电导的测定及其应用实验报告

合集下载

电导的测定及其应用实验报告

电导的测定及其应用实验报告

电导的测定及其应用实验报告实验报告:电导的测定及其应用实验目的:掌握电导的基本概念,掌握测定电导的方法及其计算公式,了解电导在实际应用中的作用。

实验仪器:电导率仪、盐酸溶液、去离子水、容量瓶、计时器、玻璃棒实验步骤:1.取一定体积的盐酸溶液(如10ml),加入同体积的去离子水,混合均匀。

2.用电导率仪测定混合液的电导率,并记录数据。

3.将测得的电导率和混合液的浓度数据代入计算公式计算电导率。

4.重复以上步骤,每次调整混合液的浓度(如1mol/L、0.5mol/L、0.25mol/L、0.125mol/L、0.0625mol/L),同时记录电导率和浓度数据,并计算电导率。

5.根据实验数据绘制电导率-浓度曲线图。

6.分析实验数据,探索电导在实际应用中的作用。

实验结果:通过实验,我们得出了盐酸溶液的电导率随其浓度降低而降低的规律,同时得出了电导率-浓度曲线图。

从实验结果中,我们可以得出电导在工业、生物、环境等领域中的重要应用,如用于污水处理、药品生产等。

实验结论:电导是溶液中离子传导电流的能力,用电导率仪可以测量电导。

实验结果表明,电导率随着溶液浓度的降低而降低。

电导在工业、生物、环境等领域中具有重要的应用,比如污水处理、药品生产等。

实验注意事项:1.曲线图中需要标出坐标轴和单位。

2.清洗容器时,使用去离子水。

用盐酸溶液清洗容器会影响实验数据。

3.操作时,要注意安全,尤其是向容器中加入浓盐酸时。

扩展实验:实验中所用的是盐酸溶液,可以尝试用其他电解质溶液进行实验,比如NaCl、KCl等,探究它们的电导率与浓度之间的关系。

另外,也可以尝试利用电导率仪测量水中离子的含量,了解水质情况。

电导的测定及其应用实验报告

电导的测定及其应用实验报告

电导的测定及其应用实验报告1.掌握电导的测定方法;2.探究不同溶液电导的异同,并了解电导相关的应用。

实验步骤:1.准备所需材料,包括待测溶液、电导计、电导池、计算机等设备;2.将电导计的电极放入待测溶液中,等待电导计稳定后读取电导值;3.重复步骤2,测量其他待测溶液的电导值,并将数据记录在实验记录表中;4.将数据进行分析,并比较不同溶液的电导异同;5.了解和探究电导在其他领域的应用,如水质检测、电解制氢等。

实验结果:实验中我们测量了不同浓度的HC2H3O2溶液的电导值,数据如下图所示:HC2H3O2浓度/% 电导率/mS/cm0% 0.045% 1.9710% 3.9115% 6.0220% 8.26由上表可见,随着HC2H3O2浓度的逐渐增加,测得的电导率逐渐增大。

这是因为电解质浓度的增加会增加电离频率和电离程度,从而使电导率增加。

实验分析:电导测量是液体中离子浓度的重要测量手段之一。

它是根据溶液中游离离子导电所致的现象来确定溶液电导率的一种检测方法。

电导测量可用于检测水质、土壤和食品中的离子浓度等。

在实际生产和生活中,电导测量也广泛应用于水处理、环境保护和化工等领域。

例如,电导测量可以用于检测水质污染及水处理质量,通过电导值的变化可判断水质的变化,并采取相应的措施进行水处理。

此外,电导测量还可以用于电解制氢等领域中。

实验结论:通过本次实验,我们掌握了电导的测定方法,进一步了解了电导的相关知识,并探究了电导在其他领域的应用。

我们需要注意,电导测量需要避免测量设备的干扰以及影响测量的因素,提高实验数据的准确性。

电导测定及其应用实验报告(1)

电导测定及其应用实验报告(1)

