基于反褶积的探地雷达高分辨率处理方法

基于反褶积的探地雷达高分辨率处理方法
基于反褶积的探地雷达高分辨率处理方法

基于反褶积的探地雷达高分辨率处理方法

苏茂鑫;李术才;薛翊国;邱道宏

【期刊名称】《浙江大学学报(工学版)》

【年(卷),期】2010(044)006

【摘要】为了降低探地雷达探测过程中衰减、频散及其他干扰所造成的影响,提出一种基于反褶积技术的探地雷达高分辨率处理方法.该方法建立在地层系统响应模型基础之上,通过从原始记录中求取地层频谱校正因子,对原始记录的频谱进行校正,达到改善探地雷达剖面记录,提高探测分辨率目的.地层频谱校正因子决定了地振频谱校正方法应用效果的好坏,通过研究因子的求取和选择方法,对比分析校正前后的频谱和剖面情况,同时与尖脉冲反褶积和带通滤波的应用效果做比较,结果表明:地层频谱校正方法相对于传统的尖脉冲反褶积和带通滤波方法更能改善整个剖面的信噪比,提高深部信号的分辨率.

【总页数】6页(1201-1206)

【关键词】地层频谱校正;系统响应;高分辨率;反褶积

【作者】苏茂鑫;李术才;薛翊国;邱道宏

【作者单位】山东大学,岩土与结构工程研究中心,山东,济南,250061;山东大学,岩土与结构工程研究中心,山东,济南,250061;山东大学,岩土与结构工程研究中心,山东,济南,250061;山东大学,岩土与结构工程研究中心,山东,济南,250061【正文语种】中文

【中图分类】TU195;P631.4

【相关文献】

1.用探地雷达高分辨率圈定土层和岩层 [J], Davis.JL; 左德坤

合成孔径雷达概述(SAR)

合成孔径雷达概述 1合成孔径雷达简介 (2) 1.1 合成孔径雷达的概念 (2) 1.2 合成孔径雷达的分类 (3) 1.3 合成孔径雷达(SAR)的特点 (4) 2合成孔径雷达的发展历史 (5) 2.1 国外合成孔径雷达的发展历程及现状 (5) 2.1.1 合成孔径雷达发展历程表 (6) 2.1.2 世界各国的SAR系统 (9) 2.2 我国的发展概况 (11) 2.2.1 我国SAR研究历程表 (11) 2.2.2 国内各单位的研究现状 (12) 2.2.2.1 电子科技大学 (12) 2.2.2.2 中科院电子所 (12) 2.2.2.3 国防科技大学 (13) 2.2.2.4 西安电子科技大学 (13) 3 合成孔径雷达的应用 (13) 4 合成孔径雷达的发展趋势 (14) 4.1 多参数SAR系统 (15) 4.2 聚束SAR (15) 4.3极化干涉SAR(POLINSAR) (16) 4.4合成孔径激光雷达(Synthetic Aperture Ladar) (16) 4.5 小型化成为星载合成孔径雷达发展的主要趋势 (17) 4.6 性能技术指标不断提高 (17) 4.7 多功能、多模式是未来星载SAR的主要特征 (18) 4.8 雷达与可见光卫星的多星组网是主要的使用模式 (18) 4.9 分布SAR成为一种很有发展潜力的星载合成孔径雷达 (18) 4.10 星载合成孔径雷达的干扰与反干扰成为电子战的重要内容 (19) 4.11 军用和民用卫星的界线越来越不明显 (19) 5 与SAR相关技术的研究动态 (20) 5.1 国内外SAR图像相干斑抑制的研究现状 (20) 5.2 合成孔径雷达干扰技术的现状和发展 (20) 5.3 SAR图像目标检测与识别 (22) 5.4 恒虚警技术的研究现状与发展动向 (25) 5.5 SAR图像变化检测方法 (27) 5.6 干涉合成孔径雷达 (31) 5.7 机载合成孔径雷达技术发展动态 (33) 5.8 SAR图像地理编码技术的发展状况 (35) 5.9 星载SAR天线方向图在轨测试的发展状况 (37) 5.10 逆合成孔径雷达的发展动态 (38) 5.11 干涉合成孔径雷达的发展简史与应用 (38)

论反褶积的概念及类型

论反褶积的概念及类型 论文提要 地震勘探技术在油气田勘探开发中起着重要作用。地震勘探包括地震采集、处理和解释三大部分。地震采集是利用野外地震采集系统获取地震数据处理所需的反射波数据;地震数据处理的目的是对地震采集数据做各种处理提高反射波数据的信噪比、分辨率和保真度以便于解释;地震解释分为构造和岩性解释,目的是确定地震反射波数据的地质特征和意义。地震数据处理依赖于地震采集数据的质量,处理结果直接影响解释的正确性和精确度。探讨地震处理的基本原理和基本方法有助于全面利用采集数据,充分利用处理方法,为地震解释提供可靠的处理成果剖面。 正文 地震数据处理主要包括地震反褶积、叠加和偏移成像三大技术。地震反褶积是通过压缩地震子波提高地震时间分辨率;叠加的目的是压制随机噪声提高地震信噪比;偏移成像包括射线偏移和波动方程偏移两大类,主要目的是实现反射界面的空间归位和恢复反射界面空间的波场特征、振幅变化和反射系数,提高地震空间分辨率和地震保真度。 反褶积是地震资料最常用和最重要的处理方法之一。反褶积可在叠前做也可在叠后做。叠前反褶积的目的是把地震子波压缩成尖脉冲来改进时间分辨率。叠后的预测反褶积主要是消除海上鸣震(交混回响)等多次波干扰,突出有效波,提高地震资料的信噪比。在常规处理中反褶积的基础是最佳维纳滤波。反褶积后要用某种类型的道均衡,以使数据达到通常的均方根振幅水平。 一、反褶积的概念 (一)反褶积问题的提出 实际地震记录由于受复杂子波的作用和干扰的影响,分辨能力较低,地质界面上各反射波互相叠加、彼此干涉,成为一复杂的形式,不能通过地质资料的解释,得到准确的地质界面。 反褶积的目的就是要通过某种数学方法,压缩地震子波,使地震记录分辨率提高,从而近似反射系数剖面,得到地下介质精确的反射结构。 假定地震记录不含干扰,何以得到 x(t)=b(t)*ξ(t) (1-1) 对应的频率域形式 X(ω)=B(ω)×Ξ(ω)(1-2)令A(ω)=1/ B(ω)(1-3)则可得到Ξ(ω)= A(ω)×X(ω)(1-4) 写成时间域形式ξ(t)=a(t)* x(t)(1-5) 由x(t)=b(t)* ξ(t) 和ξ(t)=a(t)* x(t)可以看到:前者由子波和反射系数得到地震记录,是一褶积过程;后者则反过来,由一函数与地震记录褶积得到反射系数,这

