低温等离子体在有机净化废气中的应用与进展介绍

合集下载

低温等离子体处理技术在环保中的应用

低温等离子体处理技术在环保中的应用

低温等离子体处理技术在环保中的应用随着环境污染的加剧,找寻一种有效的环保技术变得越来越重要。

低温等离子体处理技术是一种新兴的技术,它可以对有机物、无机物以及废气进行高效处理,被广泛应用于环保领域。

本文将从低温等离子体处理技术的基本原理、优势和应用场景等方面来探讨它在环保中的应用。

一、低温等离子体处理技术的基本原理低温等离子体处理技术是一种将气体离子化形成的等离子体作用于污染物以实现其分解、氧化和还原的环保技术。

它的工作原理是将高压等离子体产生器中的气体通入反应室,在高频电场作用下产生等离子体。

等离子体中产生的高能电子碰撞分解了有机物和废气中的有害物质,分解后的废物可以被过滤器或其他处理手段进一步处理。

二、低温等离子体处理技术的优势1.高效低温等离子体处理技术能够将废气中的有害物质迅速分解,使得处理效率非常高。

其处理速度快,可达到每小时数百立方米的处理能力。

2.安全低温等离子体处理技术采用低温等离子体,不会像高温等离子体一样产生臭氧、一氧化碳等有害气体,不仅处理效果好,而且安全可靠。

3.绿色环保低温等离子体处理技术不需要添加任何化学药剂,处理效果好,不会产生二次污染,是一种非常环保的技术。

三、低温等离子体处理技术的应用场景1.工业废气处理工业废气产生的污染物种类繁多,难以处理。

低温等离子体处理技术可以高效地处理工业废气中的甲醛、苯系化合物、氨气、氢氧化物等有害物质,减少废气对环境的污染。

2.水质处理水质中的有机物可以通过低温等离子体处理技术被分解,大大提高了水的水质,有效解决了水污染问题。

3.食品加工行业食品加工行业中的油烟、废气等污染物是环保的难点之一。

低温等离子体处理技术能够迅速去除食品加工过程中产生的有害气体和微生物,大大降低了环境污染的可能。

四、低温等离子体处理技术的发展趋势低温等离子体处理技术在环保中的应用前景非常广阔,未来还有着很大的发展空间。

技术的发展方向主要集中在降低处理成本方面。

低温等离子体处理有机废气技术介绍

低温等离子体处理有机废气技术介绍

低温等离子体技术介绍低温等离子体是继固态、液态、气态之后的物质的第四态,当外加电压达到气体的着火电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。

放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。

低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到分解污染物的目的。

“QHDD-Ⅱ”低温等离子体工业废气处理成套设备和技术作为一种新型的气态污染物的治理技术是一个集物理学、化学、生物学和环境科学于一体的交叉综合性电子化学技术,由于能很容易使污染物分子高效分解且处理能耗低等特点,是目前国内外大气污染治理中最富有前景、最行之有效的技术方法之一,其使用和推广前景广阔,为工业领域VOC类有机废气及恶臭气体的治理开辟了一条新的思路。