一、实验目的1.理解溶液的电导、电导率和摩尔电导率的概念。

2.掌握电导率仪的使用方法。

3.掌握交流电桥测量溶液电导的实验方法及其应用。

二、实验原理电解质溶液的导电能力可用电导G 表示,定义为电阻的倒数1/R ,单位为S 或Ω-1。

将电解质溶液放入电导池内,溶液电导G 的大小与两电极之间的距离l 成反比,与电极的面积A 成正比lA G κ=(1)式中:l /A 为电导池常数,以cell K 表示;κ为电导率,其物理意义是在两平行且相距1m 、面积均为1m 2的两电极间的电解质溶液的电导,即单位体积溶液的电导,S·m -1。

由于电极的l 和A 不易精确测量,因此在实验中用一种已知电导率值的溶液作为标准溶液标定电导池常数cell K ,常用KCI 溶液作为标准溶液,几种KCl 标准溶液的电导率从手册上可查。

溶液的摩尔电导率是指把含有1mol 电解质的溶液置于相距为1m 的两平行板电极之间的电导,以m Λ表示,其单位为S·m 2·mol -1。

摩尔电导率与电导率的关系为cm κ=Λ(2)式中:c 为该溶液的浓度,mol·m -3。

1.强电解质溶液无限稀释摩尔电导率的测定电解质溶液在无限稀释时的摩尔电导率称为无限稀释摩尔电导率∞Λm 。

在一定温度和同一溶剂中,∞Λm 仅与电解质本性有关,是表示电解质的一个特性物理量。

在稀溶液中,强电解质的摩尔电导率与其浓度的平方根呈线性关系,称为科尔劳施(Kohlrausch)稀释定律:c A m m -Λ=Λ∞(3)因此,在稀溶液范围内,测量一系列不同浓度强电解质溶液的摩尔电导率,根据式(3)以m Λ对c 作线性图,外推可得∞Λm 。

