151有理数的乘方(1)教学设计
1[1].5.1《有理数的乘方》(1)教案(人教版七年级上)
![1[1].5.1《有理数的乘方》(1)教案(人教版七年级上)](https://img.taocdn.com/s3/m/25eb7be65acfa1c7ab00cc3b.png)
人教版七年级第一章第五节有理数的乘方(一) 教案【教学目标】(一)知识技能1、通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2、掌握幂的符号法则.3、会用计算器进行乘方运算.4、培养学生观察、归纳能力,以及思考问题、解决问题的能力.(二)过程方法1、通过观察、比较、猜想、验证等活动,探究有理数的乘方运算规律.2、使学生在潜移默化中形成分类讨论思想.(三)情感态度1、体验乘方表示几个相同因数相乘的作用.2、正确的进行数的计算,表示一丝不苟的精神.教学重点正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算教学难点有理数乘方运算的符号法则.【情景引入】1、介绍棋盘上的故事:古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对大臣表示感谢,国王答应满足这个大臣一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第一格放1粒米,第二格放2粒米,第三格放4粒米,然后是8粒米、16粒米、32粒米……一直到64格.”“你真傻,就要这么一点米?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多的米!”国王真的没有这么多吗?2、提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a 记作a 2,读作a 的平方(或a 的2次方),即a 2=a·a ;a·a·a 记作a 3,读作a 的立方(或a的3次方),即a 3=a·a·a .(分别是边长为a 的正方形的面积与棱长为a 的正方体的体积)【教学过程】1、概念: 学优中考一般地,我们有:n 个相同的因数a 相乘,即n a a a a ⋅⋅L 14444244443个,记作na .例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4.这种求几个相同因数的积的运算,叫做乘方(involution),xyzkw乘方的结果叫做幂(power).在a n 中,a 叫作底数,n 叫做指数,a n 读作a 的n 次方,a n 看作是a 的n 次方的结果时,也可读作a 的n 次幂. 学优中考网xyzkw]例如,23中,底数是2,指数是3,23读作2的3次方,或2的3次幂.一个数可以看作这个数本身的一次方,例如8就是81,通常指数为1时省略不写.2、师生互动:(1)把下列各式写成乘方运算的形式,并指出底数,指数各是多少?①(-2.3)×(-2.3)×(-2.3)×(-2.3) ②(-14)×(-14)×(-14)×(-14) ③ x ·x ·x ·……·x(1999个)④(-6)×(-6)×(-6)⑤ 23 ×23 ×23 ×23(2)、把5)21(-写成几个相同因数相乘的形式。
有理数的乘方(1)

1.5.1有理数的乘方(1)一、教学目标1.知识与技能:掌握理解乘方的意义以及几个相关的概念,正确进行乘方运算。
2.过程与方法:经历折纸数学游戏的过程,迁移正方形面积正方体体积的表示,类比得到乘方的表示,发展观察归纳总结能力。
3.情感态度价值观:体会乘法与乘方的关系,感受事物之间的普遍联系。
二、教学重难点分析1.教学重点:理解乘方的意义,能利用乘方运算法则进行有理数的乘方运算。
