盲目搜索
人工智能[第五章状态空间搜索策略]山东大学期末考试知识点复习
![人工智能[第五章状态空间搜索策略]山东大学期末考试知识点复习](https://img.taocdn.com/s3/m/90a7eb54dd36a32d73758188.png)
第五章状态空间搜索策略搜索是人工智能的一个基本问题,是推理不可分割的一部分。
搜索是求解问题的一种方法,是根据问题的实际情况,按照一定的策略或规则,从知识库中寻找可利用的知识,从而构造出一条使问题获得解决的推理路线的过程。
搜索包含两层含义:一层含义是要找到从初始事实到问题最终答案的一条推理路线;另一层含义是找到的这条路线是时间和空间复杂度最小的求解路线。
搜索可分为盲目搜索和启发式搜索两种。
1.1 盲目搜索策略1.状态空间图的搜索策略为了利用搜索的方法求解问题,首先必须将被求解的问题用某种形式表示出来。
一般情况下,不同的知识表示对应着不同的求解方法。
状态空间表示法是一种用“状态”和“算符”表示问题的方法。
状态空间可由一个三元组表示(S,F,Sg)。
利用搜索方法求解问题的基本思想是:首先将问题的初始状态(即状态空间图中的初始节点)当作当前状态,选择一适当的算符作用于当前状态,生成一组后继状态(或称后继节点),然后检查这组后继状态中有没有目标状态。
如果有,则说明搜索成功,从初始状态到目标状态的一系列算符即是问题的解;若没有,则按照某种控制策略从已生成的状态中再选一个状态作为当前状态,重复上述过程,直到目标状态出现或不再有可供操作的状态及算符时为止。
算法5.1 状态空间图的一般搜索算法①建立一个只含有初始节点S0的搜索图G,把S放入OPEN表中。
②建立CLOSED表,且置为空表。
③判断OPEN表是否为空表,若为空,则问题无解,退出。
④选择OPEN表中的第一个节点,把它从OPEN表移出,并放入CLOSED表中,将此节点记为节点n。
⑤考察节点n是否为目标节点,若是,则问题有解,并成功退出。
问题的解的这条路径得到。
即可从图G中沿着指针从n到S⑥扩展节点n生成一组不是n的祖先的后继节点,并将它们记作集合M,将M中的这些节点作为n的后继节点加入图G中。
⑦对那些未曾在G中出现过的(即未曾在OPEN表上或CLOSED表上出现过的)M中的节点,设置一个指向父节点(即节点n)的指针,并把这些节点加入OPEN 表中;对于已在G中出现过的M中的那些节点,确定是否需要修改指向父节点(n 节点)的指针;对于那些先前已在G中出现并且已在COLSED表中的M中的节点,确定是否需要修改通向它们后继节点的指针。
3搜索问题-盲目搜索

◦ 以上问题等价于在图中寻找从根节点到某个(或某些)
目标节点的一条(或一组)路径。
1 问题状态空间的构成
状态空间表示法是以“状态空间”的形式对问题 进行表示。 1)状态:是描述问题求解过程中不同时刻状况的 数据结构。一般用一组变量的有序集合表示:Q=(q1, q2,…,qn) 其中每个元素qi为集合的分量,称为状态 变量,当给每个分量以确定的值时,就得到了一个具体的 状态。
2
3 1 3
2 1
3
2 1 3 1 1
2 3 2 3
2
1
初始棋局
17
目标棋局
产生式系统(production system)
◦ 一个总数据库:它含有与具体任务有关的信息。随着应 用情况的不同,这些数据库可能简单,或许复杂。 ◦ 一套规则:它对数据库进行操作运算。每条规则由左部
鉴别规则的适用性或先决条件以及右部描述规则应用时所 完成的动作。 ◦ 一个控制策略:它确定应该采用哪一条适用规则,而且 当数据库的终止条件满足时,就停止计算。
Q () Q Q
((1,1))
((1,1) (2,3))
((1,1) (2,4))
((1,1) (2,4) (3,2))
Q () Q
((1,1))
((1,1) (2,3))
((1,1) (2,4))
((1,1) (2,4) (3,2))
Q ()
((1,1))
((1,1) (2,3))
((1,1) (2,4))
◦ 系统状态的描述 四个皇后 ((i1,j1), (i2,j2), (i3,j3), (i4,j4))
()
Q ()
((1,1))
Q ()
启发算法与盲目算法

启发算法与盲目算法一、盲目搜索对一个图进行搜索意味着按照某种特定的顺序依次访问其顶点。