对于弱电解质溶液,式(3)并不成立,需按科尔劳施离子独立运动定律,利用离子无限稀释摩尔电导率数据间接计算。

对-+v v A M 型电解质∞--∞++∞Λ+Λ=Λ,,m m m υυ(4)式中:∞-∞+ΛΛ,,m m 、分别为正、负离子的无限稀释摩尔电导率。

电导率的测定及其应用 实验报告

电导率的测定及其应用 实验报告

电导率的测定及其应用实验报告一、引言电导率是衡量溶液中离子浓度的重要指标,是化学、生物、环境等领域中常用的参数。

本实验旨在通过电导法测定不同浓度的NaCl溶液的电导率,并探究其应用。

二、实验原理电导率是指单位长度内电场强度下单位横截面积所通过的电荷量,即电流强度与电场强度之比。

其计算公式为:σ=I/(U/L),其中σ为电导率,I为电流强度,U为电压,L为两个探头间距离。

三、实验步骤1. 准备不同浓度的NaCl溶液(如0.1mol/L、0.05mol/L等)。

2. 将两个探头插入溶液中,并将它们放置在一定距离内。

3. 打开仪器,设置好测试参数(如温度、距离等),调节好仪器使其稳定工作。

4. 测量各种浓度下NaCl溶液的电导率,并记录数据。

5. 根据数据绘制出不同浓度下NaCl溶液的电导率曲线图。

四、实验结果分析1. 通过绘制出不同浓度下NaCl溶液的电导率曲线图,可以发现电导率随着浓度的增加而增加,呈现出一个线性关系。

2. 根据实验结果可以得出结论:NaCl溶液的电导率与其浓度成正比关系。

五、应用探究1. 电导率在环境监测中的应用:通过测量水体中的电导率可以判断其污染程度。

2. 电导率在生物学中的应用:通过测量细胞内外液体中的电导率可以研究细胞膜功能和离子通道等问题。

3. 电导率在化学反应中的应用:通过测量反应物和产物中的电导率变化可以研究反应动力学和反应机理等问题。

六、实验注意事项1. 实验过程中要保证仪器稳定,避免干扰因素影响实验结果。

2. 测量时要保持探头间距离不变,以保证数据准确可靠。

3. 实验结束后要清洗仪器和探头,以免对下一次实验造成影响。

七、结论本实验通过电导法测定了不同浓度下NaCl溶液的电导率,并探究了其应用。

实验结果表明NaCl溶液的电导率与其浓度成正比关系,电导率在环境监测、生物学和化学反应等领域中有广泛的应用。

电导的测定及其应用实验报告

电导的测定及其应用实验报告

电导的测定及其应用实验报告实验目的,通过实验,了解电导的概念、测定方法及其在实际中的应用。

实验仪器与试剂,导电仪、导电溶液(如盐酸溶液、硫酸溶液等)、导电池、导电板、导电线等。

实验原理,电导是指物质导电能力的大小。

在电导实验中,我们通常使用导电仪来测定物质的电导率。

导电仪是一种用于测定电导率的仪器,它通过测量电流强度和电压大小来计算出物质的电导率。

实验步骤:1. 将导电仪连接好,准备好导电板和导电池。

2. 将导电板放入导电溶液中,接通电源,调节导电仪,记录下电流强度和电压大小。

3. 更换不同浓度的导电溶液,重复步骤2,记录下不同溶液的电导率数据。

实验结果与分析:通过实验测得不同浓度的导电溶液的电导率数据,可以看出随着溶液浓度的增加,电导率也随之增加。

这是因为在溶液中,溶质的浓度增加会导致溶液中离子的数量增加,从而增加了电导率。

实验应用:1. 电导在环境监测中的应用,通过测定水体的电导率,可以判断水质的优劣,监测水体中溶解固体的含量。

2. 电导在化工生产中的应用,在化工生产中,可以通过测定反应液的电导率来监测反应的进行情况,控制反应的速率和产物的纯度。

3. 电导在医学领域的应用,在生物体内,电解质的浓度和离子的活动对人体健康起着重要作用,通过测定生理液体的电导率,可以判断人体健康状况。

结论,通过本次实验,我们了解了电导的概念、测定方法及其在实际中的应用。

电导率是物质导电能力的大小,可以通过导电仪来测定。

电导在环境监测、化工生产、医学领域等方面都有着重要的应用价值。

通过本次实验,我们对电导的测定及其应用有了更深入的了解,这对我们今后的学习和科研工作都有着重要的意义。

希望本次实验能够帮助大家更好地理解电导的概念和应用,为我们的学习和科研工作提供一定的帮助。

电导的测定及其应用

电导的测定及其应用

电导的测定及其应用一、实验目的及要求1.了解溶液的电导, 电导率和摩尔电导的概念。

2.测量电解质溶液的摩尔电导, 并计算弱电解质溶液的电离常数。

二、实验原理电解质溶液是靠正、负离子的迁移来传递电流。

而弱电解质溶液中, 只有已电离部分才能承担传递电量的任务。

在无限稀释的溶液中可认为弱电解质已全部电离。

此时溶液的摩尔电导率为 , 而且可用离子极限摩尔电导率相加而得。

一定浓度下的摩尔电导率Λm 与无限稀释的溶液中的摩尔电导率 是有差别的。

这由两个因素造成, 一是电解质溶液的不完全离解, 二是离子间存在着相互作用力。

所以Λm 通常称为表观摩尔电导率。

()()∞-∞+-+∞++=ΛΛU U U U αm m (1) 若 , 则∞ΛΛ=mm α (2) 式中α为电离度。

AB 型弱电解质在溶液中电离达到平衡时, 电离平衡常数K, 浓度C, 电离度α有以下关系:CC C C K αα-⋅=12 (3) ()m m m 2m Λ-ΛΛΛ⋅=∞∞C K C (4) 根据离子独立定律, 可以从离子的无限稀释的摩尔电导率计算出来。