低温等离子体废气处理技术与其他废气治理方法优缺点对比表1-2 几种废气处理工艺的适用范围及优缺点工艺名称原理适用范围优点缺点掩蔽法采用更强烈的芳香气味与臭气掺和,以掩蔽臭气,使之能被人接收适用于需立即、暂时地消除低浓度恶臭气体影响地场合,恶臭强度2.5左右,无组织排放源可尽快消除恶臭影响,灵活性大,费用低恶臭成分并没有被去除,麻痹了对原有污染物的感知热力燃烧法在高温下恶臭物质与燃料气充分混和,实现完全燃烧适用于处理高浓度、小气量的可燃性气体净化效率高,恶臭物质被彻底氧化分解设备易腐蚀,消耗燃料,处理成本高,易形成二次污染,催化剂中毒催化燃烧法水吸收法利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的水溶性、有组织排放源的恶臭气体工艺简单,管理方便,设备运转费用低产生二次污染,需对洗涤液进行处理;净化效率低,应与其他技术联合使用,对水溶性差的物质等处理效果差药液吸收法利用臭气中某些物质和药液产生化学反应的特性,去除某些臭气成分适用于处理大气量、高中浓度的臭气能够有针对性处理某些臭气成分,工艺较成熟净化效率不高,消耗吸收剂,易形成而二次污染吸附法利用吸附剂的吸附功能使恶臭物质由气相转移至固相适用于处理低浓度,高净化要求的恶臭气体净化效率很高,可以处理多组分恶臭气体吸附剂费用昂贵,再生较困难,要求待处理的恶臭气体有较低的温度和含尘量生物滤池恶臭气体经过除尘增湿或降温等预处理工艺后,从滤床底部由下向上穿过由滤料组成的滤床,恶臭气体由气相转移至水—微生物混和相,通过固着于滤料上的微生物代谢作用而被分解掉目前研究最多,工艺最成熟,在实际中也最常用的生物脱臭方法,又可细分为土壤脱臭法、堆肥脱臭法、泥炭脱臭法等。

低温等离子体技术在废气净化中的应用

低温等离子体技术在废气净化中的应用

低温等离子体技术在废气净化中的应用废气是指各种工业生产过程中产生排放的气体,其中包括大量的有害气体。

如何控制和净化废气成为了一个亟待解决的问题。

传统的废气净化方法依靠化学氧化、吸附等方式处理,但这些方法存在着处理效率低、设备大、耗能高等缺点。

近年来,低温等离子体技术逐渐被人们所重视,该技术不仅可以有效净化废气,还可以降低环保成本,被广泛应用于环保行业。

一、低温等离子体技术的概述等离子体是由电离气体中带正电荷离子和带负电荷电子组成的气体。

根据等离子体的温度区别,可以将其分为高温等离子、室温等离子和低温等离子。

低温等离子体是处于室温下的等离子体,与传统的等离子体相比,低温等离子体具有成本低、消耗小、处理效率高、适应性强等优势。

低温等离子体技术是指将废气作为介质,通过高压电场、微波等方式将废气中的气体电离成等离子体,通过等离子体中产生的等离子体反应,使废气中的有害气体被分解和转化成无害气体,从而达到净化目的。

