PB 2−PA 2 = √52−32=4. 故答案分别为 95 ,4.8.96【解析】8.解:5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其它号码各为一组,分给4人,共有4× A 44=96种.所以答案是:96. 9.4【解析】9.解:以向量 a →、 b →的公共点为坐标原点,建立如图直角坐标系 可得 a →=(﹣1,1), b →=(6,2), c →=(﹣1,﹣3) ∵ c →=λa →+μb (λ,μ∈R)→ ∴ {−1=−λ+6μ−3=λ+2μ,解之得λ=﹣2且μ=﹣ 12因此, λμ = −2−12=4 所以答案是:4【考点精析】通过灵活运用平面向量的基本定理及其意义,掌握如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使即可以解答此题.10.2√55【解析】10.解:如图所示,取B 1C 1的中点F ,连接EF ,ED 1 , ∴CC 1∥EF,又EF ⊂平面D 1EF ,CC 1⊄平面D 1EF ,………订…………○…………线…………○…___________考号:___________………订…………○…………线…………○…∴CC 1∥平面D 1EF .∴直线C 1C 上任一点到平面D 1EF 的距离是两条异面直线D 1E 与CC 1的距离. 过点C 1作C 1M⊥D 1F ,∵平面D 1EF⊥平面A 1B 1C 1D 1 . ∴C 1M⊥平面D 1EF .过点M 作MP∥EF 交D 1E 于点P ,则MP∥C 1C . 取C 1N=MP ,连接PN ,则四边形MPNC 1是矩形. 可得NP⊥平面D 1EF ,在Rt△D 1C 1F 中,C 1M•D 1F=D 1C 1•C 1F ,得 C 1M =√22+11=2√55. ∴点P 到直线CC 1的距离的最小值为 2√55. 所以答案是2√5511.(1)解:由条件在△ABC 中,a=3, b =2√6 ,∠B=2∠A, 利用正弦定理可得 a sinA =b sinB ,即 3sinA =2√6sin2A = 2√62sinAcosA . 解得cosA= √63 .(2)解:由余弦定理可得 a 2=b 2+c 2﹣2bc•cosA,即 9= (2√6)2+c 2﹣2×2 √6×c× √63 , 即 c 2﹣8c+15=0.解方程求得 c=5,或 c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得 B=90°,A=C=45°, △ABC 是等腰直角三角形,但此时不满足a 2+c 2=b 2,故舍去. 当c=5时,求得cosB= a 2+c 2−b 22ac = 13 ,cosA= b 2+c 2−a 22bc = √63 ,∴cos2A=2cos 2A ﹣1= 13 =cosB ,∴B=2A,满足条件.综上,c=5.【解析】11.(1)由条件利用正弦定理和二倍角公式求得cosA 的值.(2)由条件利用余弦定理,解方程求得c 的值,再进行检验,从而得出结论.【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:答案第8页,总12页…………○线…………○),还要掌握余弦定理的定义(余弦定理:;;)的相关知识才是答题的关键.12.(1)解:设A i 表示事件“此人于5月i 日到达该地”(i=1,2,…,13) 依据题意P (A i )= 113 ,A i ∩A j =∅(i≠j)设B 表示事件“此人到达当日空气质量优良”,则P (B )= 613(2)解:X 的所有可能取值为0,1,2 P (X=0)= 513 ,P (X=1)= 413 ,P (X=2)= 413 ∴X 的数学期望为E (X )= 1213(3)解:从5月5日开始连续三天的空气质量指数方差最大【解析】12.(1)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(2)由题意可知X 所有可能取值为0,1,2,得出P (X=0),P (X=1),p (x=2)及分布列与数学期望;(3)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【考点精析】通过灵活运用极差、方差与标准差,掌握标准差和方差越大,数据的离散程度越大;标准差和方程为0时,样本各数据全相等,数据没有离散性;方差与原始数据单位不同,解决实际问题时,多采用标准差即可以解答此题. 13.(1)证明:∵AA 1C 1C 是正方形,∴AA 1⊥AC.又∵平面ABC⊥平面AA 1C 1C ,平面ABC∩平面AA 1C 1C=AC , ∴AA 1⊥平面ABC .(2)解:由AC=4,BC=5,AB=3. ∴AC 2+AB 2=BC 2,∴AB⊥AC.建立如图所示的空间直角坐标系,则A 1(0,0,4),B (0,3,0),B 1(0,3,4),C 1(4,0,4),∴ BC 1→=(4,−3,4) , BA 1→=(0,−3,4) , BB 1→=(0,0,4) .设平面A 1BC 1的法向量为 n 1→=(x 1,y 1,z 1) ,平面B 1BC 1的法向量为 n 2→=(x 2,y 2,z 2).………○…………装…………○学校:___________姓名:___________班………○…………装…………○则 {n 1→⋅BC 1→=4x 1−3y 1+4z 1=0n 1→⋅BA 1→=−3y 1+4z 1=0,令y 1=4,解得x 1=0,z 1=3,∴ n 1→=(0,4,3) .{n 2→⋅BC 1→=4x 2−3y 2+4z 2=0n 2→⋅BA 1→=4z 2=0,令x 2=3,解得y 2=4,z 2=0,∴ n 2→=(3,4,0) .cos〈n 1→⋅n 2→〉 = n 1→⋅n 2→|n 1→|⋅|n 2→|= √25⋅√25 = 1625 .∴二面角A 1﹣BC 1﹣B 1的余弦值为 1625 .(3)证明:设点D 的竖坐标为t ,(0<t <4),在平面BCC 1B 1中作DE⊥BC 于E ,可得D (t,34(4−t),t) ,∴ AD → = (t,34(4−t),t) , A 1B →=(0,3,﹣4),∵ AD →⊥A 1B → ,∴ AD →⋅A 1B →=0 , ∴ 0+94(4−t)−4t =0 ,解得t= 3625 .∴ BD BC 1=DE CC 1=925 .【解析】13.(1)利用AA 1C 1C 是正方形,可得AA 1⊥AC,再利用面面垂直的性质即可证明;(2)利用勾股定理的逆定理可得AB⊥AC.通过建立空间直角坐标系,利用两个平面的法向量的夹角即可得到二面角;(3)设点D 的竖坐标为t ,(0<t <4),在平面BCC 1B 1中作DE⊥BC 于E ,可得D (t,34(4−t),t) ,利用向量垂直于数量积得关系即可得出.