在所有搜索方式中,广度优先算法和深度优先搜索算法都十分重要,因为它们提供了一套系统地访问图数据结构的方法。
我们着重讲解广度优先搜索算法。
1.深度优先搜索深度优先搜索算法(简称DFS)是一种用于遍历或搜索树或图的算法。
沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
当节点的所在边都己被探寻过,搜索将回溯到发现节点的那条边的起始节点。
这一过程一直进行到已发现从源节点可达的所有节点为止。
由于深度优先搜索不是接下来最短路径算法的基础,因此这里不做拓展。
2.广度优先搜索广度优先搜索算法(简称BFS)又称为宽度优先搜索从起点开始,首先遍历起点周围邻近的点,然后再遍历已经遍历过的点邻近的点,逐步的向外扩散,直到找到终点。
在执行算法的过程中,每个点需要记录达到该点的前一个点的位置—父节点。
这样做之后,一旦到达终点,便可以从终点开始,反过来顺着父节点的顺序找到起点,由此就构成了一条路径。
以上两种算法的不同搜索策略可以通过下面网页查看动图,这是两种相邻节点之间的移动代价相等时用到的算法,图中的边不设权值。
3.Dijkstra算法Dijkstra算法是由计算机科学家Edsger W.Dijkstra在1956年提出的。
考虑这样一种场景,在一些情况下,图形中相邻节点之间的移动代价并不相等。
例如,游戏中的一幅图,既有平地也有山脉,那么游戏中的角色在平地和山脉中移动的速度通常是不相等的。
在Dijkstra算法中,需要计算每一个节点距离起点的总移动代价。
同时,还需要一个优先队列结构。
对于所有待遍历的节点,放入优先队列中会按照代价进行排序。
在算法运行的过程中,每次都从优先队列中选出代价最小的作为下一个遍历的节点。
直到到达终点为止。
对比了不考虑节点移动代价差异的广度优先搜索与考虑移动代价的Dijkstra算法。
可以看出当图形为网格图,并且每个节点之间的移动代价是相等的,那么Dijkstra算法将和广度优先算法变得一样。
实验二 盲目搜索

实验二搜索问题形式化和无信息搜索(2学时)一实验目的熟悉和掌握搜索问题形式化方法与步骤,使用Python语言实现搜索问题形式化;掌握基本无信息搜索算法,实现算法并验证。
二实验原理搜索问题形式化即把要解决的问题描述为搜索问题,主要包括确定状态空间,初始状态,后继函数,目标测试及耗散等5方面内容;对于搜索问题可以应用通用的搜索算法求解,主要包括无信息(盲目)搜索和有信息搜索两大类,基本的无信息搜索有广度优先搜索和深度优先搜索。
三实验条件1 Python解释器,及IDLE等程序开发调试环境。
2 本实验所提供的几个Python文件,包括:mazeworld.py 用于构造、编辑、显示迷宫问题,以及对迷宫进行简单搜索;search.py 编写搜索算法代码。
实验要求的所有搜索Agent将通过改写本文件中类SearchAgent的solve方法来实现;util.py 实现搜索算法可能使用到的一些数据结构;eightpuzzle.py 用于构造、编辑、显示8数码问题;maze1.txt maze2.txt maze3.txt 迷宫文本文件。
四实验内容1 搜索问题形式化2 广度优先搜索3 深度优先搜索五实验步骤1 建立文件夹,将实验提供的4个Python文件和3个文本文件拷到文件夹中,注意整个文件夹路径不能有中文字符2 构造、编辑、显示迷宫问题运行Python IDLE,在>>>提示符下输入import mazeworld此时会出现错误提示,分析为什么出错#之所以会出现错误,是因为在sys的导入路径(path)中没有mazeworld.py文件的路径,这是用户自定#义的的路径,需要手工导入,即使用下面的方法import syssys.path['D:\\Python27\\Lib\\idlelib', 'C:\\WINDOWS\\SYSTEM32\\python27.zip','D:\\Python27\\DLLs', 'D:\\Python27\\lib', 