二、低温等离子体技术在废气净化中的应用近年来,低温等离子体技术在废气处理中得到了广泛的应用。

常见的废气净化技术包括有机废气净化、重金属废气净化、焊接废气净化等。

1. 有机废气净化有机废气是指加工或生产有机物质所产生的废气,常见的有机废气有苯、甲苯、二甲苯、苯酚等有机物,这些有机物对人体具有很大的危害。

低温等离子技术可以将有机废气中的有害物质分解成水和二氧化碳等无害物质,减少有机废气的排放和对环境的影响。

2. 重金属废气净化重金属废气常见的有铬、镍、铜、锌等元素,这些重金属对环境和人体健康产生很大的危害。

低温等离子技术可以将重金属离子还原为元素形态,在成为普通废物排放,或者在处理完重金属废气后,在引入水中进行沉降处理。

3. 焊接废气净化焊接废气是指焊接所产生的废气,常见的焊接废气有氮氧化物、氧气化合物、氟气等有害气体。

低温等离子技术可以将焊接废气中的有害气体分解,减少氮氧化物和氧气化合物的排放,同时又不会对环境和人体健康产生不良影响。

低温等离子体技术在有机污染控制中的应用

低温等离子体技术在有机污染控制中的应用

低温等离子体技术在有机污染控制中的应用有机污染物是空气、水和土壤中的主要污染物之一,对人类和生态环境都造成极大的威胁。

因为有机污染物分子结构复杂,对纯物质难以达到彻底的分解,传统的治理技术往往会产生二次污染或生成更恶劣的化合物。

低温等离子体技术作为一种新型的环境治理技术,在有机污染控制中具有潜在的应用前景。

低温等离子体技术是以气体放电等离子体作为催化体系,将有机污染物转化成无毒、无害的CO2和H2O的技术。

低温等离子体技术具备处理高浓度有机污染物、快速响应和高效、宽适应性等优点。

它能通过氧化、裂解、化学还原等多种途径降解有机污染物,使废气基本与环境要求一致。

低温等离子体技术的基础是等离子体反应,等离子体是高度电离气体,具有强氧化还原能力能降解有机污染物。

等离子体反应过程是通过电子冲击和分子撞击形成的高能状态,这种高能状态能将某些化学键断裂并形成自由基进而引发一系列化学反应。

本质上等离子体技术就是用高能的等离子体将有机污染物分解成复杂的无机物、水和二氧化碳,这些无害的产物随后被排放到大气中。

在低温等离子体技术的发展过程中,关键问题是如何得到高效稳定的等离子体反应。

目前的先进施工方案包括微波助推等离子体技术、工业等离子体技术、自耦式等离子体技术、冷阱式等离子体技术等,这些技术提高了等离子体反应的稳定性和降解率。

例如,微波等离子体技术温度低、模块化,小尺寸化,能够大量拓展处理空间,提高等离子体反应的稳定性和降解率。

自耦式等离子体技术能有效消除电容耦合和电感耦合,减少等离子体反应过程的波动性,提高等离子体反应的输出功率和稳定性。

冷阱式等离子体技术可以有效地处理质量较大的有机物和产生的有害气体。

低温等离子体技术应用广泛,例如有机废气处理、有机废水处理和土壤修复。

废气清洁应用领域中,低温等离子体技术在石化、化工、半导体、食品等行业得到了广泛的应用。

在有机废水处理中,低温等离子体处理技术可以有效去除COD、BOD和色度等污染物,不会产生二次污染,而且能使废水达到国家排放标准。

低温等离子体技术在有机净化废气中的应用与进展

低温等离子体技术在有机净化废气中的应用与进展

低温等离子体技术在有机净化废气中的应用与进展姓名:xxx专业:环境工程班级:xxx指导老师:xxx2015年12月xx日低温等离子体技术在净化有机废气中的应用与进展摘要随着现代工业的快速发展,工业三废的排放量与日俱增,尤其是挥发性有机废气(VOCs)的排放,挥发性有机废气种类繁多、毒性强、扩散面广,是继颗粒物、二氧化硫、氮氧化合物之后又一类不容忽视的大气污染物。

传统的有机废气处理方法存在流程复杂、运行成本高、处理效率低下、易产生二次污染等问题。

低温等离子体技术利用自由基、高能电子等活性粒子与有机废气分子发生一系列理化反应,使有害气体在短时间内迅速催化降解为CO2和H2O以及其他小分子化合物。

低温等离子体技术工艺流程简单、开停方便、运行费用低、去除效率高,在治理上具有明显优势,是国内外目前的研究热点之一。

本文综述了低温等离子体在催化剂处理挥发性有机废气方面的技术研究进展,并展望了等离子体技术在废气处理领域的发展方向。

关键词:低温等离子体;有机挥发性废气(VOCs);催化降解1 引言工农业生产过程不可避免地要排放挥发性有机废气(VOCs),这是污染环境、危害人类健康的重要来源[1-2]。