雷达系统中杂波信号的建模与仿真

1.雷达系统中杂波信号的建模与仿真目的 雷达的基本工作原理是利用目标对雷达波的散射特性探测和识别目标。然而目标存在于周围的自然环境中,环境对雷达电磁波也会产生散射,从而对目标信号的检测产生干扰,这些干扰就称为雷达杂波。对雷达杂波的研究并通过相应的信号处理技术可以最大限度的压制杂波干扰,发挥雷达的工作性能。 雷达研制阶段的外场测试不仅耗费大量的人力、物力和财力,而且容易受大气状况影响,延长了研制周期。随着现代数字电子技术和仿真技术的发展,计算机仿真技术被广泛应用于包括雷达系统设计在内的科研生产的各个领域,在一定程度上可以替代外场测试,降低雷达研制的成本和周期。 长期以来,由于对杂波建模与仿真的应用己发展了多种杂波类型和多种建模与仿真方法。然而却缺少一个集合了各种典型杂波产生的成熟的软件包,雷达系统的研究人员在需要用到某一种杂波时,不得不亲自动手,从建立模型到计算机仿真,重复劳动,造成了大量的时间和人力的浪费。因此,建立一个雷达杂波库,就可以使得科研人员在用到杂波时无需重新编制程序,而直接从库中调用杂波生成模块,用来产生杂波数据或是用来构成雷达系统仿真模型,在节省时间和提高仿真效率上的效益是十分可观的。 从七十年代至今已经公布了很多杂波模型,其中有几类是公认的比较合适的模型。而且,杂波建模与仿真技术的发展己有三十多年的历史,己经有了一些比较成熟的理论和行之有效的方法,这就使得建立雷达杂波库具有可行性。 为了能够反映雷达信号处理机的真实性能,同时为改进信号处理方案提供理论依据,雷达杂波仿真模块输出的杂波模拟信号应该能够逼真的反映对象环境的散射环境。模拟杂波的一些重要散射特性影响着雷达对目标的检测和踉踪性能,比如模拟杂波的功率谱特性与雷达的动目标显示滤波器性能有关;模拟杂波的幅度起伏特性与雷达的恒虚警率检测处理性能有关。因此,杂波模拟方案的设计是雷达仿真设计中极其重要的内容,杂波模型的精确性、通用性和灵活性是衡量杂波产生模块的重要指标。 2.Simulink简介 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和

高分三号卫星C波段合成孔径雷达卫星简介

北京揽宇方圆信息技术有限公司 高分三号卫星——世界主流C波段合成孔径雷达卫星简介 高分三号卫星于1月23日正式投入使用,其性能与世界主流C波段SAR卫星相比如据新华社新闻,国防科工局于1月23日宣布,我国首颗1米分辨率合成孔径雷达(SAR)卫星高分三号23日正式投入使用。该卫星将满足我国对高空间分辨SAR遥感数据的需求,主要应用于海洋监测、减灾救灾、气象和水利等领域。 合成孔径雷达技术是重要的对地遥感技术手段,合成孔径雷达卫星是装雷达为主要载荷的卫星,其通过自身发射电磁波并接收地物反射的回波,并进行复杂的信形成视觉效果类似黑白光学图片的合成孔径雷达图像。由于其使用其自己发射的电磁波进电磁波对云、雨和雾霾等大气天气现象具有较强的穿透能力,使得合成孔径雷达卫星可以夜,以及被观测区域上方覆盖各种天气现象时,在特定时间对指定区域进行观测。

高分三号合成孔径雷达卫星并不是世界上第一颗C波段合成孔径雷达卫加拿大于2007年12月发射的RADARSAT-2卫星、欧空局分别于2014年4月和2016年4 Sentinel-1A和Sentinel-1B三颗卫星均工作在C波段。本文就以这四颗卫星为例,对其分析。 首先我们用一个表格对这四颗卫星的总体参数进行大概梳理。 从表中可以看出,高分三号在最高分辨率和最大成像幅宽两个参数上,C波段SAR卫星,并且在设计寿命上面具有一定优势。值得注意的是,高分三号和Senti 均选择了具有高极化隔离度的波导缝隙相控阵天线,使得其在多极化性能方面优于RADAR 值得注意的是,这四颗C波段SAR卫星均选择了轨道高度为700-800km 道,与德国X波段TerraSAR-X卫星的509km轨道相差较大,这其中既有波段带来的影响需求带来的取舍(重访)。如果用一张图同时表示这四颗卫星的轨道,那么

真实和合成孔径雷达

Real and Synthetic Aperture Radar
Real Aperture Radar (RAR) flight direction
azimuth Synthetic Aperture Radar (SAR) flight direction
azimuth
1

