低温等离子体在有机净化废气中的应用与进展介绍

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低温等离子体技术在有机净化废气

中的应用与进展

姓名:xxx

专业:环境工程

班级:xxx

指导老师:xxx

2015年12月xx日

低温等离子体技术在净化有机废气中的应用与进展

摘要

随着现代工业的快速发展,工业三废的排放量与日俱增,尤其是挥发性有机废气(VOCs)的排放,挥发性有机废气种类繁多、毒性强、扩散面广,是继颗粒物、二氧化硫、氮氧化合物之后又一类不容忽视的大气污染物。传统的有机废气处理方法存在流程复杂、运行成本高、处理效率低下、易产生二次污染等问题。低温等离子体技术利用自由基、高能电子等活性粒子与有机废气分子发生一系列理化反应,使有害气体在短时间内迅速催化降解为CO2和H2O以及其他小分子化合物。低温等离子体技术工艺流程简单、开停方便、运行费用低、去除效率高,在治理上具有明显优势,是国内外目前的研究热点之一。本文综述了低温等离子体在催化剂处理挥发性有机废气方面的技术研究进展,并展望了等离子体技术在废气处理领域的发展方向。

关键词:低温等离子体;有机挥发性废气(VOCs);催化降解

1 引言

工农业生产过程不可避免地要排放挥发性有机废气(VOCs),这是污染环境、危害人类健康的重要来源[1-2]。挥发性有机废气排放到大气中会引起光化学烟雾、臭氧层破坏等环境问题;大部分的VOCs 还具有毒性、刺激性、甚至致癌作用,对人体健康造成严重的危害[3]。为了应对(VOCs)对环境的破坏以及对人体健康的威胁,挥发性有机废气处理技术迅速成为国内外的研究热点之一。

2 常用有机废气处理技术

目前国内外有多种技术用于处理挥发性有机废气,其中较为常见的方法有:燃烧法、冷凝法、吸收法、吸附法、生物法、低温等离子体法等。

2.1 燃烧法

通过燃烧将VOCs转化为无害物质的过程称为燃烧法[4]。燃烧法的原理是燃烧氧化作用及在高温下的热分解。因此,燃烧法只适用于处理可燃的或在高温下易分解的VOCs。

2.2 冷凝法

冷凝法处理VOCs是利用废气中的各组分饱和蒸汽压不同这一特点,采用降温、升压等方法,将气态的VOCs液化分离[5],但冷凝法不适用于低浓度废气的处理。

2.3 吸收法

吸收法的原理是吸收质(VOCs)与吸收剂(水、酸溶液、碱溶液等)发生化学反应从而达到吸收去除效果。当VOCs成分复杂需多段净化时,该方法便不再适用,并且该法设备易腐蚀,易形成二次污染[6]。

2.4 吸附法

吸附法是用多孔性固体活性炭、分子筛、交换树脂、硅胶、飞灰等吸附去除废气。吸附法对大部分VOCs均适用,一般作为其他方法的后续处理[7]。但是吸附法也有它的缺点投资高、吸附剂用量大、再生困难、能耗大、占地面积大等缺点。

2.5 生物法

生物法去除VOCs是微生物利用废气作为碳源和能源,进行生命代谢,将VOCs分解为CO2和H2O等小分子有机物[8]。该方法绿色环保,但对VOCs种类和浓度波动适应性较差。

2.6 其他方法

除了上述方法外,其他的治理技术还有化学氧化法、膜分离法、光催化法、低温等离子体法等。其中低温等离子体技术经过近年发展日渐成熟,低温等离子体法的适用范围广[9]、净化效率高,尤其适用于其它方法难以处理的多组分VOCs 气体,下面将着重介绍该方法。

3 低温等离子体技术

3.1 等离子体及其分类[10-11]

等离子体被认为是物质的第4种存在形态。除固态、液态和气态之外,由电子、离子、中性粒子和自由基组成的导电性流体,整体保持电中性。等离子体中,若电子与其他粒子温度相同,且在5000K以上,称之为热等离子体或平衡态等离子体。若电子的运动温度达几万摄氏度,而其他粒子和整个系统的温度只有几百摄氏度,则称之为低温等离子体或非平衡态等离子体。实验室中常用的低温等离子体主要包括:电晕放电、辉光放电、火花放电、介质阻挡放电、滑动弧光放电、微波等离子体及射频等离子体。

3.2 低温等离子体去除VOCs 的机理

采用低温等离子体分解气体污染物时,低温等离子体与VOCs 的作用机理主要有两方面:一是高能电子直接与气体分子(原子)发生非弹性碰撞,将能量转换成基态分子(原子)的内能,使其激发、离解、电离最终生成无害的CO2和H2O;二是高能电子激励气体中的O2、N2、H2O 等分子,从而产生具有强氧化能力O、OH、O3、OH2等自由基或活性粒子,它们破坏C-H、C=C 或C-C 等化学键,使VOCs 分子中的H、C1、F 等发生置换反应和分解氧化,最终生成无害物质CO2和H2O[12]。

3.3 低温等离子体技术处理VOCs 的研究进展

3.3.1 低温等离子体单独作用于VOCs

由于低温等离子体具有很多优点,研究者对不同的放电低温等离子体进行了研究,其中以介质阻挡放电等离子体研究最多。低温等离子体单独作用VOCs

具有设备简单、流程短、效率高,而且容易获得等离子体的优点,因而被广泛的研究。滑动弧放电是一种气体放电等离子体发生方式,在常压下产生非平衡等离子体,80%以上的输入电能能通过低温等离子体刺激化学反应[13]。国内薄拯等[14]研究了滑动弧放电等离子体裂解正己烷,该法可以有效处理正己烷,裂解率高达96%,主要裂解产物为CO2、CO、NO2和H2O。提高电压可以增大正己烷裂解率,进而增大处理量;不同材料的电极能量利用率不同,能量利用率依次为铁电极低于铝电极低于铜电极。国外Antonius Indarto 等[15]在常温常压下研究了滑动弧放电处理芳香化合物和有机氯化合物的混合物,结果表明,进气芳香化合物浓度为0.1%~0.5%,流速为5L/min 时,能量利用率为苯< 甲苯< 二甲苯,比其他放电方式(如介质阻挡放电、射频放电等)能量利用率都高,降解率都在60%以上,主要产物为CO2、CO、H2O;进气浓度3%,流速5L/min,氯仿的去除率高达97%,产物主要为CO、CO2、Cl2和气溶胶。除此之外,Shun-I Shih 等[16]研究了射频等离子体单独处理苯,在O2/Ar 做载气,O2浓度为1~9%,C2H6 的浓度为1%,输入功率为20W,苯的去除率始终保持在98~99%,产物为CO、CO2、H2O。Wen-Jun Liang等[17]研究了介质阻挡放电以及铁电极上的NaNO2介质颗粒含量对甲醛去除率的影响,结果表明,随着铁电极上的NaNO2的含量增加,甲醛的去除率增加,当铁电极上浸入8000ppm 的NaNO2时,甲醛的去除率由不浸时的58%增加到93%,能量密度也相应的增加。以上等离子体单独作用有机废气,虽然去除率很高,但都是针对低浓度废气,而且还产生CO 等副产物,CO2 的选择性也不强。

3.3.2 低温等离子体协同吸附剂作用于VOCs

在等离子体反应器中填充吸附剂(如活性炭、分子筛、沸石、大孔γ-Al2O3等),可在不增加反应器尺寸的前提下,延长VOCs 废气在反应器内的停留时间,同时吸附剂可选择性吸附VOCs 和大量的高活性自由基,使表面处活性自由基

相关文档
最新文档