'D:\\Python27\\lib\\plat-win','D:\\Python27\\lib\\lib-tk','D:\\Python27','D:\\Python27\\lib\\site-packages']#这里是你sys初始导入路径>>> sys.path.append('D:\QQPCmgr\Desktop\BlindSearchProject')#这里是你sys新增的导入路径>>> sys.path['D:\\Python27\\Lib\\idlelib', 'C:\\WINDOWS\\SYSTEM32\\python27.zip','D:\\Python27\\DLLs', 'D:\\Python27\\lib', 'D:\\Python27\\lib\\plat-win','D:\\Python27\\lib\\lib-tk', 'D:\\Python27','D:\\Python27\\lib\\site-packages', 'D:\\QQPCmgr\\Desktop\\BlindSearchProject']#新增导入路径后确认路径导入成功>>> import mazeworld此时,不再有出错提示,成功,分析成功原因#由于此时系统具有了mazeworld.py文件所在文件夹的路径,故当使用import命令时,系统会自动来到#这个文件夹进查找,当然就可找到而不会出错了#同时还有可能是因为版本问题出现报错,因为python2和python3要求的输出语言的代码不同#python2系列可以支持 print “xxxx”,python系列需要使用print("xxx") simpleMaze = mazeworld.Maze([['#', ' ', ' ', ' '], ['~', 'S', ' ', 'E']])print simpleMaze理解迷宫的表现形式#输出的迷宫为- - - -|# ||~ S E|- - - -#迷宫最典型的表现形式便是矩阵,而此处的迷宫也同样如此。
人工智能及其应用-状态空间的盲目搜索

3
3.2.1 状态空间的盲目搜索
广度优先搜索(2/3)
例3.5 八数码难题。在3×3的方格棋盘上,分别放置了表有数字1、 2、3、4、5、6、7、8的八张牌,初始状态S0,目标状态Sg,如下图 所示。可以使用的操作有
空格左移,空格上移,空格右移,空格下移
即只允许把位于空格左、上、右、下方的牌移入空格。要求应用广度 优先搜索策略寻找从初始状态到目标状态的解路径。
23 4 18 765
27
28 14 3 765
283 14 5 76
283 64
1 75
12 3
12 3
8 7
6
4 5
Sg
78 4 65
283 1 64 75
283 16 754
5
3.2.1 状态空间的盲目搜索
深度优先搜索
深度优先搜索算法和广度优先搜索算法的步骤基本相同,它 们之间的主要差别在于Open表中的节点排序不同。在深度优先 搜索算法中,最后进人Open表的节点总是排在最前面,即后生 成的节点先扩展。
个子节点设置指向父节点的指针。按如下公式: g(ni)=g (n) +c (n , ni) i=1,2,...
计算各子结点的代价,并根据各子结点的代价对Open表中的全部结点按由小到大的 顺序排序。然后转第(2)步。
8
3.2.2 代价树的盲目搜索
代价树的代价及广度优先搜索(2/2)
例3.6 城市交通问题。设有5个城市,它们之间的交通线路如左图所示,图中的数 字表示两个城市之间的交通费用,即代价。用代价树的广度优先搜索,求从A市出 发到E市,费用最小的交通路线。
搜索算法 (1)把初始节点S0放入Open表中; (2)如果Open表为空,则问题无解,失败退出; (3)把Open表的第一个节点取出放入Closed表,并记该节点为n; (4)考察n是否为目标节点。若是,则得到问题的解,成功退出; (5)若节点n不可扩展,则转第(2)步; (6)扩展节点n,将其子节点放入Open表的尾部,并为每一个子节
盲目搜索与探索

24
3.1.3 深度优先搜索
2020/6/26
25
有界深度优先搜索
定义节点的深度如下: (1) 起始节点(即根节点)的深度为0。 (2) 任何其它节点的深度等于其父辈节点深度加上1。