Λm 则可以从电导率的测定求得, 然后求算出KC 。

三、仪器与试剂DDS-11A 型电导率仪1台, 恒温槽l 套, 0.1000mol/L 醋酸溶液。

四、实验步骤1.调整恒温槽温度为25℃±0.3℃。

2.用洗净、烘干的叉形管1支, 加入10mL 的0.1000mol/L 醋酸溶液, 恒温后, 测定其电导率。

3.用另一支移液管取l0mL 电导水注入电导池, 混合均匀, 等温度恒定后, 测其电导率, 如此操作, 共稀释4次。

4.倒去醋酸, 洗净电导池, 最后用电导水淋洗。

注入10mL 电导水, 测其电导率。

5.实验结束后, 切断电源, 倒去电导池中溶液, 洗净电导池, 注入蒸馏水, 并将铂黑电极浸没在蒸馏水中。

五、数据处理1.已知298.2K 时, 无限稀释离子摩尔电导率 (H+)=349.82×10-4S ·m2/mol , (Ac-)=40.9×10-4S ·m2/mol 。

实验五 电导的测定与应用

实验五 电导的测定与应用
实验五 电导的测定及其应用
一、实验目的
1. 了解溶液的电导、电导率和摩尔电导率的概念。 2. 测量电解质溶液的摩尔电导,并计算弱电解质的电 离常数。 3. 学会电导率仪的使用方法。
二、实验原理
1. 电导(G)和电导率()
描述导体导电能力的大小,常以电阻的倒数表示。 G=1/R, 单位是西门子S 。 G=(A/l) 或 =(1/A)(1/R) 称为电导率或比电导(=1/),它相当于长度为1m,截面积为1m2 导体的电导,其单位是S· m-1。 对于确定的电导池来说 ,1/A是常数,称为电导池常数。电导池常数 可通过测定已知电导率的电解质溶液的电导(或电阻)来确定。
c Kc 1
2
c2m Kc m ( m m )
2 m
1 或c m K C ( ) K C ( m ) m
1 以c m ~ 作图, 从直线的斜率可以求出Kc。 m
本实验测定弱电解质的电离度和电离常数。首先测定 HAc溶液
的电导率(溶液)。因溶液较稀,必须从溶液中减去水的电导率(水),
烧杯
50ml
50ml 100ml 250ml (废液缸)
各1个
四、实验步骤
1.调节恒温槽温度为25˚C 0.1 ˚ C. 2.在100ml容量瓶中配制浓度为原始HAC(0.1000mol/L)浓度的1/4,1/8,1/16,1/32,1/64 的 溶液5份(逐级稀释25ml),恒温10min备用。 3.测定水的电导率。 测定室温下自来水的电导率。
即:
HAc=溶液-水
m = /c
由离子独立移动定律: ( HAc ) ( H ) ( Ac ),查表计算。 m m m
三、仪器与药品

418编号电导的测定及其应用实验报告

418编号电导的测定及其应用实验报告

418编号电导的测定及其应用实验报告
实验目的:
1. 掌握电导率测定方法;
2. 了解电导率在质量分析、污染检测等方面的应用;
3. 建立正确的实验操作规范,培养严谨的实验态度。

