低温等离子体技术在表面改性中的应用

合集下载

低温等离子体技术在材料表面改性中的应用

低温等离子体技术在材料表面改性中的应用

低温等离子体技术在材料表面改性中的应用随着科技的不断进步,材料表面改性技术在材料科学和工程领域日益受到重视。

其中,低温等离子体技术作为一种有效的材料表面改性工具,在提高材料性能、增加材料多功能性方面发挥着重要作用。

低温等离子体技术是利用非平衡等离子体来对材料表面进行改性的一种方法。

与传统的高温等离子体技术相比,低温等离子体技术具有能耗低、处理速度快、不会造成材料结构变化等优势,因此在材料表面改性中得到广泛应用。

首先,低温等离子体技术可通过对材料表面的清洗和活化来增加材料的粘附性和润湿性。

等离子体源中的活性基团和活性物种能够清除材料表面的有机物、氧化物等污染物,从而提高材料表面的纯净度。

同时,等离子体源中的活性基团还能够使材料表面产生化学键,增加材料表面与涂层或粘合剂之间的相互作用力,进而提高材料粘附性和润湿性。

其次,低温等离子体技术可用于提高材料的硬度和耐磨性。

通过在材料表面形成硬质薄膜,低温等离子体技术能够有效提高材料的硬度和耐磨性。

例如,用含有氮、碳或硅等原子的等离子体源处理金属材料表面,可以在材料表面形成金属氮化物、碳化物或硅化物薄膜,从而显著提高材料硬度和耐磨性。

此外,低温等离子体技术还能够改善材料的耐腐蚀性能。

等离子体源中的活性基团和活性物种能够与材料表面发生化学反应,形成防护层,从而减少材料与腐蚀介质的直接接触。

通过选择合适的等离子体源和处理条件,可以在材料表面形成致密、均匀的氧化膜或氟碳膜等,提高材料的耐腐蚀性能。

此外,低温等离子体技术还可用于改善材料的光学性能和电子性能。

通过在材料表面形成各种功能性纳米结构,低温等离子体技术可以调控材料的光学吸收、反射和透过性能。

例如,通过在聚合物薄膜表面形成纳米柱阵列,可以实现超黑色材料或光传感器。

此外,低温等离子体技术还可以在材料表面形成导电薄膜,提高材料的导电性能,用于制备电子器件和光电器件。

在实际应用方面,低温等离子体技术已经在材料领域取得了一定的突破。

低温等离子体技术的研究与应用

低温等离子体技术的研究与应用

低温等离子体技术的研究与应用低温等离子体技术是指在低于常压下,气体被电离而形成的电离气体,即等离子体。

随着科技的不断发展,低温等离子体技术的研究和应用越来越广泛,涉及到多个领域,如材料加工、环保、生物医学等,它具有高效能、无污染等优点,成为当今科技发展的热点与难点之一。

