高一上学期数学知识点总结
高一数学上学期的所有知识点

高一数学上学期的所有知识点高一数学上学期的全部学问点1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)推断函数奇偶性可用定义的等价形式:f(x)±f(x)=0或(f(x)≠0);(4)若所给函数的解析式较为冗杂,应先化简,再推断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);讨论函数的问题肯定要留意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=x+a)的对称曲线C2的方程为f(ya,x+a)=0(或f(y+a,x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2ax,2by)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(ax)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(xa)与y=f(bx)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(xa)或f(x2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;(1)(a0,a≠1,b0,n∈R+);(2)logaN=(a0,a≠1,b0,b≠1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a0,a≠1,N0);6.推断对应是否为映射时,抓住两点:(1)A中元素必需都有象且;(2)B中元素不肯定都有原象,并且A中不同元素在B中可以有相同的象;7.能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性。
高一必修一上册数学知识点

高一必修一上册数学知识点一、整式与分式1. 整式整式是由有理数和代数符号通过加、减、乘、乘方运算得到的表达式。
整式可以是常数、单项式、多项式或零多项式。
例如: -2, 3xy, 2x^2 + 3y - 5, 02. 分式分式是由一个整式的分子和分母组成的表达式,其中分母不能为0。
分式可以是有理数、单项式的比、多项式的比或零多项式的比。
例如:3/4, (2x)/(3y), (x^2 + 1)/(x - 1)二、一次函数与二次函数1. 一次函数一次函数是指函数表达式为f(x) = ax + b的函数,其中a和b为常数,且a不为0。
一次函数的图像为一条直线,斜率为a,截距为b。
2. 二次函数二次函数是指函数表达式为f(x) = ax^2 + bx + c的函数,其中a、b和c为常数,且a不为0。
二次函数的图像为开口向上或向下的抛物线。
三、函数的概念与初等函数1. 函数的概念函数是指对于集合A和集合B之间的关系f,如果对于A中的每个元素x,都存在唯一的B中的元素y与之对应,则称f为从A到B的函数,记作f: A → B。
函数可以表示为一种映射关系,将自变量x映射到因变量y上。
2. 初等函数初等函数是指由代数函数、三角函数、指数函数和对数函数所组成的函数。
常见的初等函数包括多项式函数、指数函数、对数函数、三角函数、反三角函数等。
四、平方根与解二次方程1. 平方根平方根是指一个数的平方等于该数的非负实数解。
例如,√4= 2,√9 = 3。
2. 解二次方程二次方程是指形如ax^2 + bx + c = 0的方程,其中a、b和c为常数,且a不为0。
解二次方程可以使用因式分解、配方法、求根公式等方法。
五、三角函数与解直角三角形1. 三角函数三角函数是指以一个锐角的两条直角边的比值为变量的函数。
常见的三角函数包括正弦函数、余弦函数和正切函数等。
2. 解直角三角形解直角三角形是指根据已知的某些角度或边长,利用三角函数的性质求解未知角度或边长的过程。
高一数学必修一知识点总结归纳(6篇)

高一数学必修一知识点总结归纳1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
高一数学必修一知识点总结归纳2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
数学高一上册的知识点总结

数学高一上册的知识点总结高一上册数学知识点总结在高一上册的数学学习中,我们接触了很多重要的数学知识点。
本文将对这些知识点进行总结和回顾,以加深对数学的理解和记忆。
一、函数与导数1. 函数的定义与性质:函数的定义域、值域、单调性、奇偶性等。
2. 一次函数与二次函数:二次函数的图像、顶点坐标、轴对称性等。
3. 导数的概念与性质:导数存在的条件、导数的几何意义、尺规作图等。
4. 导数与函数的关系:导数与函数的单调性、极值、凹凸性等。
二、三角函数1. 弧度制与角度制:弧度制与角度制的相互转换,常见角的弧度值。