2.教学难点:有理数乘方的计算法则的探索及利用法则进行计算三、教学过程1.情境引入教师提出折纸游戏,每对折一次,层数变为原来的两倍,如下:次数层数1 224=2×238=2×2×2416=2×2×2×2532=2×2×2×2×2……302×2×2×…×230个2相乘思考:当对折30次后,层数变为30个2相乘,那么有没有一种更简便的方法来表示30个2相乘呢?引出课题:有理数的乘方(1)2.定义生成思考:讲到乘方,我们联想到了一个方的概念,正方形和正方体,边长为a,它们的面积和体积分别是什么?如何表示?学生说,教师板书:2a a a⋅=(读作a的平方或a的二次方)3⋅⋅=(读作a的立方或a的三次方)a a a a又例如:4记作,读作“2的四次方”(2)(2)(2)(2)(2)--⨯-⨯-⨯--52222222()()()()()()-5555555-⨯-⨯-⨯-⨯--记作,读作“的五次方” 猜想:假设a a a a ⋅⋅⋅= 4a 读作 a 的四次方 ...a a a ⋅⋅⋅ n a读作 a 的n 次方n 个总结:一般地,n 个相同的因数a 相乘,即...a a a ⋅⋅⋅,记作n a ,读作“a 的n次方”定义:求n 个相同因数的积的运算,叫做乘方........a a a =n 个说明:当n a 看作a 的n 次方的结果时,也可读作a 的n 次幂。
151有理数的乘方教案

151有理数的乘方教案教学目标:1.了解有理数的乘方运算;2.掌握有理数的乘方的性质;3.能够灵活运用有理数的乘方进行计算及解决实际问题;4.培养学生的逻辑思维和分析问题的能力。
教学重点:1.有理数的乘方运算;2.有理数的乘方的性质;3.有理数乘方的应用。
教学难点:1.解决实际问题时如何有效地运用有理数的乘方。
教学准备:1.教师准备白板、彩色粉笔和教具如计算器等;2.学生准备课本、笔记本和笔。
教学过程:第一步、导入新知识(5分钟)1.让学生回顾与有理数相关的知识,引出今天的学习内容;2.学生重温乘法的运算法则,回忆乘方运算的定义和性质。
第二步、讲解有理数的乘方(25分钟)1.通过例题和讲解,引出有理数的乘方的定义;2.讲解有理数的乘方的性质,包括指数为0、1的情况,指数为负数的情况;3.引导学生理解以下公式:-a⁰=1(a≠0)-a¹=a-aʳ·aˢ=aʳ⁺ˢ(其中r,s为任意整数)-aʳ⁺ˢ=aʳ·aˢ(其中r,s为任意有理数)第三步、练习习题(20分钟)1.点拨学生解题思路,鼓励学生积极参与;2.基础题型练习,如:2⁴、5²、(-3)³等;3.拓展题型练习,如:(2/3)²、(-4/5)³等;4.实际问题练习,如:一个物体从10米高的地方落下,每次弹起的高度是原来的一半,问第n次弹起后物体的总的下落距离是多少?第四步、解答问题和总结(10分钟)1.解答学生的问题,澄清有关有理数的乘方的疑惑;2.总结有理数乘方的性质和应用;3.鼓励学生独立思考和总结,提高学生的综合运用能力。
第五步、课堂小结和布置作业(5分钟)1.小结本节课的内容和要点;2.布置相关的课后习题,巩固所学知识。
教学反思:通过本节课的教学,学生对有理数的乘方有了更深的理解,掌握了有理数乘方的性质和应用方法。
在教学过程中,通过灵活运用不同的题型和实际问题的练习,激发了学生学习的兴趣。
人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计

人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计一. 教材分析人教版数学七年级上册1.5.1《有理数的乘方(1)》是学生在学习了有理数的加减乘除、相反数、绝对值等概念的基础上,进一步深化对有理数运算法则的理解。
本节课主要让学生掌握有理数的乘方运算,为后续学习幂的运算、指数函数等知识打下基础。
教材通过具体的例子引导学生探究有理数乘方的规律,从而让学生自主发现并掌握有理数乘方的法则。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减乘除运算较为熟悉。
但是,对于有理数的乘方运算,学生可能存在一定的困难,因为乘方运算涉及到多个有理数的乘积,运算规则相对复杂。