Spatial Resolution (1)
2

距离分辨率 与真实孔径雷达距离向分辨率相同。但由于真实孔径 机载雷达一般用短脉冲来实现距离向分辨率,而合成孔 径雷达通常用带宽(脉冲频率的变化范围)为B的线性调 频脉冲来实现作用距离向的良好分辨率。
δr =
1 c cτ = 2 2B
Spatial Resolution (2)
For Real Aperture Radar (Side-looking Radar)
razimuth ?
λR
l cτ 2 sin θ
rground ? range =
For Synthetic Aperture Radar (SAR)
razimuth ?
l 2 c 2 B sin θ
rground ?range =
3

Rr =
τc
2 cos γ
=
ground Range resolution
pulse length × speed of light 2 cos ( depression angle )
Range Resolution (2)
4

合成孔径雷达概述

合成孔径雷达概述 蔡 Beautyhappy521@https://www.360docs.net/doc/086831220.html, 二OO八年三月二十三

1合成孔径雷达简介 (3) 1.1 合成孔径雷达的概念 (3) 1.2 合成孔径雷达的分类 (4) 1.3 合成孔径雷达(SAR)的特点 (5) 2合成孔径雷达的发展历史 (6) 2.1 国外合成孔径雷达的发展历程及现状 (6) 2.1.1 合成孔径雷达发展历程表 (7) 2.1.2 世界各国的SAR系统 (10) 2.2 我国的发展概况 (12) 2.2.1 我国SAR研究历程表 (12) 2.2.2 国内各单位的研究现状 (13) 2.2.2.1 电子科技大学 (13) 2.2.2.2 中科院电子所 (13) 2.2.2.3 国防科技大学 (14) 2.2.2.4 西安电子科技大学 (14) 3 合成孔径雷达的应用 (14) 4 合成孔径雷达的发展趋势 (15) 4.1 多参数SAR系统 (16) 4.2 聚束SAR (16) 4.3极化干涉SAR(POLINSAR) (17) 4.4合成孔径激光雷达(Synthetic Aperture Ladar) (17) 4.5 小型化成为星载合成孔径雷达发展的主要趋势 (18) 4.6 性能技术指标不断提高 (18) 4.7 多功能、多模式是未来星载SAR的主要特征 (19) 4.8 雷达与可见光卫星的多星组网是主要的使用模式 (19) 4.9 分布SAR成为一种很有发展潜力的星载合成孔径雷达 (19) 4.10 星载合成孔径雷达的干扰与反干扰成为电子战的重要内容 (20) 4.11 军用和民用卫星的界线越来越不明显 (20) 5 与SAR相关技术的研究动态 (21) 5.1 国内外SAR图像相干斑抑制的研究现状 (21) 5.2 合成孔径雷达干扰技术的现状和发展 (21) 5.3 SAR图像目标检测与识别 (23) 5.4 恒虚警技术的研究现状与发展动向 (26) 5.5 SAR图像变化检测方法 (28) 5.6 干涉合成孔径雷达 (32) 5.7 机载合成孔径雷达技术发展动态 (34) 5.8 SAR图像地理编码技术的发展状况 (36) 5.9 星载SAR天线方向图在轨测试的发展状况 (38) 5.10 逆合成孔径雷达的发展动态 (39) 5.11 干涉合成孔径雷达的发展简史与应用 (39)

高分辨率合成孔径雷达图像舰船检测方法

2003年第17卷第1期 测试技术学报V ol.17 N o.1 2003(总第43期)JOURNAL OF TEST AND MEASUREMENT TECHNOLOGY (Sum N o .43)文章编号:1671-7449(2003)01-0015-04 高分辨率合成孔径雷达图像舰船检测方法 种劲松,朱敏慧 (中国科学院电子学研究所微波成像技术国家重点实验室,北京100080) 摘 要: 寻找针对高分辨率SA R 图像的舰船目标检测算法.利用K SW 双阈值分割技术,其效果比传统检 测方法好,有利于进一步的目标分类和识别.且必须根据SAR 图像分辨率来选择舰船检测算法. 关键词: 目标检测;图像分割;合成孔径雷达 中图分类号: T N 957.51 文献标识码:A 利用合成孔径雷达(SAR )图像进行舰船检测在海洋遥感科学家中得到高度重视,已经成为SAR 数据重要的海洋应用之一. 在SAR 图像舰船检测方面的研究很多,大多数是使用恒虚警(CFAR)算法[1~4] 针对中低分辨率(25m 以上)的SAR 图像进行的.CFAR 算法是对于给定的虚警概率,根据背景杂波的分布来给出分割阈值.这种方法属于单阈值图像分割,对于中低分辨率图像较适用. 由于SAR 图像逐渐发展到高分辨率,对于舰船目标的研究除了目标检测外,还必须考虑到检测方法是否有利于目标参数提取,从而有利于后续的目标分类和识别.在实际应用中发现,如果将CFAR 算法运用到RADARSAT 精细模式高分辨率图像(分辨率约为8m ),舰船目标的参数提取将很难进行. 本文的研究目的是寻找针对高分辨率SAR 图像的舰船目标检测算法,为此需要先分析高分辨率SAR 图像上舰船目标的特点.1 舰船目标在高分辨率SA R 图像上的特点 在中低分辨率的SAR 图像中,舰船目标是一个、几个或几十个象素组成的强目标,此时对舰船目标的检测问题是典型的点目标检测问题.而在高分辨率的SAR 图像中,舰船目标是具有一定尺寸和一定细节的硬目标,其象素数可达到几百个左右. 真实舰船的首部、中部和尾部的结构是不同的,因此同一舰船的不同部位在高分辨率SA R 图像上必然呈现出不同的灰度,即整个舰船目标的亮度分布是不均匀的.图像中舰船目标由两类点组成.亮度图1 RADARSAT 精细模式舰船图像及其三维细节Fig .1 S hip image of RADARSAT fine m od e and the details 比较高的点是角反射或点 反射(由舰船的上层建筑、 舰桥、桅杆等引起)的结 果,亮度稍低的点是漫反 射的结果(由甲板等引 起).亮度高的点组成强 峰,亮度较低的点组成弱 峰.强峰和弱峰的分布可 以作为目标特征用于目标 分类识别. 图1示出Radarsat 精细模式图像中的舰船目 收稿日期:2002-07-01 作者简介:种劲松(1969-),女,副研究员,博士,主要从事合成孔径雷达图像处理与解译的研究.