2. 三角函数的定义及性质:正弦函数、余弦函数、正切函数的定义域、值域、周期等。
3. 三角函数的图像与性质:三角函数图像的变换规律、奇偶性、周期性等。
4. 三角函数的求值:常用角的三角函数值、三角恒等式的运用等。
三、数列与数列的表示方法1. 数列及其表示方法:数列的概念、通项公式、递推公式等。
2. 等差数列:等差数列的性质、前n项和的公式、特殊的等差数列。
3. 等比数列:等比数列的性质、前n项和的公式、特殊的等比数列。
4. 数列求和:数列求和的基本方法、特殊数列求和公式的运用。
四、平面向量1. 平面向量的概念与运算:平面向量的定义、向量的线性运算、数量积与夹角等。
2. 向量的数量积:向量的模长、向量的夹角、向量的投影等概念与性质。
3. 向量的运算与应用:向量的加减、数量积的运算律、平面向量在几何证明中的应用。
五、立体几何1. 空间几何体与投影:空间几何体的分类、平行投影与中心投影等概念。
2. 空间直线与平面:直线与平面的相交关系、直线与平面的位置关系等。
3. 立体几何体的表面积与体积:立方体、棱柱、棱锥、棱台、球的表面积与体积公式。
总结:通过高一上册数学的学习,我们对函数与导数、三角函数、数列与数列的表示方法、平面向量以及立体几何等知识点有了更加深入的了解。
这些知识点是我们后续学习数学的基础,也是应用数学解决实际问题的重要工具。
高一上数学知识点全总结

高一上数学知识点全总结一、集合与函数1. 集合的概念与表示方法1.1 集合的定义1.2 集合的元素1.3 集合的表示方法:枚举法、描述法、扩展法2. 集合的运算与关系2.1 并集、交集与差集的定义及性质2.2 子集、真子集与集合相等的概念2.3 集合的运算律和运算性质3. 函数的概念与表示方法3.1 函数的定义3.2 函数的图像与函数的性质3.3 函数关系的表示方法:映射、集合对、秩序对4. 函数的基本性质4.1 定义域、值域和对应变量的概念4.2 奇函数与偶函数的定义与性质4.3 单调性、奇偶性与周期性的判定方法二、数列与等差数列1. 数列的概念与表示方法1.1 数列的定义与性质1.2 数列的通项公式1.3 数列的前n项和2. 等差数列的性质与公式2.1 等差数列的定义与性质2.2 等差数列的通项公式与前n项和公式2.3 特殊的等差数列:等差数列的倒数列、等差数列的相乘列3. 等差数列的应用3.1 等差中数的性质与定理3.2 等差数列求和问题3.3 等差数列在实际问题中的应用:等时速度问题、等温度变化问题三、平面几何图形的性质与计算1. 点、线、面和体的概念1.1 点的概念与性质1.2 线的概念与性质1.3 面的概念与性质1.4 体的概念与性质2. 三角形的性质与计算2.1 三角形的定义与性质2.2 三角形的内角和与外角性质2.3 三角形的周长与面积的计算公式2.4 特殊的三角形:等边三角形、等腰三角形3. 直角三角形与勾股定理3.1 直角三角形的概念与性质3.2 勾股定理的表述与证明3.3 勾股定理的应用:求三角形的边长与判断三角形类型四、直线方程与坐标系1. 直线的方程1.1 斜率与直线的关系1.2 直线的点斜式与斜截式方程1.3 直线的一般式方程与截距式方程2. 坐标系及其应用2.1 直角坐标系与平面直角坐标系2.2 点的坐标与位置关系的判定2.3 两点间的距离与点到直线的距离3. 直线的倾斜角及其性质3.1 直线的倾斜角定义及计算方法3.2 直线平行与垂直的判定方法3.3 直线的夹角、交角以及相关性质五、解析几何与向量1. 向量的概念与表示方法1.1 向量的定义与性质1.2 向量的表示方法:坐标表示、数量表示、矢量表示2. 向量的运算2.1 向量的加法与减法2.2 向量的数量乘法与数量除法2.3 向量的数量积与向量积3. 空间几何与平面几何3.1 平面与直线的关系与性质3.2 平面与平面的关系与性质3.3 三角形、四边形及其它多边形的性质与计算总结:高一上学期的数学知识点包括集合与函数、数列与等差数列、平面几何图形的性质与计算、直线方程与坐标系以及解析几何与向量等内容。
高一数学上 全部知识点

高一数学上全部知识点一、代数与函数1.整式的加减乘除、乘方化简2.一元一次方程与一元一次不等式3.二次函数的定义、性质、图像与应用4.基本初等函数与反函数5.实数与绝对值6.数列的概念与常用数列的性质7.分式的化简与分式方程的解法二、平面几何1.平面直角坐标系与向量2.多边形的定义、性质与计算3.圆的定义、性质与计算4.三角形的定义、性质与计算5.相似三角形的判定与计算6.三角函数的定义、性质与计算7.三角函数的应用三、立体几何1.立体图形的投影与展开2.平行线与平面3.多面体的定义、性质与计算4.球的定义、性质与计算5.三棱锥与四棱锥的定义、性质与计算6.正多面体与棱柱的定义、性质与计算四、概率与统计1.随机事件的概念与性质2.概率的定义、性质与计算3.频率与概率的关系4.抽样调查与统计分析5.常用的统计图表的制作与分析6.正态分布的性质与应用五、数学思想方法及数论1.