一、低温等离子体的发现和研究历程早在19世纪末,人们就开始研究气体的电离现象。

1905年,汤姆逊利用阴极射线研究了气体放电,并观察到了气体放电时的荧光现象。

1913年,史塔克研究了气体中放电电流与电压的关系,惊奇地发现当电压很低的时候,气体发生了电离现象,从而开启了低温等离子体的研究之路。

低温等离子体的研究经历了多个阶段,先后经历了自激放电、外加电压电源放电、微波放电等,同时在等离子体的诊断和基本特性等方面也有了重大进展。

目前,人们已经可以通过等离子体的自发光、粒子测量和能量特性等方法来研究低温等离子体的性质。

二、低温等离子体技术在材料加工中的应用低温等离子体技术在材料加工中的应用非常广泛,主要包括表面改性、薄膜制备、纳米材料制备等。

表面改性是指通过等离子体对材料表面进行化学变性,从而使材料的表面性质得到改善。

例如,在汽车制造中,表面改性可以提高汽车的耐磨性和防腐性,同时也可以改善车身的涂装效果和机械性能。

此外,表面改性还可以用于生物医学领域,例如通过等离子体处理人工关节表面,从而提高其与人体组织的接合度和生物相容性。

薄膜制备是指通过等离子体在材料表面沉积一层极薄的膜,从而改变材料的表面特性。

薄膜制备可以用于光电器件的制备、显示器的制造、防腐材料的制备等,是目前最有前途的新材料制备技术之一。

例如,在光电器件的制备中,可通过在材料表面沉积一个特定的金属膜,从而改善器件的光电性能和稳定性。

纳米材料制备是指通过等离子体在材料表面制备一定尺寸的纳米颗粒。

纳米材料制备可以用于各个领域,如光电器件、能源储存、生物医学等。

例如,在生物医学领域,可通过制备纳米颗粒来进行药物输送和抗癌治疗。

等离子体技术在材料表面改性方面的研究进展

等离子体技术在材料表面改性方面的研究进展

等离子体技术在材料表面改性方面的研究进展随着科技的不断发展,等离子体技术也被越来越多的人关注和应用。

等离子体技术广泛应用于化学、材料、医学等领域,并在这些领域取得了很好的成效。

其中,在材料表面改性领域,等离子体技术更是发挥了巨大的作用。

一、等离子体技术在材料表面改性中的应用材料的表面特性往往决定了其使用性能和使用寿命。

而等离子体技术通过对材料表面进行化学反应、物理作用和生物功能的改变,从而增强了材料表面的功能和性能。

以下是等离子体技术在材料表面改性领域的主要应用:(1) 表面清洁和改性等离子体喷涂,常用于金属材料表面的清洁和改性。

喷涂等离子体可以清洁金属表面上的油污、水气、铁锈和氧化物等污染物,也可以修复表面的缺陷、增加表面耐磨性和耐腐蚀性。

(2) 表面涂层和改性等离子体表面涂层是等离子体技术中另一个应用广泛的领域。

比如,等离子体氧化可以提高金属表面的高温氧化能力。

在等离子体氮化和碳化过程中,靶材表面会生成氮化物和碳化物层,从而增加其在高温和高应力环境下的稳定性和耐磨性。

等离子体聚合可以引入新的化学官能团,从而在表面层产生新的化学和物理特性。

(3) 表面改性和生物附着性等离子体技术在一些医学设备和生物医学工程领域也被广泛使用,例如植入材料中,等离子体技术可以为其表面引入特定的化学成份,由于不同的化学组合以及物理特性,使得表面可以达到不同的生物相容性和生物附着性。

二、材料表面改性中等离子体技术的主要优势等离子体技术在材料表面改性领域的应用还有许多优势。

(1) 高效、环保、节能等离子体技术是一种高能量、高产量、高效率的技术手段。

通过等离子体特有的物理和化学特性改变材料表面,比传统方法更加环保、能耗更少且包括处理时间在内工期也比其他生产方法明显缩短。

(2) 处理质量好、效果稳定等离子体技术可以实现对材料表面的高精度处理,并且具有很好的可重现性和可控制性。

因此,等离子体技术的改性效果很稳定、效率很高,可以有效的提高材料表面的性能和使用寿命。

等离子体高分子材料表面改性技术及应用

等离子体高分子材料表面改性技术及应用

等离子体高分子材料表面改性技术及应用摘要:等离子体技术具有工艺简单、操作方便、加工速度快等优点,不但能改善特定环境下高分子材料的使用性能,也拓宽了常规高分子材料的适用范围。

因此,等离子体技术在高分子材料表面改性方面的应用广泛。

本文首先介绍等离子体表面改性技术内容,进一步探讨其在市场中的应用,希望可以更好的提高该技术在市场中应用的效果,进一步促进行业的长久发展。

关键词:等离子体;高分子材料;表面改性;技术;应用引言高分子材料作为新兴材料的重要组成部分,目前被应用在多个方面,比如农业生产、工业生产以及航空航天、生物医药等领域。

等离子体高分子材料表面改性技术在保持高分子材料原有性能的前提下,可使材料表面产生一系列物理、化学变化,从而提高材料的表面性能,从而达到一定功能和用途的目的。

本文将首先论述等离子体高分子材料表面改性技术的内容,进一步探讨其在我国市场方面的应用。

一、等离子体高分子材料的表面改性技术运用等离子体技术改变高分子材料的表面性能的方法主要有三类:等离子体处理、等离子体聚合和等离子体接枝。

高分子聚合物具有分子可设计性,通过等离子体表面改性作用可以在表面引入不同的基团来改善其性能,如亲水性、疏水性、润湿性、黏结性、引入具有生物活性的分子或生物酶,提高其生物相容性等。