探地雷达成像算法研究

探地雷达成像算法研究 摘要 探地雷达(Ground Penetrating Radar,简称GPR)集无损检测、穿透能力强、分辨率高等众多优点而成为检测和识别地下目标的一种有效技术手段。性能优良的探地雷达成像方法有助于精确定位地下目标,同时提高对目标的检测和识别能力,从而推动探地雷达在城市质量监控、地质灾害、考古挖掘、高速公路无损检测、地雷探测等各个方面得到更广泛的应用。 本文以中国电波传播研究所的探地雷达LD-2000为实验设备,从中读取探测数据。以MATLAB为软件平台,实现了探地雷达数据的显示、处理、成像几个部分。其中数据显示方式包括数据的波形堆积图,剖面面色阶图以及带数据波形图;数据处理部分包括直达波的去除、背景噪声的去除、振幅增益等;雷达成像算法部分主要采用波前成像算法和投影层析成像算法。

Imaging Algorithm of Ground Penetrating Radar ABSTRACT GPR (Ground Penetrating Radar, referred GPR) set of non-destructive testing, penetration ability, many advantages of high resolution detection and identification of underground and become the target of an effective technical means. Excellent performance GPR imaging approach helps pinpoint underground targets, while increasing the target detection and identification capabilities, thereby promoting the quality of ground penetrating radar surveillance in the city, geological disasters, archaeological excavation, highway nondestructive testing, mine detection, etc. aspects to be more widely used. In this paper, China Institute of Radiowave Propagation GPR LD-2000 for the experimental apparatus, reads probe data. MATLAB as the software platform to achieve a ground-penetrating radar data display, processing, imaging several parts. Wherein the data includes a data waveform display stacked, with a cross-sectional side view and a gradation data waveform; data processing section includes the removal of the direct wave, the background noise removal, the amplitude gain, etc.; radar imaging algorithm some of the major imaging algorithm and the wavefront projection tomography algorithms.

合成孔径雷达成像自聚焦算法的比较

合成孔径雷达成像自聚焦算法的比较 【摘要】本文简要地分析和比较两类合成孔径雷达自聚焦算法的特点,并通过多点目标自聚焦成像对其进行验证,表明结论可靠。 【关键词】自聚焦算法;多点目标;孔径雷达 0 引言 SAR自聚焦算法的任务是首先要对经过处理后的未补偿的SAR信号进行相位误差估计,然后消除其相位误差。SAR自聚焦算法就其本质而言是一个二维估计问题,在公式(2)中的相位误差既是空变的又是不可分离的乘性噪声的事实使问题变得极为棘手。影响成像的几何线性,分辨率、图像对比度和信噪比的主要因素取决于相位误差的性质和大小,基于处理孔径上相位误差形式,表1给出两大类相位误差及其每一类对SAR成像的一般影响。 表1 相位误差的分类 1 几种实用的自聚焦算法的比较 一般来说,自聚焦算法可以划分为两类:基于模式算法和非参数算法。基于模式的自聚焦算法估计相位误差的模式展开系数。低阶模自聚焦仅能估计二阶相位误差,而更复杂的方法还可以估计高阶多项式相位误差。子孔径相关法(MD)和多孔经相关法(MAM)是针对低频相位误差补偿提出的基模自聚焦算法的范例。基于模式算法虽然执行起来相对简单而且算法高效。不过只能相位误差被正确估计的情况下才能保证这样的优越性。 第二类自聚焦算法,即非参数自聚焦算法,典型的有相位梯度自聚焦算法,基于最小熵准则和最大对比度准则的自聚焦方法,这些方法都不需要相位误差的先验知识。特别地,相位梯度自聚焦算法几种改进的算法。其中特征向量法是在PGA框架下运用了极大似然算子取代了原始的相位差算子核,改进的相位梯度自聚焦算法的策略通过选择一组高质量的目标以提供非迭代的PGA解。另一种方法是运用加权最小二乘法以实现相位误差最小化的PGA。适用范围扩大,计算高效。 在一些SAR应用中,相位误差显著依赖位置,空变的自聚焦的常用的方法是将大场景分成更小的子图像,每个子图像的误差近似不变的,因此,传统的空间不变的自聚焦程序可以应用到每个子图像。当重新聚焦时,个别的子图像拼接或镶嵌在一起产生完整的场景图像聚焦图像。 2 性能评价标准 第一个测试是检查在方位域一维的点目标响应。聚焦质量质量指标包括3dB