数学的证明方法与思想2.方程与不等式的证明3.数论的基本概念与性质4.整除性与素数的性质5.最大公约数与最小公倍数的计算6.同余关系与模运算六、平面向量与解析几何1.平面向量的概念与运算2.平面向量的线性相关与线性无关3.空间直角坐标系与空间向量4.平面与直线的位置关系5.平面的方程与直线的方程6.平行线与垂直线的判定与性质七、导数与微分1.导数的定义与性质2.常用函数的导数与导数公式3.函数的单调性与极值4.函数图形的描绘与性质5.函数的近似计算与应用6.微分的定义与性质八、不等式与极限1.不等式的基本性质与解法2.绝对值不等式的求解3.函数不等式的解法4.极限的定义与性质5.极限的运算法则与计算6.自然对数与指数函数的极限计算九、数理统计1.随机事件与概率2.频率与概率的估计3.统计图表的绘制与分析4.总体与样本的概念与性质5.统计量的计算与应用6.抽样调查与统计分析总结:高一数学涉及了代数与函数、平面几何、立体几何、概率与统计、数学思想方法及数论、平面向量与解析几何、导数与微分、不等式与极限、数理统计等多个知识点。
高一数学上册知识点归纳

高一数学上册知识点归纳一、函数与方程1. 函数的概念- 定义- 函数的表示方法- 函数的图像2. 函数的性质- 单调性- 奇偶性- 周期性3. 特殊函数- 一次函数- 二次函数- 幂函数- 指数函数- 对数函数- 三角函数4. 函数的应用- 实际问题建模- 函数的最值问题5. 方程与不等式- 一元一次方程- 一元二次方程- 不等式及其解集 - 系统方程的解法二、数列与数学归纳法1. 数列的概念- 数列的定义- 常见的数列类型2. 等差数列与等比数列 - 定义与性质- 通项公式- 求和公式3. 数列的极限- 极限的概念- 极限的性质4. 数学归纳法- 原理- 证明方法三、三角函数1. 三角函数的基础- 角度与弧度- 三角函数的定义 - 三角函数的图像2. 三角函数的性质- 单调性- 奇偶性- 周期性3. 三角恒等变换- 基本恒等式- 恒等变换的应用4. 解三角形- 正弦定理- 余弦定理四、平面向量1. 向量的基本概念- 向量的定义- 向量的加法与数乘2. 向量的几何运算- 向量的减法与数量积- 向量的投影3. 向量的应用- 平面向量的坐标表示- 向量在几何问题中的应用五、立体几何1. 空间几何体- 多面体- 旋转体2. 空间直线与平面- 直线与平面的位置关系- 直线与平面的方程3. 空间向量- 空间向量的基本概念- 空间向量的基本运算4. 立体几何的应用- 体积与表面积的计算- 立体图形的构造请将以上内容复制到Word文档中,并根据实际需要进行格式设置和内容补充。
您可以调整字体、段落、列表等,以确保文档的专业性和可读性。
此大纲仅供参考,具体知识点的深入和扩展应依据实际教材和教学大纲进行。
高一上数学知识点总结

高一上数学知识点总结一、初等数学概念及基本运算1.1 数的概念数是人们用来计量、计数和比较事物多少的概念。
数分为自然数、整数、有理数和无理数等多种类型。
在高一上学期数学学习中,我们主要学习了自然数、整数及有理数的运算性质和应用。
1.2 代数式代数式是用字母表示数和其他量的式子。
代数式由常数项、字母项和字母的幂组成。
在学习代数式时,我们需要了解字母的代数意义,学会对代数式进行因式分解和化简等运算。
1.3 四则运算四则运算是数学中最基本的运算,包括加法、减法、乘法和除法。
在高一上学期数学中,我们需要掌握整数及有理数的四则运算规则,灵活运用这些规则解决实际问题。
1.4 方程与不等式方程是指两个代数式之间用等号连接的算式,而不等式是指两个代数式之间用不等号连接的算式。
在高一上学期数学中,我们需要学习如何解一元一次方程、一元一次不等式以及简单的二元一次方程和不等式。
1.5 几何基本概念在初中阶段,我们已经学习了许多几何相关的知识,如平行线、相交线、角的概念、线段、比例、相似等。
在高一上学期数学中,我们需要在这些基本概念的基础上深入学习各种几何图形的性质和应用。
二、函数与方程2.1 函数概念函数是一种对应关系,它将一个自变量映射到一个因变量。
在高一上学期数学中,我们需要学习函数的概念和性质,了解函数的图像、定义域、值域以及各种类型的函数。
2.2 一次函数一次函数是最简单的线性函数,其表达式为 y=kx+b,其中 k 和 b 都是常数。
在高一上学期数学中,我们需要了解一次函数的图像、性质、斜率和截距的含义,能够灵活运用一次函数解决实际问题。
2.3 二次函数二次函数是一个具有二次项的函数,其表达式为 y=ax^2+bx+c,其中 a、b 和 c 都是常数且 a 不等于 0。
在高一上学期数学中,我们需要学习二次函数的图像、性质、顶点、对称轴以及利用二次函数解决实际问题。