【考点精析】本题主要考查了直线与平面垂直的判定的相关知识点,需要掌握一条直线与答案第10页,总12页相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能正确解答此题. 14.(1)解:∵ y =lnx x∴ y ′=1−lnxx 2∴l 的斜率k=y′|x=1=1 ∴l 的方程为y=x ﹣1(2)证明:令f (x )=x (x ﹣1)﹣lnx ,(x >0)曲线C 在直线l 的下方,即f (x )=x (x ﹣1)﹣lnx >0,则f′(x )=2x ﹣1﹣ 1x =(2x+1)(x−1)x∴f(x )在(0,1)上单调递减,在(1,+∞)上单调递增,又f (1)=0 ∴x∈(0,1)时,f (x )>0,即 lnxx<x ﹣1 x∈(1,+∞)时,f (x )>0,即lnxx<x ﹣1 即除切点(1,0)之外,曲线C 在直线l 的下方【解析】14.(1)求出切点处切线斜率,代入代入点斜式方程,可以求解;(2)利用导数分析函数的单调性,进而分析出函数图象的形状,可得结论. 15.(1)解:∵四边形OABC 为菱形,B 是椭圆的右顶点(2,0) ∴直线AC 是BO 的垂直平分线,可得AC 方程为x=1 设A (1,t ),得 124+t 2=1 ,解之得t= √32 (舍负)∴A 的坐标为(1, √32 ),同理可得C 的坐标为(1,﹣ √32 ) 因此,|AC|= √3 ,可得菱形OABC 的面积为S= 12 |AC|•|B0|= √3 ;(2)解:∵四边形OABC 为菱形,∴|OA|=|OC|, 设|OA|=|OC|=r (r >1),得A 、C 两点是圆x 2+y 2=r 2 与椭圆W: x 24+y 2=1 的公共点,解之得 3x 24 =r 2﹣1设A 、C 两点横坐标分别为x 1、x 2,可得A 、C 两点的横坐标满足 x 1=x 2=2√33• √r 2−1 ,或x 1=2√33• √r 2−1 且x 2=﹣2√33• √r 2−1 ,①当x 1=x 2= 2√33• √r 2−1 时,可得若四边形OABC 为菱形,则B 点必定是右顶点(2,0);②若x 1=2√33• √2−1 且x 2=﹣ 2√33• √2−1 ,则x 1+x 2=0,第11页,总12页…………线……………………线…………可得AC 的中点必定是原点O ,因此A 、O 、C 共线,可得不存在满足条件的菱形OABC 综上所述,可得当点B 不是W 的顶点时,四边形OABC 不可能为菱形.【解析】15.(1)根据B 的坐标为(2,0)且AC 是OB 的垂直平分线,结合椭圆方程算出A 、C 两点的坐标,从而得到线段AC 的长等于 √3 .再结合OB 的长为2并利用菱形的面积公式,即可算出此时菱形OABC 的面积;(2)若四边形OABC 为菱形,根据|OA|=|OC|与椭圆的方程联解,算出A 、C的横坐标满足 3x 24 =r 2﹣1,从而得到A 、C 的横坐标相等或互为相反数.再分两种情况加以讨论,即可得到当点B 不是W 的顶点时,四边形OABC 不可能为菱形. 16.(1)解:若{a n }为2,1,4,3,2,1,4,3…,是一个周期为4的数列,∴d 1=A 1﹣B 1=2﹣1=1,d 2=A 2﹣B 2=2﹣1=1,d 3=A 3﹣B 3=4﹣1=3,d 4=A 4﹣B 4=4﹣1=3.(2)证明:充分性:设d 是非负整数,若{a n }是公差为d 的等差数列,则a n =a 1+(n ﹣1)d , ∴A n =a n =a 1+(n ﹣1)d ,B n =a n+1=a 1+nd ,∴d n =A n ﹣B n =﹣d ,(n=1,2,3,4…).必要性:若 d n =A n ﹣B n =﹣d ,(n=1,2,3,4…).假设a k 是第一个使a k ﹣a k ﹣1<0的项, 则d k =A k ﹣B k =a k ﹣1﹣B k ≥a k ﹣1﹣a k >0,这与d n =﹣d≤0相矛盾,故{a n }是一个不减的数列. ∴d n =A n ﹣B n =a n ﹣a n+1=﹣d ,即 a n+1﹣a n =d ,故{a n }是公差为d 的等差数列.(3)证明:若a 1=2,d n =1(n=1,2,3,…),首先,{a n }的项不能等于零,否则d 1=2﹣0=2,矛盾.而且还能得到{a n }的项不能超过2,用反证法证明如下:假设{a n }的项中,有超过2的,设a m 是第一个大于2的项,由于{a n }的项中一定有1,否则与d 1=1矛盾.当n≥m 时,a n ≥2,否则与d m =1矛盾.因此,存在最大的i 在2到m ﹣1之间,使a i =1,此时,d i =A i ﹣B i =2﹣B i ≤2﹣2=0,矛盾. 综上,{a n }的项不能超过2,故{a n }的项只能是1或者2. 下面用反证法证明{a n }的项中,有无穷多项为1.若a k 是最后一个1,则a k 是后边的各项的最小值都等于2,故d k =A k ﹣B k =2﹣2=0,矛盾, 故{a n }的项中,有无穷多项为1.综上可得,{a n }的项只能是1或者2,且有无穷多项为1.答案第12页,总12页………○…………线………※※题※※………○…………线………【解析】16.(1)根据条件以及d n =A n ﹣B n 的定义,直接求得d 1 , d 2 , d 3 , d 4的值.(2)设d 是非负整数,若{a n }是公差为d 的等差数列,则a n =a 1+(n ﹣1)d ,从而证得d n =A n ﹣B n =﹣d ,(n=1,2,3,4…).若d n =A n ﹣B n =﹣d ,(n=1,2,3,4…).可得{a n }是一个不减的数列,求得d n =A n ﹣B n =﹣d ,即 a n+1﹣a n =d ,即{a n }是公差为d 的等差数列,命题得证.(3)若a 1=2,d n =1(n=1,2,3,…),则{a n }的项不能等于零,再用反证法得到{a n }的项不能超过2,从而证得命题.【考点精析】关于本题考查的等差关系的确定和等比关系的确定,需要了解如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即-=d ,(n≥2,n∈N )那么这个数列就叫做等差数列;等比数列可以通过定义法、中项法、通项公式法、前n 项和法进行判断才能得出正确答案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009-2013年北京高考真题--数列试题汇编
5年高考真题分类汇编-教师卷
△注意事项:
1.本系列试题包含2009至2013年北京市高考真题,并经过精心校对。