探地雷达最新发展概述

探地雷达最新发展状况概述 随着探地雷达应用范围的不断扩大,对探地雷达技术也提出了新的挑战。它要求探地雷达具有更高的分辨率、更大的穿透深度,提供更丰富的地下信息。 关于天线方面,研制一种高方向性、宽频带、高发射率、体积轻便的天线成为一个重要的课题。另一方面,如何改进电磁波发射机的技术指标,达到加大辐射能量,增加探测深度的目的也是探地雷达技术面临的一项重要研究内容。 变频天线的出现使雷达系统变得更加轻巧和方便。它不但具有改变中心频率的能力,而且可发射较低频率的信号。它可以利用各种频率扫描并进行综合分析,不但可以获得更丰富的地下信息,而且还使薄层的识别成为可能。它避免了传统雷达系统常需配置多种工作频率的天线从而导致系统重量增加、操作复杂的弊端。 多道雷达系统可以同时对多个天线或天线对进行操作。每道既可接受相同频率的天线,也可接收不同频率的天线。而其参数既可单独设置,也可以统一设置。多道雷达系统克服了单道雷达系统在面积性扫描中的缺陷,并可实现时间倾角扫描叠加技术,使地下目的体高质量三维成像的实现成为可能。此外,按特定的几何形态排列天线,有可能形成可控制或聚焦的复杂雷达信号,文17给出了线性阵列两种天线间隔对应的辐射极性图的比较,说明天线距越宽,聚焦作用越强。 文20提出了一套新的探地雷达思想,即三维探地雷达系统。它以多道雷达系统为基础,以大量模型为核心,综合二维横断面信息,

最后形成地层三维图像。这是探地雷达发展的新方向。 就探地雷达数据处理方面而言,除已有的带通滤波、频率波数滤波外,反褶积和偏移技术是当前的两大热门课题。 反褶积是把雷达记录变成反射系数来消除大地干扰和天线瞬变及多次反射,达到提高数据垂直分辨能力的目的。但是,已有学者指出,由于地下介质的复杂性和噪声影响,反褶积处理的效果较之原始数据并没有多大的提高。这是因为,对褶积来讲,雷达电磁波的高衰减性和地下介质的频散现象,使得电磁脉冲子波在地下传播时要发生很大的变化,导致子波估计常出现很大的偏差。当然,对于简单的层状结构物,有可能得到适当的参数,从而获得较好的结果。 文8认为,反褶积处理只是有助于雷达剖面上半部分的解释,而偏移处理技术则是将雷达记录中的每个反射点移到其本来位置,消除雷达图像的畸变,从而获得能够反映地下介质形状真实图像的二维成像方法。偏移技术对消除直立体的绕散、散射产生的相干噪声具有很大的潜力,对地下介质比较均匀的雷达剖面有较好的结果。 利用小波变换的调焦功能和频域—时域双重局部性来压制噪声是雷达数据处理技术的一条新途径。研究表明,雷达信号小波算子法成像具有良好的地下界面准确定位功能,而且根据高频电磁波在有耗介质中的衰减特性,在精确校正电磁波振幅衰减和相位偏移的基础上,利用时变反褶积和小波去噪可以得到高分辨率的探地雷达图像。 超宽带探地雷达,利用超宽带探地雷达(UWBGPR)技术进行浅层有耗媒质中目标和介质构造的探测,是近年来国内外透

合成孔径雷达成像

合成孔径雷达第一次作业 姓名:xxx 学号:xxx 一题目: 1.LFM信号分析:(1)仿真LFM信号;(2)观察不同TBP的LFM信号的频谱。(3)观察不同过采样率下的DFT结果,注意频谱混叠情况。 2.脉冲压缩仿真:针对“基带LFM信号”:(1)实现无误差的脉冲压缩;(2)通过频域补0实现时域十倍以上的过采样率,得到光滑的时域波形,通过观察给出指标(IRW,PSLR);(3)阅读资料,按照公式实现3阶(-20dB),6阶(-40 dB)泰勒加权,观察加窗效果,分析指标(IRW,PSLR),并对比MATLAB TAYLORWIN 函数的一致性;(4)在3阶泰勒加权下实现15.30.45.60.90.135度QPE下的脉冲压缩,显示输出波形,观察记录QPE的影响。 3.一维距离向仿真:(1)输入参数:目标参数:RCS=1,分别位于10km,11km,11km+3m,11km+50m处。LFM信号参数:中心频率1.0GHz,脉冲宽度30us,带宽30MHz。 (2)输出:设计采样波门,仿真回波,完成脉冲压缩,检测各峰值位置,判断每个目标是否得以分辨,分析各出现在相应位置及幅度的原因。 二题目分析与解答: 1.问题分析:由基础知识知,决定LFM信号的主要参数有中心频率fc(此处仿真取fc=0),带宽B,脉冲宽度Tp, 调频斜率K,其中K=B/Tp。对LFM信号进行傅里叶变换时,不同的时宽带宽积(TBP)会对频谱有不同的影响。 主要程序段(源程序见附件): %参数设置 Tp=5e-6; B=10e6; K=B/Tp;Fs=2*B; Ts=1/Fs; N=Tp/Ts; TBP=Tp*B %波形产生 t=linspace(-Tp/2,Tp/2,N); St=exp(j*pi*K*t.^2); Phase=pi*K*t.^2; Fre=2*pi*K*t; f=linspace(-Fs/2,Fs/2,N); figure(2) plot(f*1e-6,fftshift(abs(fft(St))),'k'); xlabel('Frequency/MHz'); ylabel('Magnitude'); title('Frequence Response'); legend('TBP=50') fft_St=fftshift(abs(fft(St)));

合成孔径雷达(SAR)的点目标仿真(附件带代码程序)