因此,在教学过程中,需要引导学生通过实例探究有理数乘方的规律,让学生在理解的基础上掌握乘方运算。
三. 教学目标1.理解有理数乘方的概念,掌握有理数乘方的法则。
2.能够熟练进行有理数的乘方运算。
3.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:有理数乘方的概念,有理数乘方的法则。
2.教学难点:有理数乘方运算的规律,有理数乘方在实际问题中的应用。
五. 教学方法1.实例导入:通过具体的例子引导学生探究有理数乘方的规律。
2.小组讨论:让学生分组讨论,共同发现有理数乘方的法则。
3.练习巩固:通过大量练习,让学生熟练掌握有理数乘方运算。
4.实际应用:引导学生运用有理数乘方知识解决实际问题。
六. 教学准备1.教学课件:制作课件,展示有理数乘方的例子和知识点。
2.练习题:准备适量练习题,巩固学生对有理数乘方的掌握。
3.教学道具:准备一些教学道具,如卡片、小黑板等,方便学生直观地理解乘方运算。
七. 教学过程1.导入(5分钟)利用实例引入有理数乘方的概念,如:2的3次方表示2乘以自己3次,即2×2×2=8。
让学生初步认识有理数乘方。
2.呈现(10分钟)展示多个有理数乘方的例子,引导学生发现有理数乘方的法则。
七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)教学设计

七年级学生在学习有理数乘方这一章节之前,已经掌握了有理数的加减乘除运算,具备了一定的数学基础。但在乘方概念的理解和运用上,学生可能存在一定的困难。因此,在教学过程中,需要关注以下几点:
1.学生对乘方概念的理解程度,部分学生可能难以从本质上理解乘方的含义,需要通过具体实例和形象比喻来帮、叠加的过程,让学生直观地感受乘方的意义。同时,引导学生思考:“乘方与之前学过的乘法有什么关系?它们之间的区别是什么?”
(二)讲授新知
1.乘方的定义:讲解乘方的定义,即一个数自乘若干次,可以表示为a^n(a为底数,n为指数)。强调乘方的意义,以及正整数、负整数和零的乘方的表示方法。
七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)教学设计
一、教学目标
(一)知识与技能
1.理解有理数乘方的概念,掌握有理数乘方的表示方法和运算规则。
2.能够正确计算正整数、负整数和零的乘方,并熟练运用乘方解决实际问题。
3.学会运用乘方的性质,简化有理数的运算过程,提高运算效率。
4.开放性探究题目:
-布置一道开放性探究题目,如:“探究乘方的分配律和结合律在生活中的应用”,鼓励学生主动探索、发现数学规律。
5.课后小结:
-要求学生撰写课后小结,总结本节课所学乘方知识,以及自己在学习过程中的收获和困惑。
6.阅读拓展:
-推荐阅读与乘方相关的数学故事或数学家传记,激发学生学习数学的兴趣,培养学生的数学素养。
2.学生在乘方运算过程中可能出现的错误,如符号处理不当、计算顺序混乱等,教师需引导学生总结错误原因,提高运算准确性。
3.学生在解决实际问题时,可能不知道如何运用乘方知识,需要教师设计贴近生活的例题,引导学生将乘方知识应用于实际问题中。
1.5.1《有理数的乘方》教学设计

《有理数的乘方》教学设计教材分析:《乘方》是在学生学完有理数加、减、乘、除运算后的又一种新的运算,是有理数乘法中相同因数相乘的简单表示方法,他既是乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法的根底,起到承上启下的作用。
学情分析:学生刚进初中,在前面已学过有理数的加、减、乘、除四种运算,这四种运算在小学就已熟悉了,而乘方是到初中学的第一种全新的运算,因此本课引入时要让学生觉得本课内容虽是新知识但其实也很简单,只是旧知识的引伸得来的。
从思想方法上说,可以通过学生动脑来培养学生探索精神和观察、分析、辩别、归纳的能力,以及逻辑思维能力、推理论证能力。
通过实际有趣的问题的分析培养学生的数感。