挥发性有机废气排放到大气中会引起光化学烟雾、臭氧层破坏等环境问题;大部分的VOCs 还具有毒性、刺激性、甚至致癌作用,对人体健康造成严重的危害[3]。

为了应对(VOCs)对环境的破坏以及对人体健康的威胁,挥发性有机废气处理技术迅速成为国内外的研究热点之一。

2 常用有机废气处理技术目前国内外有多种技术用于处理挥发性有机废气,其中较为常见的方法有:燃烧法、冷凝法、吸收法、吸附法、生物法、低温等离子体法等。

2.1 燃烧法通过燃烧将VOCs转化为无害物质的过程称为燃烧法[4]。

燃烧法的原理是燃烧氧化作用及在高温下的热分解。

因此,燃烧法只适用于处理可燃的或在高温下易分解的VOCs。

2.2 冷凝法冷凝法处理VOCs是利用废气中的各组分饱和蒸汽压不同这一特点,采用降温、升压等方法,将气态的VOCs液化分离[5],但冷凝法不适用于低浓度废气的处理。

低温等离子体技术处理挥发性有机废气的研究进展

低温等离子体技术处理挥发性有机废气的研究进展

低温等离子体技术处理挥发性有机废气的研究进展近年来,低温等离子体技术在处理挥发性有机废气方面取得了一系列的研究进展。

首先,在反应机理方面,研究人员发现低温等离子体技术主要通过两种方式降解有机废气:一个是直接将有机物质氧化为CO2和H2O,另一个是将有机物质通过裂解氧化为较小的分子。