(一)等离子体处理表面改性等离子体处理是在利用外加电压的条件下将惰性气体NH 3、O 2、CO、Ar、N 2、H 2 等进行分子击穿,并将COOH、CO、OH、NH 2 等基团、离子及原子引入材料表面,或者在材料表面上直接产生自由基的技术方法。

新引入和新产生的自由基也可以通过化学键合方式与材料表面的一些分子相连接上,使得高分子材料获得新的表面性能。

等离子体处理能够改善高分子材料的表面性能,包括染色性、湿润性、印刷性、粘合性、防静电性、表面固化、亲水性与生物相容性及其他特性。

(二)等离子体聚合表面改性等离子体聚合是指利用等离子体中的电子、离子、自由基、光子及激发态分子等活性粒子使单体直接聚合的方法,如辉光放电产生等离子体的过程中,其电子拥有的平均能量为 1-10eV,相当于 104 -l0 5 K 的电子温度,而远比体系其他组成温度高。

等离子体技术在材料处理中的应用

等离子体技术在材料处理中的应用

等离子体技术在材料处理中的应用近年来,随着科学技术的不断进步,等离子体技术在材料处理领域中的应用越来越广泛。

等离子体是一种高能量的离子体态,具有高温、高能量和高活性的特点,因此被广泛应用于材料表面改性、薄膜制备、纳米材料合成等领域。

首先,等离子体技术在材料表面改性中发挥着重要作用。

通过等离子体处理,可以改变材料表面的化学组成和物理性质,从而实现材料的功能改善。

例如,通过等离子体氮化处理,可以在金属表面形成氮化层,提高材料的硬度和耐磨性。

此外,等离子体还可以用于表面涂层的改性,如等离子体聚合物涂层,可以提高材料的防腐蚀性和耐磨性。

其次,等离子体技术在薄膜制备方面具有广泛应用。

薄膜是一种厚度在纳米至微米级别的材料,具有独特的光学、电学和力学性能。

等离子体技术可以通过物理气相沉积、化学气相沉积等方法制备各种功能薄膜。

例如,等离子体增强化学气相沉积可以制备高质量的二维材料薄膜,如石墨烯和氮化硼薄膜。

这些薄膜具有优异的导电性、光学透明性和力学稳定性,广泛应用于电子器件、光学器件等领域。

此外,等离子体技术还可以用于纳米材料的合成。

纳米材料具有尺寸效应和表面效应,具有独特的光学、电学和磁学性质。

等离子体技术可以通过等离子体化学气相沉积、等离子体溅射等方法制备各种纳米材料。

例如,通过等离子体溅射可以制备金属纳米颗粒,这些纳米颗粒具有较大的比表面积和优异的催化性能,广泛应用于催化剂、传感器等领域。

然而,等离子体技术在材料处理中仍面临一些挑战。

首先,等离子体处理过程中产生的高能离子和自由基可能对材料造成损伤,影响材料的性能。

其次,等离子体处理过程需要高温和高真空条件,设备成本较高。

此外,等离子体处理过程中的放电现象可能引发火灾和爆炸等安全问题。

为了克服这些挑战,需要进一步研究等离子体处理过程中的材料相互作用机制,优化等离子体处理参数,提高材料的性能和稳定性。

同时,还需要开发新型的等离子体设备,降低设备成本,提高设备的安全性。

低温等离子体技术在材料改性中的应用

低温等离子体技术在材料改性中的应用

低温等离子体技术在材料改性中的应用随着科学技术的不断发展,人们对材料的性能要求也越来越高。

在传统的材料制备方法中,常常存在着无法克服的局限性,例如材料的加工性能不佳、抗腐蚀性能差、机械性能不够强等问题。

为了解决这些问题,近年来,低温等离子体技术在材料改性中得到了广泛应用。

低温等离子体技术是一种利用冷等离子体对材料进行处理的方法。

所谓冷等离子体,是指在低温条件下产生的等离子体。

相比传统的高温等离子体,冷等离子体具有温度低、能量均匀分布等特点,不会对材料造成过高的热量和能量输入,从而避免了材料在高温下熔融和氧化的问题。

低温等离子体技术在材料改性中的应用可以从多个方面展开。

首先,它可以用于表面改性。