实验原理:
电导率是介质顺着电场方向中电流运移的能力。

电导率和电阻率互为倒数,单位是
西门子/米(S/m)或毫西门子/厘米(mS/cm)。

电导率是液体中离子、分子、电荷的能力,测定电导率可以确定溶液中离子浓度高低。

针对一定条件下,它与分子数更为有直接的关联,因此能够被应用于质量分析、污染检测等领域。

实验仪器:
1. 电导率计
2. 校准器
实验操作:
1. 打开电导率计电源,选择电导率检测范围。

2. 放入校准器,并按说明进行校准。

3. 将电导率测定样品置于电导率计之上
4. 记录电导率计的示数,取数足够的时候,可以将导数进行求平均值。

实验结果:
1. 以纯的去离子水测定结果为零。

2. 样品中物质覆盖具有显著的电导性。

3. 样品中物质浓度高,导致电导率高。

实验数据分析:
通过实验操作,我们确定了样品的电导率。

根据实验结果可以得到以下结论:
3. 测定电导率可以非常有效的检测样品中物质浓度问题,是质量分析、污染检测领
域的重要手段。

结论:
本次实验,我们掌握了电导率测定方法,并且了解了电导率在质量分析、污染检测等领域的应用。

实验结果表明,电导率测定可以对样品中物质浓度做出非常精确的检测,具有广泛的应用前景。

通过本次实验,我们不仅建立了正确的实验操作规范,还培养了严谨的实验态度,为科研工作做好了充分的准备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电导的测定及其应用
以C 对 作图,其直线的斜率为
心,如知道值,就可算出K 0
三、实验仪器、试剂
仪器:梅特勒326电导率仪1台,电导电极1台,量杯(50ml )2只,移液管(25ml )3只,洗 瓶1只,洗耳球1只
试剂:10.00 (mol • m -3) KCl 溶液,100.0 (mol • m -3) HAc 溶液,电导水 四、实验步骤
、实验目的 1、测量KCI 水溶液的电导率,求算它的无限稀释摩尔电导率。

2、用电导法测量醋酸在水溶液中的解离平衡常数。

3、掌握恒温水槽及电导率仪的使用方法。

二、实验原理 1、电导G 可表示为: 式中,k 为电导率,电极间距离为 I ,电极面积为 A , l/A 为电导池常数 Kcell ,单位为m -1。

本实验是用一种已知电导率值的溶液先求出
Kcell ,然后把欲测溶液放入该电导池测出其电导值 G ,根据(1)式求出电导率 k 。

A ~ 摩尔电导率与电导率的关系: 1 式中C 为该溶液的浓度,单位为 mol • m -3
2、 总是随着溶液的浓度降低而增大的。

对强电解质稀溶液, " 1;, K
" 式中 是溶液在无限稀释时的极限摩尔电导率。

至C=0处,可求得 。

A 为常数, 故将,对,c 作图得到的直线外推
4 CX> i
I i OT
3、对弱电解质溶液, " ■ ■
式中 、分别表示正、负离子的无限稀释摩尔电导率。

在弱电解质的稀薄溶液中,解离度与摩尔电导率的关系为:
对于 HAc , 1 (6)
HAc 的可通过下式求得:
-
'
CA=
把⑷代入(1)
得: UA 八(A ;『仏亠心 或
1打开电导率仪开关,预热5min。

2、KCI溶液电导率测定:
⑴用移液管准确移取10.00 (mol • m-3) KCI溶液25.00 ml于洁净、干燥的量杯中,测定其电导率3次,取平均值。

⑵再用移液管准确移取25.00 ml电导水,置于上述量杯中;搅拌均匀后,测定其电导率3次,取平均值。

⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再准确移入25.00 ml电导水,只于上述
量杯中;搅拌均匀后,测定其电导率3次,取平均值。

⑷重复⑶的步骤2次。

⑸倾去电导池中的KCl溶液,用电导水洗净量杯和电极,量杯放回烘箱,电极用滤纸吸干
3、HAc溶液和电导水的电导率测定:
⑴用移液管准确移入100.0 (mol • m-3) HAc溶液25.00 ml,置于洁净、干燥的量杯中,测定其电导率3次,取平均值。

⑵再用移液管移入25.00 ml已恒温的电导水,置于量杯中,搅拌均匀后,测定其电导率3次,取平均值。

⑶用移液管准确移出25.00 ml上述量杯中的溶液,弃去;再移入25.00 ml电导水,搅拌均匀,测定其电导率3次,取平均值。

⑷再用移液管准确移入25.00 ml电导水,置于量杯中,搅拌均匀,测定其电导率3次,取平均值。

⑸倾去电导池中的HAc溶液,用电导水洗净量杯和电极;然后注入电导水,测定电导水的电导率3次,取平均值。

⑹倾去电导池中的电导水,量杯放回烘箱,电极用滤纸吸干,关闭电源。

五、数据记录与处理
1、大气压:102.08kPa 室温:17.5 C 实验温度:25C
已知:25 C时10.00 ( mol • m-3) KCl溶液k=0.1413S • m-1;25C时无限稀释的HAc水溶液的摩
尔电导率=3.907*10-2(S • m2• m-1)
⑵测定HAc溶液的电导率:
电导水的电导率k(H 2O)/ (S • m-1):7 *10-4S • m
⑴将KCl 溶液的各组数据填入下表内:
Q ^-JT ] ~4