2.4 不等式与不等式组在高一上学期数学中,我们需要学习如何解一元一次不等式、一元二次不等式以及简单的二元一次不等式组和不等式组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一上学期数学知识概念方法题型易误点技巧总结一、集合与命题1.集合元素具有确定性、无序性和互异性. 在求有关集合问题时,尤其要注意元素的互异性,如(1)设P Q 、为两个非空实数集合,定义集合{|,}P Q a b a P b Q +=+∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P Q +中元素的有________个。
(答:8)(2)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有_____个(答:7)2.遇到A B =∅时,你是否注意到“极端”情况:A =∅或B =∅;同样当A B ⊆时,你是否忘记∅=A 的情形?要注意到∅是任何集合的子集,是任何非空集合的真子集。
如集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B =,则实数a =______.(答:10,1,2a =) 3.对于含有n 个元素的有限集合M ,其子集、真子集、非空子集、非空真子集的个数依次为,n 2,12-n ,12-n .22-n 如满足{1,2}{1,2,3,4,5}M ⊂⊆≠集合M 有______个。
(答:7)4.集合的运算性质: ⑴A B A B A =⇔⊆; ⑵A B B B A =⇔⊆;⑶A B ⊆⇔ u u A B ⊇; ⑷u u A B A B =∅⇔⊆; ⑸u A B U A B =⇔⊆; ⑹()U C A B U U C A C B =;⑺()U U U C A B C A C B =.如设全集}5,4,3,2,1{=U ,若}2{=B A ,}4{)(=B A C U ,}5,1{)()(=B C A C U U ,则A =_____,B =___.(答:{2,3}A =,{2,4}B =)5. 研究集合问题,一定要理解集合的意义――抓住集合的代表元素。
如:(){}|x y f x =—函数的定义域;(){}|y y f x =—函数的值域;(){}(,)|x y y f x =—函数图象上的点集,如设集合{|M x y ==,集合N ={}2|,y y x x M =∈,则M N =_ _ (答:[4,)+∞);6. 数轴和韦恩图是进行交、并、补运算的有力工具,在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。
如已知关于x 的不等式250ax x a-<-的解集为M ,若3M ∈且5M ∉求实数a 的取值范围。
(答:(]519253a ⎡⎫∈⎪⎢⎣⎭,,) 7.四种命题及其相互关系。
若原命题是“若p 则q ”,则逆命题为“若q 则p ”;否命题为“若p 则q ” ;逆否命题为“若q 则p ”。
提醒:(1)互为逆否关系的命题是等价命题,即原命题与逆否命题同真、同假;逆命题与否命题同真同假。
但原命题与逆命题、否命题都不等价;(2)在写出一个含有“或”、“且”命题的否命题时,要注意“非或即且,非且即或”;(3)要注意区别“否命题”与“命题的否定”:否命题要对命题的条件和结论都否定,而命题的否定仅对命题的结论否定;(4)对于条件或结论是不等关系或否定式的命题,一般利用等价关系“A B B A ⇒⇔⇒”判断其真假,这也是反证法的理论依据。
(5)哪些命题宜用反证法?如(1)“在△ABC 中,若∠C=900,则∠A 、∠B 都是锐角”的否命题为(答:在ABC ∆中,若90C ∠≠,则,A B ∠∠不都是锐角);(2)已知函数2(),11x x f x a a x -=+>+,证明方程0)(=x f 没有负数根。
8.充要条件。
关键是分清条件和结论(划主谓宾),由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
从集合角度解释,若B A ⊆,则A 是B 的充分条件;若B A ⊆,则A 是B 的必要条件;若A=B ,则A 是B 的充要条件。
如设命题p :|43|1x -≤;命题q:0)1()12(2≤+++-a a x a x 。
若p 是q 的必要而不充分的条件,则实数a 的取值范围是 (答:1[0,]2) 二、不等式1. 不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若,则(若,则),但异向不等式不可以相加;同向不等式不可以相减;(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若,则(若,则);(3)左右同正不等式:两边可以同时乘方或开方:若,则或;(4)若,,则;若,,则。
如(1)对于实数中,给出下列命题:①;②;③;④;⑤;⑥;⑦; ⑧,则。
其中正确的命题是______(答:②③⑥⑦⑧)(2)已知,,则的取值范围是______(答:[]1,7)(3)已知,且则的取值范围是______ (答:12,2⎛⎫-- ⎪⎝⎭) 2. 不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。