合成孔径雷达(SAR)的点目标仿真(附件带代码程序) 合成孔径雷达(SAR)的点目标仿真 一. SAR原理简介 合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。SAR回波信号经距离向脉冲压缩后,雷达的距离分辨率由雷达发射信号带宽决定:,式中表示雷达的距离分辨率,表示雷达发射信号带宽,表示光速。同样,SAR回波信号经方位向合成孔径后,雷达的方位分辨率由雷达方位向的多谱勒带宽决定:,式中表示雷达的方位分辨率,表示雷达方位向多谱勒带宽,表示方位向SAR平台速度。 二. SAR的成像模式和空间几何关系 根据SAR波束照射的方式,SAR的典型成像模式有Stripmap(条带式),Spotlight(聚束式)和Scan(扫描模式),如图2.1。条带式成像是最早研究的成像模式,也是低分辨率成像最简单最有效的方式;聚束式成像是在一次飞行中,通过不同的视角对同一区域成像,因而能获得较高的分辨率;扫描模式成像较少使用,它的信号处理最复杂。 图2.1:SAR典型的成像模式 这里分析SAR点目标回波时,只讨论正侧式Stripmap SAR,正侧式表示SAR波束中心和SAR平台运动方向垂直,如图2.2,选取直角坐标系XYZ为参考坐标系,XOY平面为地平面;SAR平台距地平面高h,沿X轴正向以速度V匀速飞行;P点为SAR平台的位置矢量,设其坐标为(x,y,z);T点为目标的位置矢量,设其坐标为;由几何关系,目标与SAR平台的斜距为: (2.1) 由图可知:;令,其中为平台速度,s为慢时间变量(slow time),假设,其中表示SAR平台的x 坐标为的时刻;再令,表示目标与SAR的垂直斜距,重写2.1式为: (2.2) 就表示任意时刻时,目标与雷达的斜距。一般情况下,,于是2.2式可近似写为: (2.3) 可见,斜距是的函数,不同的目标,也不一样,但当目标距SAR较远时,在观测带内,可近似认为不变,即。

高分辨率合成孔径雷达技术在特高压输电线路

2009特高压输电技术国际会议论文集 1 高分辨率合成孔径雷达技术在特高压输电线路 广域自然灾害监测中的应用研究 胡毅,王力农,刘艳,胡建勋,刘凯,刘庭,肖宾 摘要:本文针对特高压输电线路广域灾害遥感监测应用的现状和需求,研究高分辨率合成孔径雷达技术在特高压输电线路广域自然灾害监测中的应用。首先,分析SAR成像的特点,并和光学成像对比,得出在灾害条件下应用SAR图像进行监测输电线路的可行性。然后,研究高分辨率SAR图像中特高压铁塔的目标特性和目标识别技术,利用铁塔目标峰值特征对武汉特高压交流试验基地中的特高压铁塔进行识别。试验结果表明,利用SAR目标识别技术对特高压输电铁塔的结构、受损情况进行识别的方法可行。 关键词:特高压输电线路;输电铁塔;合成孔径雷达;线路监测 1 引言 2009年1月6日,我国晋东南~南阳~荆门1000kV特高压交流示范工程正式投运,这是目前世界上电压等级最高、技术水平最高的输变电工程。输电线路的安全可靠运行在很大程度上决定着整个特高压输电系统的稳定和安全[1]。此外,我国是一个自然灾害多发国家,晋东南~南阳~荆门1000kV特高压交流试验示范工程穿越山西、河南和湖北3省,输电线路将处于各种灾害天气(风、雨、雪、雾、冰、地震等)的运行环境之下。因此,为保障特高压输电线路的可靠运行,研究特高压输电线路广域自然灾害监测技术具有重要意义。 人工巡检、机器人巡线、直升机巡线、航空数字摄影巡线或各种在线监测装置都能从“点”或“线”的层面解决特高压输电线路环境监测和管理问题。输电铁塔上安装各种在线传感器如气温、气压、压力和摄像头传感器等,通过各种通信方式直接将线路运行情况传送到监视中心。这些监测方式的缺陷是受到天气条件的限制,在大范围冰灾和地震的环境下难以持续工作。 光学遥感、多光谱遥感、雷达遥感已广泛用于输电线路选线的前期勘察和施工作业[2]-[4],主要是通过不同分辨率(15米、5米、2.5米)、不同传感器(光学、多光谱、红外、激光扫描等)得出输电线路走廊范围的地质结构图、地形图等。在电力系统的输电线路GIS运行管理系统中,航空摄影测量技术和光学卫星图像也得到了广泛应用。 合成孔径雷达(SAR)是一种利用微波进行感知的主动传感器,和光学、红外等其它传感器相比,SAR成像不受云雾、雨雪、太阳光照条件等限制,可对感兴趣的目标进行全天候、全天时的监测,在冰雪灾害,地震灾害、洪水灾害等大范围自然灾害条件下有特殊的优越性。SAR卫星是侧视成像,可以完全展现输电铁塔的姿态,而光学卫星是星下点成像,不能利用单幅影像判别铁塔的姿态和状态。本文针对特高压输电线路广域灾害遥感监测应用的现状和需求,研究利用高分辨率SAR技术对特高压输电线路进行广域自然灾害监测的可行性,融合特高压输电线路的GIS数据,在冰雪、地震、洪涝等突发性灾害条件下,准实时遥感监测特高压输电铁塔以及线路周边的受损状况,为灾后重建和灾前预警提供准确的卫星遥感信息。 本文第二部分陈述国内外研究现状,第三部分为高分辨率SAR影像中特高压输电铁塔目标特性分析,第四部分为特高压输电铁塔目标识别,第五部分为结束语。 2 国内外研究现状 由于高分辨率卫星影像包含丰富的地理信息, 具有数据新、更新快、覆盖范围广等特点,现已在输电线路工程选线中得到了一定程度的应用。在660kV宁东~山东输电线路工程中,采用215m的P5全色卫星影像数据和数字高程模型(DEM),建立了高分辨率卫片三维选线平台,辅助设计人员进行了输电线路的前期规划选线工作, 取得了很好的应用效果[2]。山东电力工程咨询院2005年6月利用法国的SPOT 卫星影像和美国的TM卫星影像对500kV 送电工程(滕州~临沂~日照~黄岛,全长约380km ,由聊城~长清~济南组成) 进行了勘测设计工作[3]。三峡水利水电枢纽在右岸计划建设右一电站、右二