这些研究对于进一步改进低温等离子体技术的效率和稳定性具有重要意义。

其次,在反应条件方面,研究人员发现低温等离子体技术的反应条件会对处理效果产生重要影响。

如气体温度、压力和气体流速等因素都会对反应速率和废气处理效率产生一定的影响。

因此,研究人员通过优化反应条件,提高了废气处理效果。

此外,研究人员还发现在低温等离子体技术中添加催化材料可以提高废气处理效率。

催化剂的引入可以加速有机物质的氧化反应,提高反应速率。

研究人员通过不断优化催化剂的种类和添加量,提高了废气处理效率。

此外,研究人员还研究发现废气成分、湿度和废气浓度等因素对低温等离子体技术的处理效果也存在一定影响。

这些研究成果为进一步改进低温等离子体技术提供了重要的理论依据。

然而,低温等离子体技术在挥发性有机废气处理方面还存在一些挑战。

首先,低温等离子体技术在处理复杂废气时的效果有限,需要对不同组分和污染物进行更加深入的研究。

其次,低温等离子体技术的能耗较高,需要进一步研究开发更加高效的能耗优化技术。

此外,低温等离子体技术对系统的稳定性和可持续性的要求较高,需要对系统结构和运行参数进行改进。

综上所述,低温等离子体技术在处理挥发性有机废气方面取得了一定的研究进展。

然而,仍需要进一步研究和创新,以进一步提高废气处理效率和能耗优化,并实现低温等离子体技术的规模应用。

同时,还需要加强对废气组分、湿度和浓度等因素的研究,以更好地适应实际废气处理需求。

低温等离子体在废气处理中的应用

低温等离子体在废气处理中的应用

低温等离子体在废气处理中的应用摘要:为了提高居民生活环境质量、杜绝空气污染隐患,异味恶臭源的控制处理已成为目前一些地区亟待解决的环境问题。

文章对低温等离子体在废气处理中的应用进行了讨论。

关键词:低温等离子体;废气处理;应用等离子体化学是涉及高能物理、放电物理、放电化学、反应工程学、高压脉冲技术等领域的一门交叉学科。

将等离子体用于处理各类污染物成为国内外研究的热门之一。

与其他污染治理技术相比,等离子体法具有处理流程短、效率高、能耗低、适用范围广等特点。

等离子体既可用于处理废气又可用于处理废水、固体废物、污泥、甚至放射性废物。

一、低温等离子体分解气态污染物的机理采用低温等离子体分解气体污染物时,等离子体中的高能电子起决定性的作用。

数万度的高能电子与气体分子(原子)发生非弹性碰撞,将能量转换成基态分子(原子)的内能,发生激发、离解、电离等一系列过程使气体处于活化状态。

电子能量较低(99%。

处理废气量3500m3/h,电耗0.003kW/Nm3,即处理1m3废气的费用仅为0.013元。

五、低温等离子体的应用研究方向1、深入研究等低温离子体降解污染物的机理低温等离子体降解污染物是一个十分复杂的过程,而且影响这一过程的因素很多。

虽然目前已有大量有关低温等离子体降解污染物机理的研究,但还未形成能指导实践的理论体系,使其工业应用缺乏理论保障。

2、提高污染物降解效率,降低能耗低温等离子体技术的工业化应用的关键是在保证污染物去除率的基础上,降低能耗。

普遍认为,低温等离子体处理烟道气和工业废气的能耗应<3W·h/m3。

通过优化反应器的构形与操作参数,提高电源的能量效率及电源与反应器的匹配,选择合适的添加剂、催化剂、吸附剂或填料等办法,可有效提高污染物的降解效率和能量利用率,降低能耗。

3、处理装置的大型化与小型化处理装置的大型化与小型化是等离子体技术今后发展的两个方向。

对于大流量低浓度的锅炉烟道气、有机废气和含硫废气,低温等离子体具有较好的处理效果,对烟道气可同时实现脱硫、脱硝与除尘,并可回收有用的产品,但大多数试验还停留在小试或中试阶段,面临着试验装置如何进行工业放大问题。

低温等离子体协同催化净化废气的研究进展

低温等离子体协同催化净化废气的研究进展

低温等离子体协同催化净化废气的研究进展在现代工业生产与生活中,废气排放问题逐渐引起人们的关注。

废气中含有大量的有害气体和颗粒物,严重污染了环境,危害了人类健康。

因此,研究废气处理技术变得尤为重要。

近年来,低温等离子体协同催化技术作为一种新兴的废气处理技术备受关注,其在废气净化中展现出了良好的效果。

1. 低温等离子体技术简介低温等离子体是一种热带电离气体,在较低的温度下就可以形成。

利用电场、射频场或微波等原理激发气体,使之成为电离态,形成等离子体。

低温等离子体具有高活性、高能量的特点,可在常温下进行废气净化。

2. 催化剂在废气净化中的作用催化剂在废气净化中能够提高反应速率,降低反应温度,增加反应选择性。

通过选择合适的催化剂,可以实现高效的废气净化效果。

在低温等离子体协同催化技术中,催化剂的选择和设计尤为关键。

3. 低温等离子体协同催化技术原理低温等离子体与催化剂相结合,可产生协同效应。

低温等离子体能够激活废气中的有机物和气态污染物,提高其活性,使其更容易与催化剂发生反应。

催化剂则能够提高反应速率和选择性,促进有害气体转化为无害产物。

4. 低温等离子体协同催化净化废气的应用目前,低温等离子体协同催化技术已广泛应用于VOCs(挥发性有机物)的处理、NOx(氮氧化物)的还原、氮氧化物的选择性催化还原等领域。

在实际工程应用中,该技术具有较好的稳定性和效果,并已在一些工业废气处理装置中得到了应用。

5. 未来展望随着环境保护要求的提高,低温等离子体协同催化技术将得到更广泛的应用。

未来的研究重点将集中在提高催化剂的选择性和稳定性、优化反应条件以及降低技术成本等方面,以实现对废气净化效率的进一步提升。

综上所述,低温等离子体协同催化技术作为一种高效的废气处理技术,具有很好的应用前景。

随着技术的不断进步和完善,相信在未来能够更好地服务于环境保护和人类健康的需要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低温等离子体技术在有机净化废气中的应用与进展姓名:xxx专业:环境工程班级:xxx指导老师:xxx2015年12月xx日低温等离子体技术在净化有机废气中的应用与进展摘要随着现代工业的快速发展,工业三废的排放量与日俱增,尤其是挥发性有机废气(VOCs)的排放,挥发性有机废气种类繁多、毒性强、扩散面广,是继颗粒物、二氧化硫、氮氧化合物之后又一类不容忽视的大气污染物。