教学目标:〔1〕认知目标在现实背景中理解有理数乘方的意义,正确理解乘方、幂、指数、底数等概念,会进行有理数乘方的运算。
〔2〕能力目标1.使学生能够灵活地进行乘方运算。
2. 通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化的数学思想。
〔3〕情感目标1.通过对实例的讲解,让学生体会数学与生活的密切联系。
2.学会数学的转化思想,培养学生灵活处理现实问题的能力。
〔4〕过程与方法:1.通过对乘方义意义的引入及幂的符号法那么的探索培养学生积极探索和观察分析的能力2.通过对乘方的运算及实际问题的运用培养学生的逻辑思维能力教学重点:正确理解乘方的意义,掌握乘方运算法那么。
教学难点:正确理解乘方、底数、指数的概念,并合理运算。
教学关键:弄清底数、指数、幂等概念,区分n-与na(-的意义。
a)教学方法:考虑到七年级学生的认知水平和知识结构以及思维活动特点,本节课采用多媒体直观教学法,联想比较、发现教学法,设疑思考法,逐步渗透法和师生交流相结合的方法。
教学过程设计〔一〕体验感受,激发兴趣做游戏:拿出课前让学生准备好的纸,让学生动手折纸。
对折1次后,纸变成了几层?对折2次后变成几层?按照刚刚折纸的规律,将一张足够长的纸连续20次,应该是多少层?第1次对折的层数是:2第2次对折的层数是:2×2第3次对折的层数是:2×2×2第20次对折的层数是:2×2×2×2……×220个220个2相乘的结果是多少?如果这张纸的厚度为0.1毫米,那么折纸的高度比我们学校的教学楼要高得多,你相信吗?学了今天的内容你们就会明白了。
人教版七年级上册数学1.5.1《有理数的乘方》教学设计

引导学生探讨乘方的逆运算,如开平方、开立方等,激发学生的思维,为后续学习打下基础。
6.总结反馈,查漏补缺
通过课堂小结,让学生回顾本节课的学习内容,发现并弥补自己的知识漏洞。
7.课后作业,巩固提高
布置适量的课后作业,包括基础题和提高题,让学生在课后巩固所学知识,并适当拓展。
8.关注个体差异,实施个性化教学
(2)一个正方体的边长是5cm,求它的表面积和体积。
4.思考题:
(1)如何计算负数的奇数次幂和偶数次幂?
(2)有理数的乘方在实际生活中有哪些应用?
作业要求:
1.认真完成作业,字迹清楚,保持卷面整洁。
2.注意有理数乘方的计算法则,避免常见错误。
3.对于应用题和思考题,尽量用自己的语言进行解答,体现思考过程。
2.教师引导学生通过具体的例子,总结有理数乘方的计算法则。
师:请同学们观察以下算式,并总结有理数乘方的计算法则。
算式:(-2)^2, (-2)^3, (-2)^4, ...
生:负数的偶数次幂是正数,负数的奇数次幂是负数。
3.教师强调有理数乘方计算法则中的注意事项,并进行讲解。
(三)学生小组讨论,500字
人教版七年级上册数学1.5.1《有理数的乘方》教学设计
一、教学目标
(一)知识与技能
1.理解有理数乘方的定义,知道乘方的意义是表示几个相同因数的乘积。
2.掌握有理数乘方的计算法则,能够准确进行有理数乘方运算。
3.能够运用有理数乘方的知识解决生活中的实际问题,如计算面积、体积等。
(二)过程与方法
1.观察生活中的乘方现象,培养学生发现问题的能力。
2.学生分享学习心得,教师给予鼓励和肯定。
3.教师布置课后作业,要求学生在课后巩固所学知识,并为下一节课做好准备。
1.5.1有理数的乘方(1)(精选)

-24=-2×2×2×2=-16 2 2 22 2 2 2 2 4 22 2 2 4 (5) ( ) .( X) ( ) ; 3 3 3 9 3 3 3 3 3
课堂小结
1、乘方的概念:求n个相同因数的积的 运算叫做乘方 指数
an 底数 幂(乘方的结果叫做幂)
谈谈你这届课的的收获。
(1 )
1
3
1
2014
=1
(3 )
(1)
(4 ) =1
1
2014 =1
2013
(5 )
(6) 1 (1) =-1
=-1
思考:你能从中发现什么吗?