探地雷达实验数据处理报告

探地雷达数据基本处理报告 实验目的:学会探地雷达数据的基本处理步骤,掌握一定处理数据能力,学会运用软件处理收集数据,突出有效波,抵制干扰波,收集有利信息,然后可以对地下的情况进行简单的分析,进行简单地分层。实验仪器:Terra SIR-3000,处理软件:RADAN6.5.3.0软件。 实验处理过程: 第一步,装载文件,打开File—Open,加亮文件名FILE____039.DZT,点OK,选定的文件就会在屏幕上显示出来。 第二步,改变输出路径,选择菜单Window>Close ALL,即可关闭所有文件。 选择View>Customize,移动鼠标到输出如果输出路径不存在,利用WINDOWS浏览器创建一个文件夹,然后返回View>Customize选择新建立的文件目录。 第三步,改变显示参数。 1,点击显示按钮。 2,点击线扫描图标。 3,点击线扫描图标。在灰度比例尺中选择彩色表20,显示资料。点OK或者回车,退出线扫描参数对话框,再点OK退出显示参数设置资料显示。

第四步,编辑文件头,选择Edit > File Header。察看文件头信息。

第五步,编辑文件,去除多余道。 a,利用右滑动箭头,将数据文件滑动到文件末。采用高分辨率显示器,就不必用滑动功能。 点击选择按钮,或者在数据窗口点鼠标右键,加亮选择区域。打开选择编辑块体对话框。 b,选择编辑>剪切(Edit-select,使用剪刀按钮。

被选剖面将从文件中剪切,得到新文件。 c,运用窗口振动简图切换图标,演示图像如下

第六步,突出有效波,,采用增益的方法。 1,点击显示按钮-点击线扫描图标-点击线扫描图标,在显示窗口分 别调节Color Table,Color Xform找到突出部分。

浅谈探地雷达的原理与特点

浅谈探地雷达的原理与特点 摘要:地下管线系统的建立是城市现代化建设的重要因素,但由于地下管线中的非金属管线的大量存在以及城市建设快速安全的需要,探地雷达探测技术的独特优势就显现出来,本文通过对探底雷达和地下管线的分析,为应用探底雷达在城市地下管线建设提供参考。 关键字:探地雷达;地下管线;探测技术 0 引言 随着城市现代化的发展,地下管线的密集程度也在不断地扩大。地下管线作为城市的重要基础设施之一,它一方面关系着城市居民生活及城市工业的发展,担负着巨大的社会责任,另一方面又由于它深埋于地下,具有不透明性,纵横交错、结构复杂。近年来,在许多大城市出现施工时挖断通信、电力电缆导致通讯中断、区域性停电、停产事故,这些事故给该地区经济和人们的生产生活带来了巨大的损失。因此,地下工程在施工时如何避免破坏这些地下管线就变得越来越重要,建立完整的城市地下管线系统成为现代城市快速建设的关键因素。 探地雷达(Ground Penetrating Radar,简称GPR)是一种对地下或物体内不可见的目标或界面进行定位的电磁法,并以其探测的高分辨率和高效率而成为地球物理勘探的一种有力工具。随着信号处理技术和电子技术的不断发展及工程实践的增多和经验的不断积累,探地雷达技术也得到极大提高,仪器也不断更新,探地雷达检测技术具有分辨率高、采集速度快、后期数据处理简便等特点。因此在铁路、公路、建筑、市政、考古等领域得到广泛的应用,并受到广大现场技术人员的认可和喜爱。 1 探地雷达的发展 国外探底雷达技术最早可追溯到二十世纪初,西方国家以专利形式提出将雷达原理用于探地,正式提出了探地雷达的概念。但是直到50年代后期探地雷达技术才被慢慢重视起来。探地雷达在矿井、冰层厚度、地下粘土属性、地下水位等方面的得到了应用。1967年,一个与Stern最初用于冰川探测的仪器类似的系统被设计研制出来,1972年,Rex Morcy和Art Drake开创了GSSI公司,主要从事商业探底雷达的销售。随着电子技术的发展,电子存储设备的问世,加之现代数据处理技术的应用,特别是拟反射地震处理的应用,探底雷达的应用领域迅速扩大,其中有:石灰岩地区采石场的探测、淡水和沙漠地区的探测、工程地质探测、煤矿井探测、泥灰调查、放射性废弃物处理调查、埋设物探测、水文地质调查、地基和道路下空洞及裂缝调查、水坝的缺陷检测、隧道及堤坝探测等。 自70年代以来,许多商业化的通用数字探地雷达系统先后问世,其中有代表性的有:美国GSSI公司的SIR和MK系列,加拿大Sensor&Software公司的Pulse Ekko系列。这些雷达的基本原理大同小异主要功能有多通道采集、多维显示、实时处理、变频天线、多次叠加、多波形处理等,另外还有井中雷达系统,