通过将材料置于冷等离子体中,等离子体的粒子在与材料表面相互作用的过程中,能够改变材料表面的形貌和结构。

这种改变可以使材料的表面光洁度提高,提高抗腐蚀性能和耐磨性,从而延长材料的使用寿命。

此外,低温等离子体技术还可以在材料表面形成一层致密的保护层,提高材料的防腐蚀性能。

其次,低温等离子体技术还可以用于材料中的离子注入。

通过调控冷等离子体中的气体成分和处理参数,使等离子体中的离子能够穿透材料表面并进入材料内部。

这种离子注入过程可以改变材料的化学成分和晶体结构,从而调控材料的性能。

例如,通过注入硼离子可以使钢材变得更加硬度,提高其耐磨性。

通过注入氮离子可以增加材料的硬度和耐腐蚀性。

此外,低温等离子体技术还可以用于纳米材料的合成和修饰。

通过调节冷等离子体中的工艺参数,可以在材料表面形成纳米粒子或纳米结构。

这些纳米材料可以具有较大的比表面积和特殊的光、电、磁性能,对传感器、催化剂、电子器件等领域具有重要应用价值。

而通过低温等离子体技术对已有的纳米材料进行修饰,可以改善其分散性和稳定性。

最后,低温等离子体技术还可以用于材料的变形加工。

传统的变形加工一般需要高温条件下进行,容易导致材料的脆性增加和晶界的消失。

而利用低温等离子体技术进行变形加工,则可以克服这些问题。

低温等离子体技术在材料表面改性中的应用

低温等离子体技术在材料表面改性中的应用
Lio ig Hu u a 2 0 1 Ch n a n n l d o 1 5 0 , i a)
Ab t a t The se i l sr c : e s nta prncpl i i e, t e a e t h l t s de eopme a d o e yp c l pp i a i ns f vl nt n s m t i a a lc to o p a m a s r a e e hno o y a e dic s e l s u f c t c l g r s u s d, s c a on m p a t to u h s i i l n a i n。 i t hi on e c ng, i n be m o a
维普资讯
塞 昼堡竺! 竺塞 堡 堡垫 塑 垄 室亘 堕堡主 窒
电工材料 20 o 3 08N .
低温 等离 子 体 技 术 在 材料 表 面 改 性 中 的应 用
唐 恩凌 张 静 2 刘 明石 , a
( . 阳理 工大 学 装 备 工程 学 院, 沈 阳 10 6 ; 1沈 1 18
2 aR sac nt ue 0 erc ia Jn iP t c e cl C . L a nn ld o 150 . . . ee rh I si t f P t hn ix er h mi o. io ig Huu a 2 0 1 t o o a C ia . ia C mp n fP t c iaJn iP toh mi lC hn b Bh i o a y o er hn ix erc e c o o a
d p ii s r a e e hno o e oston u f c t c l gy. e s e i l nt o c l W e s nta i r du e ow-e p r t r pl s a u f c m o - tm e a u e a m s r a e d

低温等离子体技术的科学原理及应用

低温等离子体技术的科学原理及应用

低温等离子体技术的科学原理及应用低温等离子体技术(Low Temperature Plasma Technology)是指在大气压以下(通常是1~1000帕)下,用电、激光、微波等外部能量激发气体分子、原子和离子,形成高度电离的气体体系,从而产生低温等离子体,达到处理材料、增强表面改性和清洗等目的的一种技术。