传统的有机废气处理方法存在流程复杂、运行成本高、处理效率低下、易产生二次污染等问题。

低温等离子体技术利用自由基、高能电子等活性粒子与有机废气分子发生一系列理化反应,使有害气体在短时间内迅速催化降解为CO2和H2O以及其他小分子化合物。

低温等离子体技术工艺流程简单、开停方便、运行费用低、去除效率高,在治理上具有明显优势,是国内外目前的研究热点之一。

本文综述了低温等离子体在催化剂处理挥发性有机废气方面的技术研究进展,并展望了等离子体技术在废气处理领域的发展方向。

关键词:低温等离子体;有机挥发性废气(VOCs);催化降解1 引言工农业生产过程不可避免地要排放挥发性有机废气(VOCs),这是污染环境、危害人类健康的重要来源[1-2]。

挥发性有机废气排放到大气中会引起光化学烟雾、臭氧层破坏等环境问题;大部分的VOCs 还具有毒性、刺激性、甚至致癌作用,对人体健康造成严重的危害[3]。

为了应对(VOCs)对环境的破坏以及对人体健康的威胁,挥发性有机废气处理技术迅速成为国内外的研究热点之一。

2 常用有机废气处理技术目前国内外有多种技术用于处理挥发性有机废气,其中较为常见的方法有:燃烧法、冷凝法、吸收法、吸附法、生物法、低温等离子体法等。

2.1 燃烧法通过燃烧将VOCs转化为无害物质的过程称为燃烧法[4]。

燃烧法的原理是燃烧氧化作用及在高温下的热分解。

因此,燃烧法只适用于处理可燃的或在高温下易分解的VOCs。

2.2 冷凝法冷凝法处理VOCs是利用废气中的各组分饱和蒸汽压不同这一特点,采用降温、升压等方法,将气态的VOCs液化分离[5],但冷凝法不适用于低浓度废气的处理。