合成孔径雷达成像几何机理分析及处理方法研究

合成孔径雷达成像几何机理分析及处理方法研究合成孔径雷达作为二十世纪出现的尖端对地观测技术,由于它具有全天时、全天候的成像能力并能穿透一些地物,在土地覆盖制图、生态和农业、固体地球科学、水文、海冰等众多领域有着广泛的应用。随着未来更高分辨率、多极化、多波段、更优化的干涉测量设计的SAR系统的出现,合成孔径雷达遥感技术将会在更多的领域扮演更重要的角色。 合成孔径雷达遥感技术在我国有着极大的潜在应用市场,对于某些特殊问题的解决,例如西部困难地区的地形图测绘及南方阴雨地区地形图的快速更新,它甚至是唯一可行的解决之道。由于有关几何处理、辐射定标等基础问题没有很好地解决,影响了这一技术在我国的大规模应用及产业化进程。 本文致力于解决SAR影像的几何问题及与地形有关的辐射问题,对合成孔径雷达图像的几何特性作了系统深入的研究,以对构像方程的分析及推导为中心,研究并解决了包括地理编码、目标定位、影像模拟、利用控制点进行空间轨道精确重建、地形辐射影响的消除等一系列问题。为了加强对合成孔径雷达图像的理解,首先对合成孔径雷达成像的技术本质从数学上进行了简明阐述。 从信号处理的角度,分析了脉冲压缩的工作原理,解释了匹配滤波器的构造。分析了多普勒频率的特征及其作用。 从理论上推导了SAR距离向和方位向分辨率所能达到的极限值,并且指出了他们在实际中的限制。从系统的角度,分析了SAR距离向和方位向模糊度的限制。 构像方程是所有几何处理的基础。为推导了SAR构像方程,在定量分析了地球摄动力对卫星轨道影响的基础上,提出了一套改进的SAR轨道参数模型,与国外已有的模型相比,该模型更加简洁而且具有极高的精度。

反褶积处理方法要点

反褶积处理方法 论文提要 反褶积即反滤波是常用的地震资料处理方法。反褶积的目的是由地震数据恢复反射系数。反滤波的作用主要是压缩地震反射脉冲的长度,提高反射地震记录的分辨能力,并进一步估计地下反射界面的反射系数。这不仅是常规地震资料处理所需要的,而且是对直接找油找气的亮点技术和岩性研究的地层地震学的地震资料处理尤为重要。另外,反滤波还可以清除短周期鸣震和多次波等干扰波。 当前地震资料处理解释已经基本实现了数据化、自动化,我国各大解释公司、研究所、高等院校都已有了较为先进数字化处理软件,在处理数字化的地震数据时表现出了很好的速度性和准确性。反褶积可分为确定性反褶积和估计性反褶积两种。目前常用的反褶积有最小平方反褶积、预测反褶积、同态反褶积、地表一致性反褶积、最大熵反褶积、变模反褶积、Q反褶积等等;特殊的反褶积有Noah反褶积、最小信息反褶积等。 正文 一、反褶积 (一)研究目的和意义 1、研究目的 (1)弄清各种反褶积处理方法的原理。 (2)弄清反褶积处理模块的参数意义。 (3)掌握地震资料数字处理的基本流程及处理方法。 (4)完善反褶积方法,提高地震资料处理的分辨率,保持信噪比,振幅均匀化。 2、研究意义 反褶积是地震资料数字处理流程中最关键的一环,也是提高地震勘探分辨率最有效的方法。一个处理流程包括许多处理步骤。而每一个处理步骤又要涉及到好几个处理模块。一个处理流程通常由预处理、叠前处理和叠后处理三部分组成。其中反褶积是最重要的一个部分,如图1所示。 反褶积的目的就是为了分离子波和反射系数序列。子波就像无线电中的载波,反射系数序列就像无线电中的声波。只有消除高频载波才能提取声波。子波在地层中传播,携带着反射系数序列这种有用的地质信息返回地面,只有消除子波才能恢复反射系数序列的本来面目。反射系数序列中有波阻抗随时间变化的信息,这就提供了速度和密度随时间变化的信息,随之就可得到地层、岩性及构造在地下中间分布的信息。在有利条件下还可得到岩石孔隙率、渗透率、孔隙流体性质(油、气、水)乃至地层压力的信息。反褶积提高了分辨率,拓展了频带,保持了信噪比。

论反褶积的方法和作用1

论反褶积的方法及作用 论文提要 反褶积是地震资料最常用和最重要的处理方法之一,它可用于叠前,也可用于叠后。反褶积的主要作用是压缩地震子波、提高地震资料的分辨率,从而提高地震资料的解释精度。为油田精细勘探和开发服务。另外,反褶积还可以消除短周期鸣震和其他多次波干扰,突出有效波,提高地震资料的信躁比。 反褶积的主要方法有:最小平方反褶积、预测反褶积、子波提取与子波整行反褶积、同态反褶积、地表一致性反褶积等。 做反褶积是为了得到一个反射系数序列,反射系数可以反映层的位置、层的反射能力及层之间差异。总之,反褶积的目的是通过某种数学方法使地震纪录的分辨率提高从而近似放射系数剖面得到地下精确的反结构。 正文 一、反褶积的概念 (一)理想模型 若地震波以脉冲形式激发经过地层时无吸收、透射和多次反射等因素的影响,而且整个过程不存在随即干扰,这样就可以得到理想的输出: x(t)=bδ(t)*ξ(t)=bξ(t) 这时得到的输出实际上就是反射系数序列,做反褶积就是为了得到它,为了讨论问题方便起见,我们先假定不含干扰波,由此我们可以从以上的式子中得到x(t)=b(t)*ξ(t) 设计反滤波因子a(t),在时间域上a(t)是b(t)的逆,即有: a(t)*x(t)=ξ(t) (二)实际地震纪录 实际地震纪录x(t)由有效波s(t)和干扰波n(t)组成: x(t)=s(t)+n(t) 有效波是指一次反射波,对反射波地震看探而言,除一次反射波以外的一切波都是干扰波,一次反射波可以用以下褶积模型表示: s(t)=b(t)*ξ(t) b(t)称为地震子波;§(t)称为反射系数序列。 严格意义上讲,地震子波同震源子波o(t)概念还是有区别的: b(t)=o(t)*g(t)*τ(t)*d(t)*i(t) =a(t)*f g(t)*f d(t) 式中:g(t)-------地层响应 τ(t)--------透射响应

相关文档
最新文档