其中比较法(作差、作商)是最基本的方法。
如设,,,试比较的大小(答:p q >)3. 一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为ax b>的形式,若0a >,则b x a >;若0a <,则b x a<;若0a =,则当0b <时,x R ∈;当0b ≥时,x ∈∅。
如已知关于x 的不等式0)32()(<-++b a x b a 的解集为)31,(--∞,则关于x 的不等式0)2()3(>-+-a b x b a 的解集为_______(答:{|3}x x <-)4. 一元二次不等式的解集(联系图象)。
尤其当0∆=和0∆<时的解集你会正确表示吗?设0a >,,x x 是方程20ax bx c ++=的两实根,且x x <,则其解集如下表:如解关于x 的不等式:01)1(<++-x a ax 。
(答:当0a =时,1x >;当0a <时,1x >或1x a <;当01a <<时,11x a <<;当1a =时,x ∈∅;当1a >时,11x a<<) 5. 对于方程02=++c bx ax 有实数解的问题。
首先要讨论最高次项系数a 是否为0,其次若0≠a ,则一定有042≥-=∆ac b 。
对于多项式方程、不等式、函数的最高次项中含有参数时,你是否注意到同样的情形?如:(1)()()222210a x a x -+--<对一切R x ∈恒成立,则a 的取值范围是_______(答:(1,2]);(2)关于x 的方程()f x k =有解的条件是什么?(答:k D ∈,其中D 为()f x 的值域)6. 一元二次方程根的分布理论。
方程2()0(0)f x ax bx c a =++=>在),(+∞k 上有两根、在(,)m n 上有两根、在),(k -∞和),(+∞k 上各有一根的充要条件分别是什么? (0()02f k b k a ∆≥>->⎧⎪⎪⎨⎪⎪⎩、0()0()02f m f n b m an ∆≥>><-<⎧⎪⎪⎨⎪⎪⎩、()0f k <)。
根的分布理论成立的前提是开区间,若在闭区间],[n m 讨论方程0)(=x f 有实数解的情况,可先利用在开区间),(n m 上实根分布的情况,得出结果,再令n x =和m x =检查端点的情况.如12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使0)(>c f ,求实数p 的取值范围。
(答:3(3,)2-) 7. 二次方程、二次不等式、二次函数间的联系你了解了吗?二次方程20ax bx c ++=的两个根即为二次不等式20(0)ax bx c ++><的解集的端点值,也是二次函数2y ax bx c =++的图象与x 轴的交点的横坐标。
如(1)32ax >+的解集是(4,)b ,则a =__________(答:18);(2)若关于x 的不等式02<++c bx ax 的解集为),(),(+∞-∞n m ,其中0<<n m ,则关于x 的不等式02<+-a bx cx 的解集为________(答:),1()1,(+∞---∞nm );(3)不等式23210x bx -+≤对[1,2]x ∈-恒成立,则实数b 的取值范围是_______(答:∅)。
8. 简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现的符号变化规律,写出不等式的解集。
如:(1)解不等式。
(答:[){}1,2+∞-)(2)不等式的解集是____(答:[){}3,1+∞-)(3)设函数、的定义域都是R ,且的解集为,的解集为,则不等式的解集为______(答:()[),12,-∞+∞)(4)要使满足关于的不等式(解集非空)的每一个的值至少满足不等式中的一个,则实数的取值范围是.(答:817,8⎡⎫⎪⎢⎣⎭) 9. 分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。
如:(1)解不等式 (答:()()1,12,3-)(2)关于的不等式的解集为,求关于的不等式的解集(答:()(),12,-∞-+∞)10. 绝对值不等式的解法:(1)分段讨论(最后结果应取各段的并集):如解不等式(答:R )(2)利用绝对值的定义;(3)数形结合;如解不等式(答:()(),12,-∞-+∞)(4)两边平方:如若不等式对任意恒成立,则实数的取值范围。
(答:43⎧⎫⎨⎬⎩⎭)11. 含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。
注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. (见4中例题)12. 含绝对值不等式的性质:同号或有;异号或有.如设,实数满足,求证: 13. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。