• 对于许多问题,其状态空间搜索树的深度可能为无限深, 或者可能至少要比某个可接受的解答序列的已知深度上限 还要深。为了避免考虑太长的路径(防止搜索过程沿着无 益的路径扩展下去),往往给出一个节点扩展的最大深 度——深度界限。任何节点如果达到了深度界限,那么都 将把它们作为没有后继节点处理。值得说明的是,即使应 用了深度界限的规定,所求得的解答路径并不一定就是最 短的路径。
失败 成功
一、盲目搜索
盲目搜索又叫做无信息搜索,一般只适用于求解比较简 单的问题。主要包括宽度优先搜索、等深度优先搜索等。 特点:
1)搜索按规定的路线进行,不使用与问题有关的启发性 信息。
2)适用于其状态空间图是树状结构的一类问题。
13
1、 宽度优先搜索
定义:如果搜索是以接近起始节点的程度依次扩展节点的, 那么这种搜索就叫做宽度优先搜索(breadth-first search)。
2020/6/26
29
八数码难题的深度优先搜索树
2020/6/26
30
二、 启发式搜索
盲目搜索的不足:
效率低,耗费过多的计算空间与时间。 宽度优先搜索、深度优先搜索,或等代价搜索算法,是按事
先规定的路线进行搜索,或按已经付出的代价决定下一步 要搜索的节点,其主要差别是OPEN表中待扩展节点的顺 序问题。如果找到一种方法用于排列待扩展节点的顺序, 即选择最有希望的节点加以扩展,那么,搜索效率将会大 为提高。
基本思想:
第3章(搜索推理技术1-图盲目搜索)

①、起 始节点 ( 即根
节点)的深度为0。
②、任何其它节点的
深度等于其父辈
节点深度加上1。
深度优先搜索的基本
思路:
先扩展最深的节点 。
当出现没有后继节点
时,换到旁边的次深
节点
后生成的节点画在左边
含有深度界限的深度优先搜索算法:
① 把起始节点 S 放到未扩展节点的 OPEN 表中。 如果此节点为一目标节点,则得到解 ② 如果 OPEN 为一空表,则无解、失败退出
状态:长度为9的一维数组
(q1 , q2 , … , q9 )
其中,qi 取 0 , 1 , … , 8 个数,0 表示空格,且取值
互不相同
如果记空格的位置为P,这时空格的移动规则是: 1 4 7 2 5 8 3 6 9 数字表示位置 1 2 3 4 5 6 7 8 9 P-3
P-1
P
P+1
P+3
起始节点的父节点标志和操作符:
不作记录或记录为负
搜索过程(按照程序运行方式)
① 起始节点放到OPEN表
2 8 3 1 0 4
2 8 3 1 4 7 6 5 7 6 5
② OPEN不为空,继续
③ 将第一个节点 n 从 OPEN 表中移出,并放到 CLOSED表中 OPEN表
CLOSED表 1 0 0 2 8
13
14
1
4
2
8
8
3
3
0
1
2
4
1
5
4
7
7
0
6
6
5
1 8
7
2
3 4
14 15 15
16 16
3 2 4
6第六讲 第三章(盲目、启发搜索)

二、有序搜索
用估价函数 f 来排列OPEN表上的节点。
应用某个算法选择OPEN表上具有最小f 值的节点作为
二、宽度优先搜索
例3.2 八数码问题 操作规定: 允许空格四周上、下、左、右的数码 块移入空格中,不许斜方向移动,不许返回先辈 结点。
1 2 3 8 5 7 4 6
1
4
1 3 8 2 5 7 4 6
2
1 2 3 8 4 5 7 6
3
1 2 3 8 5 7 4 6
5
1 2 3 8 5 7 4 6
深度优先搜索的特点
OPEN表为堆栈,操作是后进先出(LIFO) 深度优先又称纵向搜索。 一般不容易保证找到最优解(如下图所示) 防止搜索过程沿着无益的路径扩展下去,往往 给出一个节点扩展的最大深度——深度界限。
2、有界深度优先搜索
引入搜索深度限制值d,使深度优先搜索具有完备性 。 (1)深度界限的选择很重要 d若太小,则达不到解的深度,得不到解;若太大,既 浪费了计算机的存储空间与时间,降低了搜索效率。由于 解的路径长度事先难以预料,要恰当地给出d的值是比较 困难的。 (2)即使能求出解,它也不一定是最优解。 例3.3:设定搜索深度限制d=5的八数码问题。
4. 搜索过程框图
S0放入OPEN表 是 OPEN表空? 否 将OPEN表中第一个节点(n) 移至CLOSE表 否 n是目标节点? 扩展节点n,把n的后继节点放入 OPEN表末端,提供指向 节点n的指针 修改指针方针,重排OPEN表
失败
是
成功