2.本系列文档包含全部试题分类汇编,命名规律为: 2009-2013年北京高考真题--******试题汇编。

3.本系列试题涵盖北京高考所有学科,均有相关实体书出售。

i. 、填空题(本大题共4小题,共20分)
1.(2013年北京高考真题数学(文))若等比数列{}n a 满足2420a a +=,3540a a +=,则公
比q =;前n 项和n S =。

【答案解析】2,1
2
1n +-
2.(2012年北京高考真题数学(文))已知{}n a 为等差数列,n S 为其前n 项和.
若11
2
a =,23S a =,则2a =;
n S =.
【答案解析】1
1
(1)4
n n + 3.(2011年北京高考真题数学(文))在等比数列{a n }中,a 1=
12
,a 4=4,则公比q=______________;a 1+a 2+…+a n = _________________. 【答案解析】2 2
12
1
-
-n
4.(2009年北京高考真题数学(文))若数列{}n a 满足:111,2()n n a a a n N *+==∈,则5a =;
前8项的和8S =
.(用数字作答)
【答案解析】16 255
姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●
ii.
、选择题(本大题共2小题,每小题5分,共10分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)
5.(2012年北京高考真题数学(文))已知{}n a 为等比数列,下面结论中正确的是
【答案解析】B
6.(2010年北京高考真题数学(文))在等比数列中,,
公比.若,则m=
(A )9 (B )10 (C )11 (D )12 【答案解析】C
{}n a 11a =1q ≠12345m a a a a a a =(A )1322a a a +≥ (B )2221322a a a +≥ (C )若13a a =,则12a a = (D )若31a a >,则42a a >。

相关文档
最新文档