R0
代 f
_4 2
根据^
,截距即为 •,得 =154*10 S • m • mol
k = k 'k H2O
-1
-4
-1
uS.cm =10 S - m
-3
-3
C HAC =0.1127 mol • dm =112.7 mol • m
⑵HAc 溶液的各组数据填入下表内: 3
HAc 原始浓度:0.1127 mol • dm - 0.0152
0.0150
0.0148
0.0146
0.0144
0.0142
0.0140
X Axis Title
■4 _ -1
k H2o =7*10 4S • m 1
4 i 4 i
k(HAc 测量)=560*10- S • m-k(HAc)= k(HAc 测量)-k H2o=553*10- S • m-
■4-4 2 I -1
A m=553*10 /112.7=4.91*10 S • m • mol
A m -1=2.04*103 S-1• m-2• mol C =k=553*10-4 S • m-1
-4 -2
a =4.91*10 /3.907*10 =0.0126
2 -5
Kc=0.1127*0.0126 /1*(1-0.0126)=1.81*10
1
以C 对作图应得一直线,直线的斜率为,由此求得K3,于上述结果进行比较。

直线的斜率’=2.87*10 -5所以:K°=2.87*10-5 /10‘*(3.907*10-2)2=1.88*10-5
计算出来的值与画图做出来的相差:(1.88-1.753)*10-5=1.27*10 -6
六、实验结果与分析
查阅KCl溶液的标准值为0.01499 S?m2?m°l-1
则可以计算其相对误差Er=|0.01499- 0.015|/0.01499=0.667 %。

七、讨论与心得
1、实验中不必扣除水的电导。

因为经测定,实验所使用的去离子水的电导与待测溶液的电导相差几个数量级,因此不会对实验结果产生很大的影响。

2、溶液配制时的问题:溶液时由大浓度向小浓度一瓶一瓶稀释过来的。

一旦某一瓶配制出现偏差,贝U将影响到后面的几瓶,因此在溶液配制的时候要及其小心,我认为这也是影响实验准确性的一个很重要的因素。

3、浓度较小时,信号不明显,即某个电阻改变一个大阻值,其示波器的变化不大,可能会导致大的偏差。

思考题:
1、如何定性地解释电解质的摩尔电导率随浓度增加而降低?
答:对强电解质而言,溶液浓度降低,摩尔电导率增大,这是因为随着溶液浓度的降低,离子间引力变小,粒子运动速度增加,故摩尔电导率增大。

对弱电解质而言,溶液浓度降低时,摩尔电导率也增加。

在溶液极稀时,随着溶液浓度的降低,摩尔电导率急剧增加。

2、为什么要用音频交流电源测定电解质溶液的电导?交流电桥平衡的条件是什么?答:使用音频交流电源可以使得电流处于高频率的波动之中,防止了使用直流电源时可能导致的电极反应,提高测量的精确性。

3、电解质溶液电导与哪些因素有关?
答:电解质溶液导电主要与电解质的性质,溶剂的性质,测量环境的温度有关。

4、测电导时为什么要恒温?实验中测电导池常数和溶液电导,温度是否要一致?答:因为电解质溶液的电导与温度有关,温度的变化会导致电导的变化。

实验中测电导池常数和溶液电导时的温度不需要一致,因为电导池常数是一个不随温度变化的物理量,因此可以直接在不同的温度下使用。

相关文档
最新文档