一、图搜索策略(Graph Search) 5.图搜索方法分析:
3.2 启发式搜索
盲目搜索的不足:效率低,耗费空间与时间。 启发式搜索:利用问题本身特性信息(启发信息) 指导搜索过程。是有序搜索。 一、启发式搜索策略 启发式信息主要用途:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盲目搜索
搜索的含义
依问题的实际情况寻找可利用的知识,构造代价较少的推理路径从而解决问题的过程
离散的问题通常没有统一的求解方法
搜索策略的优劣涉及能否找到最好的解、计算时间、存储空间等
搜索分为盲目搜索和启发式搜索
盲目搜索:按预定的策略进行搜索,未用问题相关的或中间信息改进搜索。
效率不高,难求解复杂问题,但不失可用性
启发式搜索:搜索中加入问题相关的信息加速问题求解,效率较高,但启发式函数不易构造
盲目搜索也叫无信息搜索,只适合用于求解比较简单的问题。
我们没有指定问题的任何推理信息,例如要搜索这一部分而不是另一部分,就像到目前为止的只要发现一条到目标的路径即可。
这种过程被称为是盲目的。
盲目搜索过程只把算子应用到节点,它没有使用问题领域的任何特殊知识(除了关于什么动作是合法的知识外)。
最简单的盲目搜索过程就是广度优先搜索。
该过程把所有的算子应用到开始节点以产生一个显式的状态空间图,再把所有可能的算子应用到开始节点的所有直接后继,再到后继的后继,等等。
搜索过程一律从开始节点向外扩展。
由于每一步将所有可能的算子应用到一个节点,因此可把它们组成一个叫后继函数的函数。
当把后继函数应用到一个节点时,产生一个节点集,该节点集就是把所有能应用到那个节点的算子应用到该节点而产生的。
一个节点的后继函数的每一次应用称为节点的扩展相同代价搜索是广度优先搜索的一种变体,在该方法中,节点从开始节点顺着代价等高点向外扩展,而不是顺着相同深度等高线。
如果图中所有弧的代价相同,那么相同代价搜索就和广度优先搜索一致。
反过来,相同代价搜索可以看作是下一章要讲的启发式搜索的一个特殊情况。
广度优先和相同代价搜索方法的简要描述只给出了它们的主要思想,但是要解决其他复杂的情况则需要技术改进
深度优先搜索一次对节点应用一个算子以产生该节点的一个后继。
每一个节点都留下一个标记,用来指示如果需要时所必需的附加算子。
对每一个节点,必须有一个决策来决定哪个算子先用,哪个次之等等。
只要一个后继产生,它的下一个后继就会被生成,一直向下传下去,等等。
为了防止从开始节点的搜索过程深度太深,需要一个深度约束(depth bound)。
超过这个深度约束时不再产生后继(假定没有任何目标节点超过这个深度约束)。
这种限制允许我们忽略搜索图的一部分,这些部分已经确定不能高效地到达目标节点。
深度优先算法使我们只保存搜索树的一部分,它由当前正在搜索的路径和指示该路径上还没有完全展开的节点标志构成。
因此,深度优先搜索的存储器要求是深度约束的线性函数。
深度优先搜索的一个缺点是当发现目标时,我们不能保证找到的路径是最短长度。
另一个缺点是如果只有一个很浅的目标,且该目标位于搜索过程的后部时,也必须浏览大分搜索空间。
无信息图搜索过程
深度优先搜索(纵向搜索)
宽度优先搜索(横向搜索)
均一代价搜索
1.深度优先搜索
•定义
首先扩展最新产生的(即最深的)节点。
深度相等的节点可以任意排列。
这种盲目(无信息)搜索叫做深度优先搜索或纵向搜索。
•特点
扩展最深的节点的结果使得搜索沿着状态空间某条单一的路径从起始节点向下进行下去;只有当搜索到达一个没有后裔的状态时,它才考虑另一条替代的路径。
2. 宽度优先搜索
•定义
以接近起始节点的程度逐层扩展节点的搜索方法(breadth-first search),这种盲目(无信息)搜索叫做宽度优先搜索或横向搜索。
•特点
一种高代价搜索,但若有解存在,则必能找到它。
•算法
这种搜索是逐层进行的;在对下一层的任一节点进行搜索之前,必须搜索完本层的所有节点。
宽度优先搜索算法是一种“先进先出”的算法。
3. 均一代价搜索
•是横向搜索的一种推广,不是沿着等长度路径断层进行扩展,而是沿着均一代价路径断层进行扩展。
•搜索树中每条连接弧线上的有关代价,表示时间、距离等花费。
若所有连接弧线具有相等代价,则简化为横向搜索算法。