(1) 1的任何次幂都为 1。 (2) -1的幂很有规律: -1的奇次幂是-1 , -1的偶次幂是1。
填表:
底数 指数
幂
-1 3
2 5
-4 3
(-4)3
0.3 4
0.34
10 4
(-1)3
25
104
判断:(对的画“√”,错的画“×”.) (1) 32 = 3×2 = 6; ( (2) (-2)3 = (-3)2; -32 (-3)2; (
X
) 32 = 3×3=9
3 =-8; (-3)2=9 ) (-2) X
2 =-9; (-3)2=9 -3 (3) = (X) (4) 24 (2) (2) (2) (2) ; ( X )
可读作a的n次幂
n
1、把下列相同的因数写成幂的形式,并 说明底数和指数
(1)( 6) ( 6) ( 6) 2 2 2 2 (2) 3 3 3 3
3 3
比 较 6 与- 6 一 样 吗 ? 注意:负数和分数的乘方,在书写时一定 注意:一个数可以看作这个数本身的 要把整个负数(连同符号)或分数,用小括 1,指数是1通 一次方,例如: 5 就是 5 号括起来.这也是辨认底数的方法。 4 4 2 2 常省略不写。 比 较 与 相 同 吗 ?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5.1 有理数的乘方(1)
教学目标
一、知识与技能
1.正确理解乘方、幂、指数、底数等概念。
2.会进行有理数乘方的运算。
二、过程与方法
通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想。
三、情感态度与价值观
培养探索精神,体验小组交流、合作学习的重要性。
教学重、难点与关键
1.重点:正确理解乘方的意义,掌握乘方运算法则.
2.难点:正确理解乘方、底数、指数的概念,并合理运算.
3.关键:弄清底数、指数、幂等概念,注意区别-a n与(-a)n的意义。
教学方法启发式分层次教学法
教学过程
一、复习引入
1.几个不等于零的有理数相乘,积的符号是怎样确定的?
几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.
2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?
二、新授
边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a.
a·a简记作a2,读作a的平方(或二次方).
a·a·a简记作a3,读作a的立方(或三次方).
一般地,几个相同的因数a相乘,记作a n.即a·a……a.这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.
在a n中,a叫底数,n叫做指数,当a n看作a的n次方的结果时,也可以读作a的n次幂.
例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,•即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).
思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-
2)4与-24呢?(3
5
)2与
2
3
5
呢?
(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.
(-2)3与-23的意义不相同,其结果一样.
(-2)4的底数是-2,指数是4,读作-2的四次幂,表示
(-2)×(-2)×(-2)×(-2),•
结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为
-(2×2×2×2),其结果为-16.(-2)4与-24的意义不同,其结果也不同.
(3
5
)2的底数是
3
5
,指数是2,读作
3
5
的二次幂,表示
3
5
×
3
5
,结果是
9
25
;
2
3
5
表示
32与5的商,即33
5
,结果是
9
5
.
因此,当底数是负数或分数时,一定要用括号把底数括起来.
一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.
因为a n就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.例1:计算:
(1)(-4)3;(2)(-2)4;(3)(-1
2
)5;
(4)33;(5)24;(6)(-1
3
)2.
解:(1)(-4)3=(-4)×(-4)×(-4)=-64 (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16
(3)(-1
2
)5=(-
1
2
)×(-
1
2
)×(-
1
2
)×(-
1
2
)×(-
1
2
)=-
1
32
(4)33=3×3×3=27 (5)24=2×2×2×2=16
(6)(-1
3
)2=(-
1
3
)×(-
1
3
)=
1
9
因此,可以得出:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.
三、巩固练习
课本第52页练习1、2.
四、课堂小结
正确理解乘方的意义,a n表示n个a相乘的积.注意(-a)n与-a n •两者的区别及相互关系:(-a)n的底数是-a,表示n个-a相乘的积;-a n底数是a,表示n个a相乘的积的相反数.当n为偶数时,(-a)n与-a n互为相反数,当n为奇数时,(-a)n与-a n 相等。
五、作业布置
课本第47页习题1.5第1题,第48页第11、12题.
六、课后反思。