该技术被广泛应用于医疗、半导体、光电子、航空航天以及环境治理等多个领域。

一、科学原理低温等离子体技术的科学原理可以概括为“电离、激发、反应和沉积”。

在大气压以下的低温等离子体环境下,气体分子与外部激发能量(如电场、微波、激光等)相互作用,电子从分子或原子中脱离形成带电离子。

这些带电离子又会与气体分子或原子相互碰撞,使得气体分子或原子处在激发态中,从而形成高度活性的氧化剂、还原剂、离子束等。

这些物种会在表面上发生一系列的化学反应,形成相应的表面结构或分子,从而实现表面的改性、粘接、润湿等。

二、应用低温等离子体技术的应用非常广泛。

下面列举几个常见的应用。

1、医疗领域低温等离子体技术被应用于医疗领域,主要用于杀灭细菌、消毒和脱除异物等方面。

例如,利用低温等离子体技术可以在手术室、病房等场所对空气进行消毒。

同样,在骨科、皮肤科等领域,低温等离子体技术可以用于治疗感染性创面、去除表皮刺等消毒和治疗方面。

2、光电子领域低温等离子体技术在光电子领域应用广泛。

例如,在液晶显示器等光电子器件中,低温等离子体技术可以用于去除表面有机污染物,使得器件的表面更加平滑,从而减少光电子器件在运作时的漏电流和热效应。

3、环境治理领域低温等离子体技术可以用于处理废水、废气等环境治理中的问题,从而减少环境污染。

例如,在废水处理中,低温等离子体技术可以用于处理废水中的有机污染物、重金属等,以降低废水中的有害物质浓度。

同样,在废气处理中,低温等离子体技术可以用于过滤农村生活废气、工业废气等。

4、材料领域低温等离子体技术被广泛应用于材料领域,主要用于清洗、粘接、涂覆等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低温等离子体技术在表面改性中的应用低温等离子体中粒子的能量一般约为几个至几十电子伏特,大于聚合物材料的结合键能(几个至十几电子伏特),完全可以破裂有机大分子的化学键而形成新键;但远低于高能放射性射线,只涉及材料表面,不影响基体的性能。

处于非热力学平衡状态下的低温等离子体中,电子具有较高的能量,可以断裂材料表面分子的化学键,提高粒子的化学反应活性(大于热等离子体),而中性粒子的温度接近室温,这些优点为热敏性高分子聚合物表面改性提供了适宜的条件。

1 形成装置及影响因素
选择适宜的放电方式可获得不同性质和应用特点的等离子体,通常,热等离子体是气体在大气压下电晕放电产生,冷等离子体由低压气体辉光放电形成。

热等离子体装置是利用带电体尖端(如刀状或针状尖端和狭缝式电极)造成不均匀电场,称电晕放电,使用电压和频率、电极间距、处理温度和时间对电晕处理效果都有影响。

电压升高、电源频率增大,则处理强度大,处理效果好。

但电源频率过高或电极间隙太宽,会引起电极间过多的离子碰撞,造成不必要的能量损耗;而电极间距太小,会有感应损失,也有能量损耗。

处理温度较高时,表面特性的变化较快。

处理时间延长,极性基团会增多;但时间过长,表面则可能产生分解物,形成新的弱界面层。

冷等离子体装置是在密封容器中设置两个电极形成电场,用真空泵实现一定的真空度,随着气体愈来愈稀薄,分子间距及分子或离子
的自由运动距离也愈来愈长,受电场作用,它们发生碰撞而形成等离子体,这时会发出辉光,故称为辉光放电处理。

辉光放电时的气压大小对材料处理效果有很大影响,另外与放电功率,气体成分及流动速度、材料类型等因素有关。

不同的放电方式、工作物质状态及上述影响等离子体产生的因素,相互组合可形成各种低温等离子体处理设备。

2 在表面改性中的应用
低温等离子体技术具有工艺简单、操作方便、加工速度快、处理效果好、环境污染小、节能等优点,在表面改性中广泛的应用。

2.1 表面处理
通过低温等离子体表面处理,材料表面发生多种的物理、化学变化,或产生刻蚀而粗糙,或形成致密的交联层,或引入含氧极性基团,使亲水性、粘结性、可染色性、生物相容性及电性能分别得到改善。

用几种常用的等离子体对硅橡胶进行表面处理,结果表明N2、Ar、O2、CH4-O2及Ar-CH4-O2等离子体均能改善硅橡胶的亲水性,其中CH4-O2和Ar-CH4-O2的效果更佳,且不随时间发生退化[6]。