2.3 吸收法吸收法的原理是吸收质(VOCs)与吸收剂(水、酸溶液、碱溶液等)发生化学反应从而达到吸收去除效果。

当VOCs成分复杂需多段净化时,该方法便不再适用,并且该法设备易腐蚀,易形成二次污染[6]。

2.4 吸附法吸附法是用多孔性固体活性炭、分子筛、交换树脂、硅胶、飞灰等吸附去除废气。

吸附法对大部分VOCs均适用,一般作为其他方法的后续处理[7]。

但是吸附法也有它的缺点投资高、吸附剂用量大、再生困难、能耗大、占地面积大等缺点。

2.5 生物法生物法去除VOCs是微生物利用废气作为碳源和能源,进行生命代谢,将VOCs分解为CO2和H2O等小分子有机物[8]。

该方法绿色环保,但对VOCs种类和浓度波动适应性较差。

2.6 其他方法除了上述方法外,其他的治理技术还有化学氧化法、膜分离法、光催化法、低温等离子体法等。

其中低温等离子体技术经过近年发展日渐成熟,低温等离子体法的适用范围广[9]、净化效率高,尤其适用于其它方法难以处理的多组分VOCs 气体,下面将着重介绍该方法。

3 低温等离子体技术3.1 等离子体及其分类[10-11]等离子体被认为是物质的第4种存在形态。

除固态、液态和气态之外,由电子、离子、中性粒子和自由基组成的导电性流体,整体保持电中性。

等离子体中,若电子与其他粒子温度相同,且在5000K以上,称之为热等离子体或平衡态等离子体。

若电子的运动温度达几万摄氏度,而其他粒子和整个系统的温度只有几百摄氏度,则称之为低温等离子体或非平衡态等离子体。

实验室中常用的低温等离子体主要包括:电晕放电、辉光放电、火花放电、介质阻挡放电、滑动弧光放电、微波等离子体及射频等离子体。

3.2 低温等离子体去除VOCs 的机理采用低温等离子体分解气体污染物时,低温等离子体与VOCs 的作用机理主要有两方面:一是高能电子直接与气体分子(原子)发生非弹性碰撞,将能量转换成基态分子(原子)的内能,使其激发、离解、电离最终生成无害的CO2和H2O;二是高能电子激励气体中的O2、N2、H2O 等分子,从而产生具有强氧化能力O、OH、O3、OH2等自由基或活性粒子,它们破坏C-H、C=C 或C-C 等化学键,使VOCs 分子中的H、C1、F 等发生置换反应和分解氧化,最终生成无害物质CO2和H2O[12]。

3.3 低温等离子体技术处理VOCs 的研究进展3.3.1 低温等离子体单独作用于VOCs由于低温等离子体具有很多优点,研究者对不同的放电低温等离子体进行了研究,其中以介质阻挡放电等离子体研究最多。

低温等离子体单独作用VOCs具有设备简单、流程短、效率高,而且容易获得等离子体的优点,因而被广泛的研究。

滑动弧放电是一种气体放电等离子体发生方式,在常压下产生非平衡等离子体,80%以上的输入电能能通过低温等离子体刺激化学反应[13]。

国内薄拯等[14]研究了滑动弧放电等离子体裂解正己烷,该法可以有效处理正己烷,裂解率高达96%,主要裂解产物为CO2、CO、NO2和H2O。

提高电压可以增大正己烷裂解率,进而增大处理量;不同材料的电极能量利用率不同,能量利用率依次为铁电极低于铝电极低于铜电极。

国外Antonius Indarto 等[15]在常温常压下研究了滑动弧放电处理芳香化合物和有机氯化合物的混合物,结果表明,进气芳香化合物浓度为0.1%~0.5%,流速为5L/min 时,能量利用率为苯< 甲苯< 二甲苯,比其他放电方式(如介质阻挡放电、射频放电等)能量利用率都高,降解率都在60%以上,主要产物为CO2、CO、H2O;进气浓度3%,流速5L/min,氯仿的去除率高达97%,产物主要为CO、CO2、Cl2和气溶胶。

除此之外,Shun-I Shih 等[16]研究了射频等离子体单独处理苯,在O2/Ar 做载气,O2浓度为1~9%,C2H6 的浓度为1%,输入功率为20W,苯的去除率始终保持在98~99%,产物为CO、CO2、H2O。

Wen-Jun Liang等[17]研究了介质阻挡放电以及铁电极上的NaNO2介质颗粒含量对甲醛去除率的影响,结果表明,随着铁电极上的NaNO2的含量增加,甲醛的去除率增加,当铁电极上浸入8000ppm 的NaNO2时,甲醛的去除率由不浸时的58%增加到93%,能量密度也相应的增加。

以上等离子体单独作用有机废气,虽然去除率很高,但都是针对低浓度废气,而且还产生CO 等副产物,CO2 的选择性也不强。

3.3.2 低温等离子体协同吸附剂作用于VOCs在等离子体反应器中填充吸附剂(如活性炭、分子筛、沸石、大孔γ-Al2O3等),可在不增加反应器尺寸的前提下,延长VOCs 废气在反应器内的停留时间,同时吸附剂可选择性吸附VOCs 和大量的高活性自由基,使表面处活性自由基和VOCs 的浓度增大,有利于自由基和VOCs 的碰撞而发生化学反应,使短寿命活性基团尽量多的与废气分子发生碰撞,而多孔性颗粒的表面在电子撞击下也可成为反应活性中心,促进微孔结构表面的多相降解反应,有利于提高放电能量的有效利用率,增加产物的选择性,减少副产物。

今后等离子体协同吸附剂的发展,主要在于优化等离子体反应器及对吸附剂进行改性。

Song 等[18]研究了等离子体反应器中填充不同吸附能力的吸附剂(玻璃小球、微孔γ-Al2O3颗粒、分子筛和γ-Al2O3颗粒的混合物)对甲苯和丙烷去除率的影响,结果表明,随着温度的增加,吸附能力有所下降,但是去除率增加,还发现因为微孔γ-Al2O3颗粒O3、HNO3副产物明显减少。