英国派克制笔公司将等离子体技术用于控制墨水流量塑料元件的改性工艺中,提高了塑料的润湿率。

文献表明,用低温等离子体在适宜的工艺条件下处理PE、PP、PVF2、LDPE等材料,材料的表面形态发生的显著变化,引入了多种含氧基团,使表面由非极性、难粘性转为有一定极性、易粘性和亲水性,有利于粘结、涂覆和印刷。

塑料、橡胶、纤维等高分子材料在成形过程中加入的增塑剂、引发剂及残留单体和降解物等低分子物质很容易析出而汇集于材料表面,形成无定形层,使润湿性等性能变差。

尤其对医用材料,低分子物渗出会影响到生物机体的正常功能。

低温等离子体技术可在高分子材料表面形成交联层,成为低分子物渗出的屏障。

李瑛等采用不同等离子体改性PI、PET、PP薄膜,发现经处理的薄膜表面电阻降低了2~4个数量级,材料的介电损耗和介电常数也发生了变化。

将该技术运用于微电子技术领域,可使电子元件的连接线路体积大为缩小,运行可靠性明显提高。

2.2 表面聚合
大多数有机物气体在低温等离子体作用下,聚合并沉积在固体表面形成连续、均匀、无针孔的超薄膜,可用作材料的防护层、绝缘层、气体和液体分离膜以及激光光导向膜等,应用于光学、电子学、医学等许多领域。

以聚甲基丙烯酸甲酯或聚碳酸酯塑料均可制成价廉且易于加工的光学透镜,但其表面硬度太低,易产生划痕。

采用有机氟或有机硅单体,采用低温等离子体聚合技术在透镜表面沉积出10nm的薄层,可改善其抗划痕性和反射指数[6]。

国外还有等离子体化学气相沉积技术应用于塑料窗用玻璃、汽车百叶窗和氖灯、卤天灯的反光镜的报道。

等离子体聚合膜具有多种性能,可使同样的基材应用于很多领域。

在金属和塑料上涂类金刚石碳耐磨涂料的化学气相沉积技术是把
含碳气体导入等离子体中,该涂层耐化学药品、无针孔、不渗透,能防止各种化学药品侵蚀基材。

同样还可将减摩涂料涂于挡风玻璃雨刮器上,或将低摩涂层涂于计算机磁盘上以降低磁头磁撞。

等离子聚乙烯膜沉积于硅橡胶表面后,硅橡胶对氧气的透过系数明显降低。

由含氮单体制备反渗透膜,最高可阻出98%的食盐。

生物体内的缓释药物一般采用高分子微囊,亦可采用等离子体聚合技术在微囊表面形成反渗透膜层。

等离子体聚合物膜在传感元件上的应用研究表明,放电功率等因素对膜电阻值有较大影响。

用各种乙烯基单体和Ar辉光放电处理织物,其疏水性及染色性能在极短时间里便有改善。

推荐阅读:电镀厂应该盯紧水龙头行业这块肥肉!
2.3 表面接枝
以等离子体接枝聚合进行材料表面改性,接枝层同表面分子以共价键结合,可获得优良、耐久的改性效果。

美国曾将聚酯纤维进行辉光放电等离子体处理与丙烯酸接枝聚合,改性后纤维吸水性大幅度提高,同时抗静电性能也有改善。

白敏冬等用Ar等离子体处理尼龙绸表面,引入丙烯酸,接枝聚合使尼龙绸抗静电性增强。

低温等离子体接枝改性毛织物原料及成品,可改善毛绒表面性能、增强着色性、软化织物、降低缩水率,且毛织物本体不受影响。

涤纶纤维坚固耐穿,但其结构紧密、吸水性差、难染色,王雪燕等用低温氮等离子体引发丙烯酰胺对涤纶织物进行接枝改性,接枝后涤纶织物的上染百分率、染色深度及亲水性都有明显提高。

低温等离子体对医用材料表面处理,可引入氨基、羰基等基团,生物活性物质与这些基团接枝反应可固定于材料表面。

用等离子体处理聚丙烯膜,引入氨基,再通过共价键接枝,固定上葡萄糖氧化酶,经测定,接枝率分别达52μg/cm2和34μg/cm2。

相关文档
最新文档