Urashima 等[19]研究了介质阻挡放电反应器中放入活性炭过滤器对甲苯和三氯乙烯(TCE)去除率的影响。

结果表明,甲苯的降解率随输入能量的增加而增加,放电反应器中甲苯的去除率由不加活性炭的90%上升到98%,三氯乙烯由50%上升到90%,并且活性炭过滤器还能吸收反应副产物COCl2、HCl、NOx、O3,能量利用率甲苯和三氯乙烯分别为30g/KWh、15g/KWh。

此外,季银炼等[20]研究了低温等离子体协同改性活性炭纤维(ACF)净化甲醛。

采用浸渍法研制了负载纳米TiO2及Cu/Pd 金属离子的改性活性炭纤维功能材料,充分发挥了ACF 的吸附作用、纳米TiO2光催化作用、低温等离子体强氧化作用。

结果表明,改性ACF 有利于甲醛净化,其中负载TiO2改性方案最佳,低温等离子体协同TiO2/ACF 净化效果最好,其效率高达94%。

3.3.3 低温等离子体协同催化剂作用于VOCs等离子体协同催化剂发挥了两种技术的优点,等离子体场中存在大量的活性物种:高能电子、离子及活性自由基和激发态的气体分子、原子等,只有这些活性物种的能量高于VOCs 键能时才会引发化学反应,而VOCs 的降解主要通过三个途径:(1)电子碰撞电离;(2)自由基碰撞电离;(3)离子碰撞电离。

催化剂具有一定的吸附作用,气相中的大量活性物种及VOCs 分子在吸附作用下聚集在催化剂表面,增加表面活性物种和VOCs 的浓度,催化作用能降低化学反应的活化能。

因此,低温等离子体与催化剂协同作用时,较直接催化剂法或单纯等离子体法具有更高的脱除效率,提高CO2的选择性,可显著降低CO、气溶胶、臭氧及小分子有机化合物副产物的产生,并且显著降低能耗。

等离子体协同催化剂主要有两种方式:(1)催化剂填充在放电区(IPC);(2) 催化剂填充在放电区后面(PPC)。

催化剂的不同位置对VOCs 的去除率、副产物的产生、能量的利用都有极大的影响。

目前研究的热点主要是催化剂的选择及其在反应器中的位置,光催化剂TiO2由于来源广、化学稳定性和催化活性高、没有毒性,成为与等离子体协同作用的最常用光催化剂。

晏乃强等[21]研究了催化剂强化脉冲放电治理有机废气,结果表明,Mn、Fe 等金属氧化物在放电作用下对有机物的降解有较好的催化活性,二者可使甲苯的去除率由59%分别提高到86%和83%;并且发现以陶瓷材料为载体用浸渍法制备的催化剂活性及稳定性较好。

陆彬等[22]研究了介质阻挡等离子体放电与催化联用分解苯,结果表明,加入MnO2可充分利用O2、O3,能够增加苯氧化为CO2,且苯去除的能量利用率是不用催化剂时的两倍,催化剂MnO2 离放电区的距离和能量密度对去除率有显著影响。

当能量密度低于564J/L 时,MnO2离放电区的距离越近,苯的去除效果越好;当能量密度高于1051J/L 时,苯的去除效果与MnO2离放电区的距离有关并有一个最佳值。

Zhu Tao 等[23]研究了等离子体协同MnO2/γ-Al2O3处理低浓度甲苯,结果表明,单独使用等离子体和MnO2或γ-Al2O3时,甲苯的去除率增加,但是使用等离子体和MnO2/γ-Al2O3时,甲苯去除率高达98%以上,能量利用率提高,排放气体中的O3浓度也减少。

相关文档
最新文档